JPH0439591B2 - - Google Patents

Info

Publication number
JPH0439591B2
JPH0439591B2 JP60259299A JP25929985A JPH0439591B2 JP H0439591 B2 JPH0439591 B2 JP H0439591B2 JP 60259299 A JP60259299 A JP 60259299A JP 25929985 A JP25929985 A JP 25929985A JP H0439591 B2 JPH0439591 B2 JP H0439591B2
Authority
JP
Japan
Prior art keywords
indoor
temperature
refrigerant
freezing
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60259299A
Other languages
Japanese (ja)
Other versions
JPS62119371A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60259299A priority Critical patent/JPS62119371A/en
Publication of JPS62119371A publication Critical patent/JPS62119371A/en
Publication of JPH0439591B2 publication Critical patent/JPH0439591B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和機において、冷房運転時に
蒸発器として作用する室内熱交換器が着霜により
凍結するのを防止する凍結防止運転制御装置に関
し、特に複数台の室内ユニツトを備えて多室を同
時に冷房可能とした、いわゆるマルチ型式の空気
調和機に対するものの改良に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an antifreeze operation control device for preventing an indoor heat exchanger that acts as an evaporator during cooling operation from freezing due to frost formation in an air conditioner. In particular, the present invention relates to improvements to so-called multi-type air conditioners that are equipped with a plurality of indoor units and can cool multiple rooms at the same time.

(従来の技術) 従来、この種のマルチ形式の空気調和機におい
て、その多室の同時冷房運転時に各室内熱交換器
が着霜により凍結するのを防止する場合、例えば
特開昭49−38252号公報に開示されるものでは、
室内ユニツトの能力を可変とし、多室の同時冷房
運転時に該室外ユニツトの能力を同時運転中の室
内ユニツトの合計能力にほぼ対応させることによ
り、蒸発温度を高く保持して、各室内熱交換器の
着霜、凍結を防止するようになされている。
(Prior Art) Conventionally, in this type of multi-type air conditioner, when preventing each indoor heat exchanger from freezing due to frost formation during simultaneous cooling operation of multiple rooms, for example, Japanese Patent Application Laid-Open No. 49-38252 What is disclosed in the publication,
By making the capacity of the indoor unit variable and making the capacity of the outdoor unit approximately correspond to the total capacity of the indoor units operating simultaneously during simultaneous cooling operation of multiple rooms, the evaporation temperature can be maintained high and each indoor heat exchanger It is designed to prevent frost and freezing.

(発明が解決しようとする問題点) しかしながら、各室内熱交換器での着霜の有無
は各室内間で同一でなく、室内ユニツト相互の据
付状態のアンバランスや各室内の温度状況等によ
つて異なり、複数台の室内熱交換器のうち1台の
みに着霜する場合もある。このため、室内熱交換
器の凍結防止対策を何ら施さないものは勿論のこ
と、上記従来の如き凍結防止対策を施したもので
も、その防止対策が確実でないという欠点があつ
た。
(Problem to be solved by the invention) However, the presence or absence of frost on each indoor heat exchanger is not the same in each room, and may vary depending on the unbalance in the installation status of indoor units, the temperature situation in each room, etc. In some cases, frost may form on only one of multiple indoor heat exchangers. For this reason, not only indoor heat exchangers that do not take any anti-freezing measures, but even those that do take the above-mentioned conventional anti-freezing measures have the disadvantage that the preventive measures are not reliable.

また、床面積の広い室内に複数台の室内ユニツ
トを配置した場合には、室内への日光の入射具合
等に起因して日陰側の室内熱交換器のみが着霜す
ることがある。この場合、着霜した側の室内ユニ
ツトへの冷媒の流通を阻止して、その室内送風フ
アンの送風作用により生長霜を除霜する、いわゆ
る凍結防止運転を行うことが考えられるが、この
考えでは、同一室内の空調に拘らず一方では冷房
運転が続行され、他方では凍結防止運転が開始さ
れて、空調のアンバランスが生じる憾みがある。
Further, when a plurality of indoor units are arranged in a room with a large floor area, only the indoor heat exchanger on the shade side may become frosted due to the degree of sunlight entering the room. In this case, it is conceivable to prevent the flow of refrigerant to the indoor unit on the frosted side and defrost the growing frost by the blowing action of the indoor fan, but this idea does not Regardless of the air conditioning in the same room, cooling operation continues on the one hand, and anti-freezing operation starts on the other, causing an imbalance in air conditioning.

本発明は斯かる点に鑑みてなされたものであ
り、その目的は、マルチ型式の空気調和機におい
て、凍結防止運転を行う場合には、複数台の室内
ユニツトが一斉にこれを開始するとともに、その
全体が一斉に凍結防止運転を終了するようにする
ことにより、同一室内での空調のアンバランスを
生じることなく空気調和機全体としての凍結防止
機能を効果的に高めることにある。
The present invention has been made in view of the above, and its purpose is to have a plurality of indoor units start the antifreeze operation at the same time in a multi-type air conditioner, and to The objective is to effectively enhance the anti-freezing function of the air conditioner as a whole without causing an imbalance in air conditioning within the same room by causing the entire air conditioner to end its anti-freezing operation at the same time.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段
は、第1図に示すように、1台の室外ユニツトX
に対し複数台の室内ユニツトY,Y′を並列に接
続したマルチ型式の空気調和機の凍結防止運転制
御装置を前提とする。そして、上記各室内ユニツ
トY,Y′への冷媒の流通を各々許容および阻止
する流通手段17を設ける。また、冷房運転時に
上記各室内ユニツトY,Y′の室内熱交換器10
の温度を各々検出する温度センサ35と、該各温
度センサ35の出力を受け、少なくとも1台の室
内熱交換器10の温度が凍結温度近傍の所定値以
下のとき各室内ユニツトY,Y′への冷媒の流通
を阻止するよう上記各流通手段17を制御する凍
結防止運転開始制御手段45と、上記各温度セン
サ35の出力を受け、全ての室内熱交換器10の
温度が上記所定値を越える設定値以上のとき各室
内ユニツトY,Y′への冷媒の流通を許容するよ
う各流通手段17を制御する凍結防止運転終了制
御手段46とを設ける構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG.
The assumption here is that the antifreeze operation control device is for a multi-type air conditioner in which a plurality of indoor units Y and Y' are connected in parallel. A flow means 17 is provided for allowing and blocking the flow of refrigerant to each of the indoor units Y and Y'. Also, during cooling operation, the indoor heat exchanger 10 of each indoor unit Y, Y'
temperature sensors 35 each detecting the temperature of The temperature of all the indoor heat exchangers 10 exceeds the predetermined value in response to the outputs of the antifreeze operation start control means 45 that controls each of the circulation means 17 to prevent the circulation of the refrigerant, and the temperature sensors 35. The anti-freezing operation termination control means 46 is provided to control each circulation means 17 so as to permit the flow of refrigerant to each indoor unit Y, Y' when the temperature exceeds a set value.

(作用) 以上の構成により、本発明では、少なくとも1
台の室内熱交換器10の温度が所定値以下に低下
すると、凍結防止運転開始制御手段45により各
流通手段17が制御されて、全ての室内ユニツト
Y,Y′への冷媒の流通が停止して一斉に凍結防
止運転が開始される。そして、この凍結防止運転
により全ての室内熱交換器10の温度が設定値以
上に上昇復帰した時点で、上記各流通手段17が
凍結防止運転終了制御手段46により逆方向に制
御されて、凍結防止運転が一斉に終了することに
なる。
(Function) With the above configuration, in the present invention, at least one
When the temperature of the indoor heat exchanger 10 of the unit falls below a predetermined value, the antifreeze operation start control means 45 controls each distribution means 17 to stop the flow of refrigerant to all indoor units Y and Y'. Antifreeze operation will begin all at once. When the temperature of all the indoor heat exchangers 10 rises and returns to the set value or higher due to this anti-freezing operation, each of the above-mentioned distribution means 17 is controlled in the opposite direction by the anti-freezing operation end control means 46 to prevent freezing. The operation will end all at once.

この場合、複数台の室内ユニツトY,Y′の全
体が一斉に凍結防止運転を開始し、一斉にその凍
結防止運転を終了するので、所定の室内にこの複
数台の室内ユニツトY,Y′を備える場合にも、
空調のアンバランスを生じることなく空気調和機
全体としての凍結防止機能を高められて、その凍
結に対する信頼性の向上が図られることになる。
In this case, all of the indoor units Y, Y' start anti-freezing operation at the same time and end the anti-freezing operation at the same time, so these indoor units Y, Y' can be placed in a given room. Also when preparing
The antifreeze function of the air conditioner as a whole can be enhanced without creating an unbalanced air conditioning system, and its reliability against freezing can be improved.

(実施例) 以下、本発明の実施例を第2図以下の図面に基
づいて説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は高層ビル等に配置されるマルチ型式の
空気調和機の冷媒配管系統を示し、Xは室外ユニ
ツト、Y,Y′は各々所定の一室に配置された室
内ユニツト、Zは同様に他の一室に配置された室
内ユニツトであつて、上室室外ユニツトXの内部
には、圧縮機1と、冷房運転時に図中実線の如く
切換わり暖房運転時に図中破線の如く切換わる四
路切換弁2と、室外送風フアン3aを有する室外
熱交換器3と、暖房運転時に蒸発器として作用す
る室外熱交換器3の蒸発温度を感温筒4aで感温
して絞り程度を調整する暖房用膨張弁4と、アキ
ユムレータ5とが主要機器として内蔵されてい
て、該各機器1〜5は各々冷媒配管8……で冷媒
の流通可能に接続されている。
Figure 2 shows the refrigerant piping system of a multi-type air conditioner installed in a high-rise building, etc., where X is an outdoor unit, Y and Y' are each an indoor unit placed in a predetermined room, and Z is a similar refrigerant piping system. An indoor unit placed in another room, the upper indoor outdoor unit The degree of throttling is adjusted by sensing the evaporation temperature of the road switching valve 2, the outdoor heat exchanger 3 having an outdoor blower fan 3a, and the outdoor heat exchanger 3, which acts as an evaporator during heating operation, with a thermosensor tube 4a. A heating expansion valve 4 and an accumulator 5 are built in as main devices, and the devices 1 to 5 are connected to each other through refrigerant piping 8 so that refrigerant can flow therethrough.

一方、3台の室内ユニツトY,Y′,Zは同一
構成であり、その内部には第3図に示す如く、二
台の熱交換器10a,10bが互いに並列に接続
され且つ1台の室内送風フアン10cを有する室
内熱交換器10と、冷房用キヤピラリーチユーブ
11と、冷房運転時に該キヤピラリーチユーブ1
1の絞り開度を補正すると共に電磁弁として機能
する電動弁12とが内蔵されていて、該各機器1
0〜12は各々冷媒配管15……で冷媒の流通可
能に連結されている。そして、一室に配置される
2台の室内ユニツトY,Y′は互いに容量が異な
り、容量の大きい「親」側の室内ユニツトYと容
量の小さい「子」側の室内ユニツトY′とが各々
1セツトして組合せられて、各室内ユニツトY,
Y′,Zがそれぞれ冷媒配管16……により上記
1台の室外ユニツトXに対して並列に接続されて
いる。而して、冷房運転時には、圧縮機1からの
冷媒を四路切換弁2の切換えにより第2図および
第3図実線矢印で示す如く循環させることによ
り、各室内ユニツトY,Y′,Zの室内熱交換器
10で室内空気から吸熱した熱量を室外熱交換器
3で外気に放熱することを繰返して、二室を同時
に冷房する一方、暖房運転時には、圧縮機1から
の冷媒を第2図および第3図破線矢印で示す如く
循環させることにより、冷媒循環サイクルを上記
とは逆サイクルとして、二室を同時に暖房するよ
うになされている。
On the other hand, the three indoor units Y, Y', and Z have the same configuration, and as shown in FIG. An indoor heat exchanger 10 having a blower fan 10c, a cooling capillary reach tube 11, and a cooling capillary reach tube 1 during cooling operation.
A motor-operated valve 12 that corrects the aperture opening of 1 and functions as a solenoid valve is built-in, and each device 1
0 to 12 are connected to each other through refrigerant pipes 15 . . . so that refrigerant can flow therethrough. The two indoor units Y and Y' arranged in one room have different capacities, with the "parent" indoor unit Y having a larger capacity and the "child" indoor unit Y' having a smaller capacity. When combined into one set, each indoor unit Y,
Y' and Z are connected in parallel to the one outdoor unit X through refrigerant pipes 16, respectively. During cooling operation, the refrigerant from the compressor 1 is circulated as shown by the solid line arrows in FIGS. The amount of heat absorbed from the indoor air by the indoor heat exchanger 10 is radiated to the outside air by the outdoor heat exchanger 3, thereby cooling two rooms at the same time. During heating operation, the refrigerant from the compressor 1 is transferred to the outside air as shown in Fig. 2. By circulating the refrigerant as shown by the broken line arrows in FIG. 3, the refrigerant circulation cycle is reversed to the above cycle, and two rooms are heated at the same time.

そして、上記3台の室内ユニツトY,Y′,Z
の各電動弁12により冷媒配管15を開閉するこ
とにより、各室内ユニツトY,Y′,Zへの冷媒
の流通を各々許容および阻止するようにした流通
手段17を構成している。
Then, the above three indoor units Y, Y', Z
By opening and closing the refrigerant pipes 15 using the electric valves 12, a flow means 17 is configured to permit and block the flow of refrigerant to the indoor units Y, Y', and Z, respectively.

また、室外ユニツトXにおいて、19は圧縮機
1内部をその吐出側と吸入側とに選択的に連通切
換する三方電磁弁であつて、該三方電磁弁19の
図中破線で示す吐出側切換時には、圧縮機1から
吐出された冷媒の一部を直ちに圧縮機1内部にア
ンロードして容量制御運転を行う一方、その実線
で示す吸入側切換時には上記アンロードを停止し
て、圧縮機1の全容量運転を行うようになされて
いる。
In the outdoor unit , part of the refrigerant discharged from the compressor 1 is immediately unloaded into the compressor 1 to perform capacity control operation, while at the time of switching to the suction side shown by the solid line, the unloading is stopped and the refrigerant is It is designed to operate at full capacity.

さらに、20は受液器であつて、該受液器20
は暖房用膨張弁4を介設した暖房時専用流通路2
1の該暖房用膨張弁4上流側に配置され、側受液
器20の直上流および直下流にはそれぞれ暖房運
転時にのみ暖房時専用流通路21を開く電磁弁2
2,23が配置されていて、暖房運転時には、室
内ユニツトの運転台数の変化等によつて生じる余
剰冷媒を受液器20に溜込むとともに、冷房運転
時には、該受液器20に溜つた液冷媒を逆止弁2
4およびキヤピラリチユーブ25を介して、四路
切換弁2と各室内ユニツトY,Y′,Zとの間の
低圧側に戻すようにしている。尚、室外ユニツト
Xにおいて、30は圧縮機1からの冷媒中より圧
縮機の循環油を分離する油分離器であつて、分離
された循環油はキヤピラリチユーブ31を介して
アキユムレータ5上流側に戻すようになされてい
る。また、HPSは圧縮機1保護用の高圧圧力開
閉器、PS1,PS2は圧縮機1から吐出された冷
媒の圧力を検出する圧力スイツチであつて、圧力
スイツチPS1は圧力値が所定値(例えば19Kg/
cm2)以上でOFF作動するものであり、圧力スイ
ツチPS2は圧力値が他の所定値(例えば24Kg/
cm2)以上でOFF作動するものである。
Furthermore, 20 is a liquid receiver, and the liquid receiver 20
is a flow path 2 exclusively for heating with a heating expansion valve 4 interposed therein.
Electromagnetic valves 2 are disposed upstream of the heating expansion valve 4 of No. 1, and immediately upstream and downstream of the side liquid receiver 20, respectively, open the heating dedicated flow path 21 only during heating operation.
2 and 23 are arranged, and during heating operation, excess refrigerant generated due to changes in the number of indoor units in operation is stored in the liquid receiver 20, and during cooling operation, the liquid accumulated in the liquid receiver 20 is stored. Refrigerant check valve 2
4 and the capillary tube 25, the pressure is returned to the low pressure side between the four-way switching valve 2 and each of the indoor units Y, Y', and Z. In the outdoor unit It is intended to be returned. In addition, HPS is a high-pressure pressure switch for protecting the compressor 1, PS1 and PS2 are pressure switches that detect the pressure of refrigerant discharged from the compressor 1, and pressure switch PS1 has a pressure value of 19 kg (for example, 19 kg). /
cm 2 ) or more, and the pressure switch PS2 turns OFF when the pressure value is set to another predetermined value (for example, 24 kg/cm 2 ) or more.
cm 2 ) or more, it turns OFF.

そして、上記3台の室内ユニツトY,Y′,Z
内には、各々第3図に示すように、内蔵する室内
熱交換器10の冷房運転時における凍結を防止す
べく、その熱交換器温度Tcを検出する温度セン
サ35が設けられていて、該各温度センサ35の
出力信号は第4図に示す如く各々同一室内ユニツ
トY,Y′,Z内に設けられたCPU等を内蔵する
制御回路40に入力されていて、該各制御回路4
0により同一室内ユニツト内の電動弁12が開閉
制御される。さらに、「親」側の室内ユニツトY,
Zの制御回路40には、冷/暖房切換スイツチ等
を有するリモートコントロール装置41からの各
種の運転制御信号が入力可能になつている。
Then, the above three indoor units Y, Y', Z
As shown in FIG. 3, a temperature sensor 35 for detecting the heat exchanger temperature Tc is installed in each of the internal heat exchangers 10 to prevent the built-in indoor heat exchanger 10 from freezing during cooling operation. As shown in FIG. 4, the output signal of each temperature sensor 35 is inputted to a control circuit 40 having a built-in CPU, etc. provided in the same indoor unit Y, Y', Z.
0, the electric valve 12 in the same indoor unit is controlled to open and close. Furthermore, indoor unit Y on the “parent” side,
The Z control circuit 40 can receive various operation control signals from a remote control device 41 having a cooling/heating changeover switch and the like.

次に、「親」側の室内ユニツトYの制御回路4
0の作動を第5図のフローチヤートに基づいて説
明する。スタートして、ステツプS1で冷/暖房切
換スイツチの操作状況に基づき冷房運転時か否か
を判別し、冷房運転時であるYESの場合にはス
テツプS2以降に進んで室内熱交換器10の凍結を
防止すべく電動弁12の開閉制御を開始する。
Next, the control circuit 4 of indoor unit Y on the “parent” side
The operation of 0 will be explained based on the flowchart of FIG. After starting, in step S1 , it is determined whether or not the cooling operation is being performed based on the operation status of the cooling/heating selector switch.If YES is the cooling operation, the process proceeds to step S2 and thereafter, and the indoor heat exchanger 10 is switched on and off. Opening/closing control of the electric valve 12 is started in order to prevent freezing of the electric valve 12.

すなわち、ステツプS2で同一室内ユニツト内の
温度センサ35からの室内熱交換器温度Tcが凍
結直前温度近傍の所定値(例えば−7℃)以下か
否かを判別し、Tc≦−7℃のYESの凍結状況の
場合には、先ず誤動作を防止すべくステツプS3
その状況継続時間TM1をカウントし、ステツプ
S4でさらにこの凍結状況継続時間TM1が所定時
間(例えば10分)経過したか否かを判別し、経過
したYESのときに限りステツプS5で「親」側の
凍結防止フラグTBFpを「1」に設定して、ステ
ツプS13に進む。
That is, in step S2 , it is determined whether the indoor heat exchanger temperature Tc from the temperature sensor 35 in the same indoor unit is below a predetermined value (for example, -7°C) near the temperature just before freezing, and if Tc≦-7°C. In the case of a freezing situation (YES), first count the duration time TM1 of the situation in step S3 to prevent malfunction, and then proceed to step S3.
In S4 , it is further determined whether or not this freezing condition duration time TM1 has elapsed for a predetermined time (for example, 10 minutes), and only when YES has elapsed, the freezing prevention flag TBFp on the "parent" side is set to "1" in step S5 . ” and proceed to step S13 .

一方、上記ステツプS2でTc>−7℃のNOの凍
結状況ない場合には、ステツプS6で凍結状況継続
時間TM1をリセツトした後、ステツプS7で今度
は室内熱交換器温度Tcが上記所定値を越える、
凍結の心配のない設定値(例えば7℃)以上か否
かを判別し、Tc≧7℃のYESの凍結の心配がな
い場合には、上記と同様に誤動作を防止すべくス
テツプS8でその状況継続時間TM2をカウント
し、ステツプS9でこの安全状況継続時間TM2が
所定時間(例えば10分)を経過したか否かを判別
し、経過したYESの場合には、ステツプS10で上
記「親」側の凍結防止フラグTBFpを「0」に設
定する。これに対し、上記ステツプS9で安全状況
継続時間TM2が10分を経過していないNOの場
合には、ステツプS11で油戻し条件の成立時か否
かの判定、つまり圧縮機1の容量制御運転の所定
時間(例えば3時間)の継続により圧縮機1内で
の潤滑油不足を来して潤滑油の回収を要するか否
かを、室外ユニツトXからの油戻し運転の条件成
立信号の受信の有無により判別し、油戻し条件の
成立したYESのときには圧縮機1の全容量運転
を行う関係上、上記ステツプS7でのTc<7℃の
NOの場合と共にステツプS12で安全状況継続時
間TM2をリセツトしたのちステツプS13に進む
一方、油戻し条件の成立しないNOの場合には直
ちにステツプS13に進む。
On the other hand, if there is no NO freezing condition with Tc > -7°C in step S2 , the freezing condition duration time TM1 is reset in step S6 , and then in step S7 the indoor heat exchanger temperature Tc is set to the above level. exceeding the specified value,
It is determined whether the temperature is above the set value (for example, 7℃) at which there is no risk of freezing, and if there is no risk of freezing (YES, Tc ≥ 7℃), the temperature is set in step S8 to prevent malfunctions in the same way as above. The situation duration time TM2 is counted, and in step S9 it is determined whether or not this safety situation duration time TM2 has elapsed a predetermined time (for example, 10 minutes).If YES, the above-mentioned "safe situation duration time TM2" has elapsed in step S10 . Set the freeze prevention flag TBFp on the "parent" side to "0". On the other hand, if the safe condition duration time TM2 is determined to be NO after 10 minutes in step S9 , it is determined in step S11 whether or not the oil return condition is satisfied, that is, the capacity of the compressor 1 is determined. Whether or not the continuation of the control operation for a predetermined period of time (for example, 3 hours) causes a shortage of lubricating oil in the compressor 1 and requires collection of the lubricating oil is determined based on the condition fulfillment signal for the oil return operation from the outdoor unit X. It is determined based on the presence or absence of reception, and when the oil return condition is satisfied (YES), the compressor 1 is operated at full capacity.
In the case of NO, the safety situation duration time TM2 is reset in step S12 , and then the process proceeds to step S13 , while in the case of NO, where the oil return condition is not satisfied, the process immediately proceeds to step S13 .

そして、ステツプS13で、上記ステツプS1〜S12
と同様の過程で「子」側の制御回路40で設定さ
れた「子」側の凍結防止フラグTBFcの値を判別
するとともに、ステツプS14で「親」側の凍結防
止フラグTBFpが「1」か否かを判別し、TBFc
=「1」の場合又はTBFp=「1」の場合にはステ
ツプS15で「親子」の凍結防止フラグTBFを
「1」に設定し、このことにより「親」側および
「子」側の室内ユニツトY,Y′又はZ,Z′の各電
気膨張弁12を閉作動させる。一方、上記ステツ
プS14で「親子」の凍結防止フラグTBFを「0」
に所定し、このことにより「親」側および「子」
側の電気膨張弁12を開作動させる。
Then, in step S13 , the above steps S1 to S12 are performed.
In the same process as above, the value of the "child" side freeze prevention flag TBFc set in the "child" side control circuit 40 is determined, and in step S14 , the "parent" side freeze prevention flag TBFp is set to "1". Determine whether or not TBFc
= "1" or TBFp = "1", the freeze prevention flag TBF of the "parent and child" is set to "1" in step S15 , and as a result, the indoor Each electric expansion valve 12 of units Y, Y' or Z, Z' is operated to close. On the other hand, in step S14 above, the freeze prevention flag TBF for "parent and child" is set to "0".
This allows the “parent” side and the “child” side to
The side electric expansion valve 12 is opened.

一方、上記ステツプS1での判定が暖房運転時の
NOの場合には、室内熱交換器10の着霜、凍結
は生じないと判断して、ステツプS17で「親」お
よび「親子」の凍結防止フラグTBFp,TBFを
各々「0」に設定するとともに、ステツプS18
凍結状況継続時間TM1および安全状況継続時間
TM2を各々リセツトする。
On the other hand, the determination in step S1 above is during heating operation.
In the case of NO, it is determined that frosting and freezing of the indoor heat exchanger 10 will not occur, and in step S17 , the antifreeze flags TBFp and TBF of the "parent" and "parent and child" are each set to "0". At the same time, in step S18 , the freezing situation duration TM1 and the safe situation duration time are determined.
Reset each TM2.

よつて、上記第5図の「親」側の制御回路40
の作動フローにおいて、ステツプS13,S14,S15
により、「親子」の室内ユニツトY,Y′の各温度
センサ35の出力に基づいて少なくとも一台の室
内熱交換器10の温度Tcが凍結直前温度近傍の
所定値(例えば−7℃)以下のときには、各電動
弁12を閉作動させて各室内ユニツトY,Y′へ
の冷媒の流通を阻止するようにした凍結防止運転
開始制御手段45を構成している。また、ステツ
プS13,S14,S16により、「親子」の室内ユニツト
Y,Y′の各温度センサ35の出力に基づいて2
台の熱交換器10の温度Tcが共に上記所定値を
越える設定値(例えば7℃)以上のときには、各
電動弁12を閉制御して各室内ユニツトY,
Y′への冷媒の流通を許容するようにした凍結防
止運転終了制御手段46を構成している。
Therefore, the "parent" side control circuit 40 in FIG.
In the operation flow, steps S 13 , S 14 , S 15
As a result, the temperature Tc of at least one indoor heat exchanger 10 is below a predetermined value (for example, -7°C) near the freezing temperature based on the output of each temperature sensor 35 of the "parent and child" indoor units Y, Y'. At times, an antifreeze operation start control means 45 is configured to close each electric valve 12 to prevent the flow of refrigerant to each indoor unit Y, Y'. In addition, in steps S 13 , S 14 , and S 16 , two temperature sensors 35 of the "parent-child" indoor units Y and Y'
When the temperature Tc of the heat exchanger 10 of each indoor unit Y,
An anti-freeze operation termination control means 46 is configured to allow the flow of refrigerant to Y'.

したがつて、上記実施例においては、着霜した
室内熱交換器10に対して凍結防止運転が行わ
れ、しかもこの凍結防止運転は同一室内の「親
子」の室内ユニツトY,Y′に対して同時に行わ
れ、且つ同時に終了するので、同一室内での空調
のアンバランスを生じることなく空気調和機全体
としての凍結防止機能が増大し、よつて室内熱交
換器の凍結に対する信頼性の向上を図ることがで
きる。
Therefore, in the above embodiment, the anti-freezing operation is performed on the frosted indoor heat exchanger 10, and this anti-freezing operation is performed on the "parent and child" indoor units Y and Y' in the same room. Since they are performed and finished at the same time, the anti-freeze function of the air conditioner as a whole is increased without creating an imbalance in air conditioning within the same room, thereby improving the reliability of the indoor heat exchanger against freezing. be able to.

尚、上記実施例では、同一室内の「親子」の室
内ユニツトY,Y′に対して同時の凍結防止運転
を行うようにしたが、その他、全ての室内ユニツ
トY,Y′,Zに対して同時に凍結防止運転を行
つてもよいのは勿論のこと、複数個の室内ユニツ
ト相互の関係は、「親子」でなく相互に独立して
いてもよく、また室内ユニツトの設備数について
も4台に限らず2台や、4台以上の多数個であつ
てもよい。
In the above embodiment, the antifreeze operation was performed simultaneously for the "parent and child" indoor units Y and Y' in the same room, but the antifreeze operation was performed for all other indoor units Y, Y', and Z. It goes without saying that anti-freeze operation can be performed at the same time, but the relationship between multiple indoor units may not be "parent-child" but rather independent of each other, and the number of indoor units installed can be limited to four. The number is not limited to two, or may be four or more.

(発明の効果) 以上説明したように、本発明によれば、マルチ
型式の空気調和機において、1台の室内ユニツト
に対する凍結防止運転の開始と同時に他の室内ユ
ニツトに対する凍結防止運転を開始するととも
に、全ての室内ユニツトに対する除霜が完了する
まで全ての凍結防止運転を続行するようにしたの
で、空気調和機全体としての室内熱交換器の冷房
運転時における凍結防止機能を増大させることが
でき、室内熱交換器の凍結に対する信頼性の向上
を図ることができる。特に、複数台の室内ユニツ
トを同一室内に配置した場合には、空調のアンバ
ランスを生じることなく上記凍結に対する信頼性
の向上を図ることができる。
(Effects of the Invention) As explained above, according to the present invention, in a multi-type air conditioner, at the same time as the antifreeze operation for one indoor unit starts, the antifreeze operation for other indoor units is started. Since all anti-freezing operations are continued until defrosting of all indoor units is completed, the anti-freezing function of the indoor heat exchanger of the air conditioner as a whole during cooling operation can be increased. It is possible to improve the reliability of the indoor heat exchanger against freezing. In particular, when a plurality of indoor units are arranged in the same room, reliability against freezing can be improved without creating an unbalanced air conditioning system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロツク図であ
る。第2図ないし第5図は本発明の実施例を示
し、第2図は冷媒配管系統図、第3図は室内ユニ
ツトの内部構成を示す冷媒配管系統図、第4図は
室内ユニツトに備える電気機器のブロツク図、第
5図は「親」側の制御回路の作動を示すフローチ
ヤート図である。 X……室外ユニツト、Y,Y′,Z……室内ユ
ニツト、10……室内熱交換器、12……電動
弁、17……流通手段、35……温度センサ、4
0……制御回路、45……凍結防止運転開始制御
手段、46……凍結防止運転終了制御手段。
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 5 show embodiments of the present invention, with Figure 2 being a refrigerant piping system diagram, Figure 3 being a refrigerant piping system diagram showing the internal configuration of the indoor unit, and Figure 4 being the electrical system provided in the indoor unit. A block diagram of the equipment, FIG. 5 is a flowchart showing the operation of the "parent" side control circuit. X... Outdoor unit, Y, Y', Z... Indoor unit, 10... Indoor heat exchanger, 12... Electric valve, 17... Distribution means, 35... Temperature sensor, 4
0...Control circuit, 45...Anti-freeze operation start control means, 46...Anti-freeze operation end control means.

Claims (1)

【特許請求の範囲】[Claims] 1 1台の室外ユニツトXに並列に接続され且つ
同時に運転される複数台の室内ユニツトY,
Y′を備えた空気調和機の凍結防止運転制御装置
であつて、上記各室内ユニツトY,Y′への冷媒
の流通を各々許容および阻止する流通手段17
と、冷房運転時に上記各室内ユニツトY,Y′の
室内熱交換器10の温度を各々検出する温度セン
サ35と、該各温度センサ35の出力を受け、少
なくとも1台の室内熱交換器10の温度が所定値
以下のとき各室内ユニツトY,Y′への冷媒の流
通を阻止するよう上記各流通手段17を制御する
凍結防止運転開始制御手段45と、上記各温度セ
ンサ35の出力を受け、全ての室内熱交換器10
の温度が上記所定値を越える設定値以上のとき各
室内ユニツトY,Y′への冷媒の流通を許容する
よう各流通手段17を制御する凍結防止運転終了
制御手段46とを備えたことを特徴とする空気調
和機の凍結防止運転制御装置。
1. Multiple indoor units Y connected in parallel to one outdoor unit X and operated at the same time,
This is an antifreeze operation control device for an air conditioner equipped with an air conditioner Y', and a distribution means 17 for allowing and blocking the flow of refrigerant to each of the indoor units Y and Y', respectively.
and a temperature sensor 35 that detects the temperature of the indoor heat exchanger 10 of each indoor unit Y, Y' during cooling operation, and receives the output of each temperature sensor 35 and detects the temperature of at least one indoor heat exchanger 10. anti-freeze operation start control means 45 for controlling each of the circulation means 17 to prevent the flow of refrigerant to each indoor unit Y, Y' when the temperature is below a predetermined value, and receiving the output of each of the temperature sensors 35; All indoor heat exchangers 10
anti-freezing operation termination control means 46 for controlling each distribution means 17 to permit the flow of refrigerant to each indoor unit Y, Y' when the temperature of Freeze prevention operation control device for air conditioners.
JP60259299A 1985-11-18 1985-11-18 Antifreezing operation controller for air conditioner Granted JPS62119371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259299A JPS62119371A (en) 1985-11-18 1985-11-18 Antifreezing operation controller for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259299A JPS62119371A (en) 1985-11-18 1985-11-18 Antifreezing operation controller for air conditioner

Publications (2)

Publication Number Publication Date
JPS62119371A JPS62119371A (en) 1987-05-30
JPH0439591B2 true JPH0439591B2 (en) 1992-06-30

Family

ID=17332146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259299A Granted JPS62119371A (en) 1985-11-18 1985-11-18 Antifreezing operation controller for air conditioner

Country Status (1)

Country Link
JP (1) JPS62119371A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678836B2 (en) * 1988-09-09 1994-10-05 三洋電機株式会社 Freezing prevention method for heat exchanger
JPH0810097B2 (en) * 1989-08-02 1996-01-31 ダイキン工業株式会社 Refrigeration system operation controller
JP2009236392A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Air conditioner
JP4823264B2 (en) * 2008-03-31 2011-11-24 三菱電機株式会社 Cooling device and cooling device monitoring system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921950A (en) * 1982-07-28 1984-02-04 三菱電機株式会社 Defrosting system of heat pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505958U (en) * 1973-05-10 1975-01-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921950A (en) * 1982-07-28 1984-02-04 三菱電機株式会社 Defrosting system of heat pump

Also Published As

Publication number Publication date
JPS62119371A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
EP0692683B1 (en) Air conditioning apparatus having an outdoor unit to which a plurality of indoor units are connected
JP3208323B2 (en) Control method of multi-type air conditioner
WO2013088482A1 (en) Air conditioning device
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JP3785893B2 (en) Air conditioner
JPH03175230A (en) Operation controller of air conditioner
JPH0439591B2 (en)
JPH043865A (en) Freezing cycle device
JP2695288B2 (en) Multi-room air conditioner
JP2522065B2 (en) Operation control device for air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JPH04344085A (en) Defrosting operation control device for refrigerating apparatus
JP3149625B2 (en) Operation control device for air conditioner
JPH03186169A (en) Defrosting operation controller of air conditioner
JPH0726765B2 (en) Air conditioner
JP2634267B2 (en) Anti-freezing device for air conditioners
JPH02195145A (en) Device for controlling oil-recovery operation in air-conditioning apparatus
JPH061133B2 (en) Electric expansion valve controller for air conditioner
JPH0120604Y2 (en)
JPH06337152A (en) Multiroom cooling/heating device
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPH086950B2 (en) Operation control device for air conditioner
JPH04344084A (en) Operation control device for refrigerating apparatus
JPS62119348A (en) Control device for defrosting operation of air conditioner
JPH0730967B2 (en) Cooling / heating automatic switching device for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term