JPH0439514A - Controller of space heating capability for space heating - Google Patents

Controller of space heating capability for space heating

Info

Publication number
JPH0439514A
JPH0439514A JP14831790A JP14831790A JPH0439514A JP H0439514 A JPH0439514 A JP H0439514A JP 14831790 A JP14831790 A JP 14831790A JP 14831790 A JP14831790 A JP 14831790A JP H0439514 A JPH0439514 A JP H0439514A
Authority
JP
Japan
Prior art keywords
heating
room temperature
temperature
control
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14831790A
Other languages
Japanese (ja)
Other versions
JP2705282B2 (en
Inventor
Yukikazu Matsuda
松田 幸和
Masayuki Nanba
政之 難波
Yoshio Asano
浅野 義雄
Shinji Kushida
慎治 櫛田
Masahiko Takeoka
竹岡 政彦
Tadanori Haneda
羽根田 忠典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14831790A priority Critical patent/JP2705282B2/en
Publication of JPH0439514A publication Critical patent/JPH0439514A/en
Application granted granted Critical
Publication of JP2705282B2 publication Critical patent/JP2705282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a pleasant space heating regardless of the largeness of the room and the temperature of the room at the time of starting space heating by delaying the time of releasing maximum space heating capability at the time of starting space heating the later as the variation in room temperature is larger and the load of space heating is the smaller and selecting the time of releasing the maximum room heating capability at the time of starting space heating the earlier when the load of room heating is the larger and the room temperature at the time of starting space heating is the higher. CONSTITUTION:A control section 13 lets combustion start according to a program beforehand prescribed, and it calculates the combustion quantity by the difference between the output of room temperature and the output of set temperature, and the calculated combustion quantity is outputted to a combustion quantity changing means 14 and a hot air volume changing means 15 to control the combustion quantity and hot air volume. Here the room temperature T0 is taken as t0 and the temperature deviation as (e) at the time of starting space heating. A pertinency calculation section 18a seeks pertinency w in said room temperature T0=t0 and temperature deviation En=e according to the control rule in the memory 17a of a condition section. A center of gravity calculation section 18c composes weight functions in the output section of the control rule and their center of gravity is calculated.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は温風暖房機等の暖房能力制御装置に関するもの
である。 従来の技術 一般にこの種の暖房能力温度制御装置は設定温度と室温
との差によってその暖房能力を強〜弱に変化させるよう
になっている。したがって室温が低い暖房開始時は最大
(強)暖房能力で暖房を開始し、室温が設定温度に達し
た後に最大暖房能力による暖房を解除して前記室温と設
定温度との差によって定められる暖房能力(強〜弱)で
暖房を行なうようになる。 発明が解決しようとする課題 しかしながらこのような暖房能力制御装置とは部屋が小
さい場合、室温が設定温度に達しても体感的には寒く怒
しることがあった。これは暖房開始時、特に低温からの
暖房開始時には部屋が狭いため室内の空気温度は早く設
定温度に達しても熱容量の大きい室内の壁、床、天井等
は冷えきっていてなかなか暖まらないので、室温が設定
温度に達していても冷熱輻射により実際に人間が感じる
体感温度が低くなるからである。 また部屋が大きい場合は、室温が設定温度に達すると体
感的には熱く感じることがあった。特に暖房開始時の室
温が比較的高い時には顕著に感しることがあった。これ
は暖房開始時、部屋が広いため室温の空気温度はゆっく
りと上昇、すなわち熱容量の大きい室内の壁、床、天井
等とほぼ同じように温度上昇し、またはすでに壁、床、
天井等の温度がある程度高くなっているため多少温度上
昇が遅くても室内温度が設定温度に達するころには室内
の壁や床や天井が室内温度とほぼ同程度の温度になって
これらから冷熱輻射を受けることがなくなるため、相対
的に熱く感じるようになるのであった。 本発明はこのような点に鑑みてなしたもので、部屋の大
きさや暖房開始時の温度に関係なく快適な暖房状態が早
く得られるようにすることを目的としたものである。 課題を解決するための手段 本発明は上記目的を達成するため室温検出部及び室温設
定部からの岡山力差に基づいて燃焼量あるいは温風量の
いづれかあるいは両方の能力を設定する制御部と、暖房
開始時の室温と暖房開始−定時間後の室温とから室温変
化偏差を求める偏差演算部と、室温及び室温変化偏差と
燃焼量あるいは温風量可変手段のいずれかあるいは両方
へ出力する暖房能力指示との関係を制御規則として記憶
する制御規則記憶部と、室温及び室温変化偏差と前記制
御規則記憶部の制御規則を参照し推論処理を行なって前
記暖房能力指示を決定する制御推論部と、この制御推論
部からの出力に基づいて前記制御部から出力されている
暖房開始時の強暖房能力指示の解除出力時点を修正する
出力補正部とで構成しである。 作用 本発明は上記構成によって室温の変化量が大きく暖房負
荷が小さい、すなわち部屋が小さいほど暖房開始時の最
大暖房能力を解除する時点、すなわち温度を高目に設定
するようになる。したがって部屋が小さいほど設定温度
より高目になるまで最大暖房能力で暖房することになり
、その結果、壁、床、天井等からの冷輻射があっても体
感的には短時間で設定温度まで暖房、すなわち快適な暖
房が可能となる。また部屋が広くて暖房負荷が大きい時
や暖房開始時の室温が高い時はど暖房開始時の最大暖房
能力を解除する時点、すなわち温度を低目に設定するよ
うになる。したがって部屋が大きく暖房開始時の室温が
高いほど設定温度より低い温度から暖房能力が弱くなり
、その結果室内を暖めすぎるようなことがなく体感的に
快適な暖房が得られるようになる。 実施例 以下本発明の一実施例を図面とともに説明する。 まず第1図を用いて温風暖房機の一例を説明しておくと
、1は暖房機本体、2はこの暖房機本体1内に設けた熱
源部で、燃料を気化し燃焼用空気と混合させて燃焼させ
る気化式バーナが用いである。 3は上記熱源部2に燃料を供給する燃料ポンプ、4は同
熱源部2に燃焼用空気を供給するバーナファン、5は熱
源部2で発生した燃焼ガス等の熱を温風として本体前面
の温風吹出口6から吹出す対流ファン、7は上記温風吹
出口6に設けたルーバで、温風の吹出角度を変えるもの
であり、ステッピングモータ等のルーバ角度可変手段8
によってルーバ角が変更されるようになっている。9は
制御装置で、前記燃料ポンプ3、バーナファン4、対流
ファン5を駆動して燃焼量及び温風量を制御するととも
にこれに連動してルーバ角度可変手段8を駆動してルー
バ角を変えるものである。 第1図は上記制御装置のブロック図であり、11は室温
検出部、12は室温設定部、13は上記室温検出及び設
定部11.12からの出力を入力しその出力差で燃焼量
及び温風量を設定する制御部で、前記燃料ポンプ3、バ
ーナファン4で構成される燃焼量可変手段14と、対流
ファン5で構成される温風量可変手段15を駆動する。 托は偏差演算部で、室温検出部11から暖房開始時に得
る温度T0と暖房開始一定時間後に得る温度T、とから
室温変化偏差Enを演算する。17は制御規則記憶部で
、暖房開始時の温度T0と室温変化偏差Enとで後述す
る出力補正部への暖房能力指示との関係をM御変数を用
いて記述した制御規則を記憶している。ここで制御規則
の例として「もし、室温がやや寒くかつ室温変化偏差E
nが大きいならば(条件部)、暖房能力指示は少しオー
バーとせよ(出力部)」等のiF−them−形式で記
述され、下記第1表のようになる。 第1表 ここで、「やや寒い」、「大きい」あるいは「少しオー
バーさせよ」という制御変数は第3図に示すメンバーシ
ップ関数で定義される。 なお制御規則記憶部17は制御規則の条件部を記憶する
条件部記憶部17aと、!If?II規則の出力部を記
憶する出力部記憶部17aとからなる。 次に18は制御推論部で、暖房開始時の室温T。 及び室温変化偏差Enと制御規則記憶部17の制御規則
とから推論を行なって暖房能力指示量を決定し出力する
。ここで制御推論部18は室温検出部11及び偏差演算
部16と条件部記憶部17aとから暖房開始時の室温T
o、室温変化偏差Enの制御規則の条件部への適合度を
求める適合度演算部18aと、求めた適合度と出力部記
憶部17bの出力信号とで制御規則の出力部に重み付け
を行なう重み付は演算部18bと、重み付は演算部18
bから重み付けされた制御規則の出力部から暖房能力指
示を重心演算で求める重心演算部18cとからなる。 
19は上記制御推論部18からの暖房能力指示出力に基
づいて制御部13からの強暖房能力指示の解除時点を修
正する出力補正部で、補正した出力を燃焼量可変手段1
4と温風量可変手段15に送ってこれらを制御する。 上記構成においてその動作を説明する。まず運転の開始
がn認されると制御部13はあらかじめ定められたプロ
グラムにしたがって燃焼を開始させる。次に燃焼を開始
すると、室温・設定温度を検出し、その出力差で燃焼量
を算出して燃焼量可変手段14と温風量可変手段15に
出力し燃焼・温風量を制御する。通常暖房開始時は室温
と設定温度との差が大きいので最大暖房能力(最大燃焼
・温風量)で暖房の開始を指示する。またこの時点では
制御推論部18からの出力がないので出力補正部19は
制御部13からの出力をそのまま出し、最大暖房能力で
暖房を開始するようになる。第2図のフロチャートで示
すとP1〜P、の動作である。 次に暖房開始後一定時間(例えば15分)が経過すると
偏差演算部16は暖房開始時の室温T0と一定時間後の
室温T、とから室温変化偏差En(En=T、  To
)を求める。第2図のフローチャートではP、〜P、の
動作になる。そして適合度演算部18aが上記室温T0
と室温変化偏差Enとを条件部記憶部17aの制御規則
の条件部に入力し適合度Wを求める。第2図のフローチ
ャートではproになる。 次に求めた適合度Wを重み付は演算部18bで出力部記
憶部17bの制御規則の出力部に重み付は演算を行なう
、第2図のフローチャートではP I+になる。 次に重心演算部18cは重み付けされた制御規則の出力
部の関数を合成しその重心を求める。これが、入力され
た室温T0及び室温変化偏差Enに対する暖房能力指示
になり、求めた暖房能力指示を出力補正部19に出力す
る。第2図のフロチャトのP1□である。 出力補正部19はこの暖房能力指示に基づき制御部13
からの暖房能力指示に優先してこれを燃焼量可変手段1
4と温風量可変手段15に出力しこれらを制御するよう
になる。 すなわち、例えば暖房開始時の室温が第3図の(A)で
示す3°Cで一定時間後の室温変化偏差が同図(B)で
示す10degであれば暖房能力指示は第1表のa印の
中から選択されることになる。そして同図(C)で示す
表に基づいてMin−Max法及び重心法による推論が
加えられ、暖房能力指示、この場合は暖房開始時の強暖
房能力を解除する時点(温度)、一般には設定温度もし
くは設定温度より1℃低い温度に設定されている温度を
何度にするかを指示する。したがって制御部13から指
示される強暖房能力解除点(温度)が設定温度であって
も部屋が小さい、あるいは暖房開始時の室温が低い時は
、設定温度よりもldeg 、2deg・・・高い温度
となり、遂に部屋が大きい、あるいは暖房開始時の温度
が高い時には、設定温度よりもldeg、2 deg・
・・低い温度となる。その結果部屋が小さい、暖房開始
時の室温が高い時は、設定温度よりも高目になるまで強
暖房能力で暖房するので、壁、床。 天井等から冷熱輻射があっても体感的に寒く感じること
はなくなる。また部屋が大きい、暖房開始時の温度が高
い時は、設定温度よりも低い温度で強暖房能力が解除さ
れて中、弱、微弱のように暖房能力が変化するので、壁
、床、天井の温度が上がりすぎて熱く感じるということ
がなくなる。 発明の効果 以上実施例の説明から明らかなように本発明によれば部
屋が狭い、あるいは暖房開始時の室温が低い時には少し
高目になるまで強暖房能力で暖房するので、壁、床、天
井等からの冷熱輻射で体感的に寒く感じるようなことが
なく、また部屋が広い、あるいは暖房開始時の室温が高
い時には少し低目の温度から強暖房能力による暖房を解
除して中〜弱暖房へと移行していくので、室温が設定温
度に達した時に熱く感しるということもなくなる。 すなわち部屋の大小や暖房開始時の室温の状況を判断し
て最適な暖房が可能となり、暖房開始時において快適な
暖房状態を無駄なく効率よく早く作り出すことができる
INDUSTRIAL APPLICATION FIELD The present invention relates to a heating capacity control device for hot air heaters and the like. 2. Description of the Related Art In general, this type of heating capacity temperature control device changes its heating capacity from strong to weak depending on the difference between a set temperature and the room temperature. Therefore, when starting heating when the room temperature is low, heating is started at the maximum (strong) heating capacity, and after the room temperature reaches the set temperature, heating at the maximum heating capacity is canceled and the heating capacity is determined by the difference between the room temperature and the set temperature. (strong to low) to heat the room. Problems to be Solved by the Invention However, when the room is small, such a heating capacity control device may make the room feel cold and angry even when the room temperature reaches the set temperature. This is because when heating starts, especially when heating starts from a low temperature, the room is small and even if the indoor air temperature reaches the set temperature quickly, the walls, floor, ceiling, etc. in the room, which have a large heat capacity, are cold and do not warm up easily. This is because even if the room temperature reaches the set temperature, the temperature that humans actually feel becomes lower due to cold radiation. In addition, if the room was large, it could feel hot when the room temperature reached the set temperature. This was especially noticeable when the room temperature was relatively high at the start of heating. This is because when heating starts, the room air temperature rises slowly because the room is large, that is, the temperature rises almost in the same way as the walls, floors, ceilings, etc. in the room, which have a large heat capacity, or the temperature of the walls, floors, and ceilings that have a large heat capacity increases.
Because the temperature of the ceiling, etc. is high to a certain extent, even if the temperature rises a little slowly, by the time the indoor temperature reaches the set temperature, the walls, floor, and ceiling of the room will have a temperature almost the same as the indoor temperature, and cold radiation will be radiated from these. Since he was no longer exposed to it, he began to feel relatively hot. The present invention was made in view of these points, and an object of the present invention is to enable a comfortable heating state to be quickly obtained regardless of the size of the room or the temperature at the start of heating. Means for Solving the Problems In order to achieve the above object, the present invention provides a control section that sets the capacity of either the combustion amount or the hot air amount, or both, based on the Okayama force difference from the room temperature detection section and the room temperature setting section; a deviation calculation unit that calculates a room temperature change deviation from the room temperature at the start and the room temperature after heating start and after a fixed time; and a heating capacity instruction that outputs the room temperature, the room temperature change deviation, and the combustion amount or hot air amount variable means or both. a control rule storage unit that stores the relationship between the following as a control rule; a control inference unit that performs inference processing by referring to the room temperature and room temperature change deviation and the control rule in the control rule storage unit to determine the heating capacity instruction; and an output correction section that corrects the point in time at which the strong heating capacity instruction at the time of starting heating that is output from the control section is output based on the output from the inference section. Effects According to the present invention, with the above configuration, the larger the amount of change in room temperature and the smaller the heating load, that is, the smaller the room, the higher the point at which the maximum heating capacity is released at the start of heating, that is, the temperature is set. Therefore, the smaller the room, the higher the heating capacity will be until the temperature reaches the set temperature.As a result, even if there is cold radiation from walls, floors, ceilings, etc., the set temperature will reach the set temperature in a shorter period of time. Heating, that is, comfortable heating becomes possible. Also, when the room is large and the heating load is large, or when the room temperature is high when heating starts, the maximum heating capacity at the start of heating is canceled, that is, the temperature is set to a low value. Therefore, the larger the room and the higher the room temperature at the start of heating, the weaker the heating capacity will be from a temperature lower than the set temperature, and as a result, the room will not be overheated and heating will be more comfortable. EXAMPLE An example of the present invention will be described below with reference to the drawings. First, an example of a hot air heater will be explained using Fig. 1. 1 is the heater body, and 2 is a heat source provided inside the heater body 1, which vaporizes fuel and mixes it with combustion air. An evaporative burner is used to combust. 3 is a fuel pump that supplies fuel to the heat source section 2; 4 is a burner fan that supplies combustion air to the heat source section 2; 5 is a fuel pump that supplies combustion air to the heat source section 2; A convection fan 7 blows out hot air from the hot air outlet 6, and 7 is a louver provided at the hot air outlet 6 to change the blowing angle of the hot air, and a louver angle variable means 8 such as a stepping motor is used.
The louver angle is changed by Reference numeral 9 denotes a control device that drives the fuel pump 3, burner fan 4, and convection fan 5 to control the combustion amount and hot air amount, and in conjunction with this, drives the louver angle variable means 8 to change the louver angle. It is. FIG. 1 is a block diagram of the above control device, where 11 is a room temperature detection section, 12 is a room temperature setting section, and 13 is an input of the outputs from the room temperature detection and setting sections 11 and 12, and the combustion amount and temperature are determined by the output difference. The control section that sets the air volume drives the combustion amount variable means 14 made up of the fuel pump 3 and the burner fan 4, and the hot air amount variable means 15 made up of the convection fan 5. The controller is a deviation calculating section that calculates a room temperature change deviation En from the temperature T0 obtained from the room temperature detecting section 11 at the start of heating and the temperature T obtained after a certain period of time from the start of heating. Reference numeral 17 denotes a control rule storage unit that stores a control rule that describes the relationship between the temperature T0 at the start of heating and the room temperature change deviation En, and a heating capacity instruction to the output correction unit, which will be described later, using M control variables. . Here, an example of a control rule is ``If the room temperature is a little cold and the room temperature change deviation E
If n is large (condition part), the heating capacity instruction should be a little over (output part). Table 1 Here, the control variables such as ``slightly cold'', ``large'', or ``make it slightly overflow'' are defined by the membership function shown in FIG. Note that the control rule storage unit 17 includes a condition part storage unit 17a that stores the condition part of the control rule. If? and an output section storage section 17a that stores the output section of the II rule. Next, 18 is a control inference unit which calculates the room temperature T at the start of heating. Then, inference is made from the room temperature change deviation En and the control rule in the control rule storage section 17 to determine and output the heating capacity instruction amount. Here, the control inference unit 18 calculates the room temperature T at the start of heating from the room temperature detection unit 11, the deviation calculation unit 16, and the condition storage unit 17a.
o, a suitability calculation unit 18a that calculates the suitability of the room temperature change deviation En to the condition part of the control rule, and a weight that weights the output part of the control rule using the determined suitability and the output signal of the output unit storage unit 17b. The weighting is the calculation unit 18b, and the weighting is the calculation unit 18b.
It consists of a center-of-gravity calculation section 18c that calculates a heating capacity instruction from the output section of the control rule weighted from b.
Reference numeral 19 denotes an output correction unit that corrects the point in time when the strong heating capacity instruction from the control unit 13 is canceled based on the heating capacity instruction output from the control inference unit 18, and the corrected output is applied to the combustion amount variable unit 1.
4 and hot air volume variable means 15 to control these. The operation of the above configuration will be explained. First, when the start of operation is approved, the control section 13 starts combustion according to a predetermined program. Next, when combustion is started, the room temperature and set temperature are detected, and the amount of combustion is calculated based on the output difference between them, and the amount is outputted to the combustion amount variable means 14 and the hot air amount variable means 15 to control combustion and the amount of hot air. Normally, when heating starts, there is a large difference between the room temperature and the set temperature, so the system instructs to start heating at maximum heating capacity (maximum combustion/warm air volume). Further, at this point, there is no output from the control inference section 18, so the output correction section 19 outputs the output from the control section 13 as is, and starts heating at the maximum heating capacity. In the flowchart of FIG. 2, the operations are P1 to P. Next, when a certain period of time (for example, 15 minutes) has elapsed after the start of heating, the deviation calculation unit 16 calculates the room temperature change deviation En (En=T, To
). In the flowchart of FIG. 2, the operations are P, .about.P. Then, the fitness calculating section 18a calculates the above room temperature T0.
and the room temperature change deviation En are input into the condition section of the control rule in the condition section storage section 17a to obtain the degree of conformity W. In the flowchart of FIG. 2, it becomes pro. Next, the calculated degree of fitness W is weighted by the calculation unit 18b and is calculated on the output part of the control rule in the output part storage part 17b, which becomes P I+ in the flowchart of FIG. Next, the center of gravity calculation unit 18c synthesizes the functions of the output part of the weighted control rule and determines the center of gravity. This becomes the heating capacity instruction for the input room temperature T0 and room temperature change deviation En, and the obtained heating capacity instruction is output to the output correction section 19. This is P1□ of the flowchart in FIG. The output correction unit 19 adjusts the control unit 13 based on this heating capacity instruction.
This is given priority to the heating capacity instruction from the combustion amount variable means 1.
4 and the hot air volume variable means 15 to control them. That is, for example, if the room temperature at the start of heating is 3°C as shown in (A) in Figure 3, and the room temperature change deviation after a certain period of time is 10° as shown in (B) in the same figure, the heating capacity instruction is a in Table 1. A selection will be made from among the marks. Then, based on the table shown in Figure (C), inferences based on the Min-Max method and the center of gravity method are added, and the heating capacity instruction, in this case the point (temperature) at which strong heating capacity is released at the start of heating, is generally set. Instruct how many degrees to set the temperature or the temperature 1°C lower than the set temperature. Therefore, even if the strong heating ability release point (temperature) instructed by the control unit 13 is the set temperature, if the room is small or the room temperature is low when heating starts, the temperature will be ldeg, 2deg, etc. higher than the set temperature. Finally, if the room is large or the temperature at the start of heating is high, the temperature will be ldeg and 2 deg higher than the set temperature.
・The temperature becomes low. As a result, if the room is small and the room temperature is high at the start of heating, the high heating capacity will be used to heat the walls and floor until the temperature is higher than the set temperature. Even if there is cold radiation from the ceiling, etc., you will no longer feel cold. In addition, if the room is large or the temperature at the start of heating is high, the strong heating capacity will be canceled at a temperature lower than the set temperature and the heating capacity will change from medium to weak to weak, so the walls, floor, and ceiling will be heated. You will no longer feel hot due to the temperature rising too high. Effects of the Invention As is clear from the description of the embodiments, according to the present invention, when the room is small or the room temperature is low at the start of heating, heating is performed at a high heating capacity until the room temperature is a little high, so it is possible to heat the walls, floor, and ceiling. In addition, if the room is large or the room temperature is high when heating starts, the strong heating capacity can be turned off from a slightly lower temperature to provide medium to low heating. As the temperature increases, you will no longer feel hot when the room temperature reaches the set temperature. In other words, it is possible to perform optimal heating by determining the size of the room and the room temperature at the time heating starts, and it is possible to quickly and efficiently create a comfortable heating condition at the time heating starts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における温風暖房機の制御装
置を示すブロック図、第2図はその動作を示すフローチ
ャート、第3図は同メンバーシップ関数を示す図、第4
図は温風暖房機の断面図である。 11・・・・・・室温検出部、12・・・・・・室温設
定部、13・・・・・・制御部、14・・・・・・燃焼
量可変手段、15・・・・・・温風量可変手段、16・
・・・・・偏差演算部、17・・・・・・制御規則記憶
部、1日・・・・・・制御推論部、19・・・・・・出
力補正部。 代理人の氏名 弁理士 粟野重孝 はか1名第3図 メンへ−シヅプIJl!考( 解餘急(ムリ 手続補正書(n1 第 図 2発明の名称 暖房機の暖房能力制御装置 3補正をする者 事件との関係      特  許  出  願  人
任 所  大阪府門真市大字門真1006番地名 称 
(582)松下電器産業株式会社代表者    谷  
井  昭  雄 4代理人 〒571 住 所  大阪府門真市太字門真1006番地松下電器
産業株式会社内 明    細    書 1、発明の名称 暖房機の暖房能力制御装置 2、特許請求の範囲 (1)室温検出部および室温設定部からの岡山力に基づ
いて燃焼量あるいは温風量のいずれかあるいは両方の能
力を設定する制御部と、暖房開始時の室温と暖房開始一
定時間後の室温とから室温変化偏差を求める偏差演算部
と、上記室温おら出力されている暖房開始時の強暖房能
力指示の解除出力時点を修正する能力制御部とからなる
暖房機の暖房能力制御装置。 (2)室温検圧部および室温設定部からの両呂力に基づ
いて燃焼量あるいは温風量のいずれかあるいは両方の能
力を設定する制御部と、暖房開始時の室温と暖房開始一
定時間後の室温とから室温変化偏差を求める偏差演算部
と、室温および室温変化偏差と燃焼量あるいは温風量可
変手段のいずれかあるいは両方へ出力する暖房能力指示
との関係を制御規則として記憶する制御規則記憶部と、
室温および室温変化偏差と前記制御規則記憶部の制御焼
目11を参照し推論処理を行なって前記暖房能力指示を
決定する制御推論部と、この制御推論部からの出力に基
づいて前記制御部から出力されている暖房開始時の強暖
房能力指示の解除出力時点を修正する出力補正部とから
なる暖房機の暖房能力制御装置。 3、発明の詳細な説明 産業上の利用分野 本発明は温風暖房機等の暖房能力制御装置に関するもの
である。 従来の技術 一般にこの種の暖房能力温度制御装置は設定温度と室温
との差によってその暖房能力を強〜弱に変化させるよう
になっている。したがって室温が低い暖房開始時は最大
(強)暖房能力で暖房を開始し、室温が設定温度に達し
た後に最大暖房能力による暖房を解除して前記室温と設
定温度との差によって定められる暖房能力(強〜弱)で
暖房を行なうようになる。 発明が解決しようとする課題 しかしながらこのような暖房能力制御装置は部屋が小さ
い場合、室温が設定温度に達しても体感的には寒く感じ
ることがあった。これは暖房開始時、特に低温からの暖
房開始時には部屋が釈いため室内の空気温度は早く設定
温度に達しても熱容量の大きい室内の壁、床、天井等は
冷えきっていてなかなか暖まらないので、室温が設定温
度に達していても冷熱輻射により実際に人間が感じる体
感温度が低くなるからである。 また部屋が大きい場合は、室温が設定温度に達すると体
感的には熱く感じることがあった。特に暖房開始時の室
温が比較的高い時には顕著に感じることがあった。これ
は暖房開始時、部屋が広いため室温の空気温度はゆっく
りと上昇、すなわち熱容量の大きい室内の壁、床、天井
等とほぼ同じように温度上昇し、またはすでに壁1床、
天井等の温度がある程度高くなっているため多少温度上
昇が遅くても室内温度が設定温度に達するころには室内
の壁や床や天井が室内温度とほぼ同程度の温度になって
これらから冷熱輻射を受けることがなくなるため、相対
的に熱く感じるように々るのであった。 本発明はこのような点に鑑みてなしたもので、部屋の大
きさや暖房開始時の温度に関係なく快適な暖房状態が早
く得られるようにすることを目的としたものである。 課題を解決するだめの手段 本発明は上記目的を達成するため室温検出部および室温
設定部からの岡山力に基づいて燃焼量あるいは温風量の
いずれかあるいは両方の能力を設定する制御部と、暖房
開始時の室温と暖房開始定時間後の室温とから室温変化
偏差を求める偏差演算部と、上記室温および室温変化偏
差出力に基づいて前記制御部から出力されている暖房開
始時の強暖房能力指示の解除出力時点を修正する能力制
御部とで構成してあり、さらに目的を達成する他の手段
としては室温検出部および室温設定部からの岡山力差に
基づいて燃焼量あるいは温風量のいずれかあるいは両方
の能力を設定する制御部と、暖房開始時の室温と暖房開
始一定時間後の室温とから室温変化偏差を求める偏差演
算部と、室温および室温変化偏差と燃焼量あるいは温風
量可変手段のいずれかあるいは両方へ出力する暖房能力
指示との関係を制御規則として記憶する制御規則記憶部
と、室温および室温変化偏差と前記制御規則記憶部の制
御規則を参照し推論処理を行なって前記暖房能力指示を
決定する制御推論部と、この制御推論部からの出力に基
づいて前記制御部から出力されている暖房開始時の強暖
房能力指示の解除出力時点を修正する出力補正部とで構
成しである。 作用 本発明は上記構成によって室温の変化量が大きく暖房負
荷が小さい、すなわち部屋が小さいほど暖房開始時の最
大暖房能力を解除する時点を遅く、すなわち温度を高目
に設定するようになる。したがって部屋が小さいほど設
定温度より高目になるまで最大暖房能力で暖房すること
になり、その結果、壁、床、天井等からの冷輻射があっ
ても体感的には短時間で設定温度まで暖房、すなわち快
適な暖房が可能となる。また部屋が広くて暖房負荷が大
きい時や暖房開始時の室温が高い時はど暖房開始時の最
大暖房能力を解除する時点を早く、すなわち温度を低目
に設定するようになる。しだがって部屋が大きく暖房開
始時の室温が高いほど設定温度より低い温度から暖房能
力が弱くなり、その結果室内を暖めすぎるようなことが
なく体感的に快適な暖房が得られるようになる。 実施例 以下本発明の一実施例を図面とともに説明する。 1ず第6図を用いて温風暖房機の一例を説明しておくと
、1は暖房機本体、2はこの暖房機本体1内に設けた熱
源部で、燃料を気化し燃焼用空気と混合させて燃焼させ
る気化式バーナが用いである。 3は上記熱源部2に燃料を供給する燃料ポンプ、4は同
熱源部2に燃焼用空気を供給するバーナファン、6は熱
源部2で発生した燃焼ガス等の熱を温風として本体前面
の温風吹出口6から吹出す対流ファン、7は上記温風吹
呂口6に設けたルーパで、温風の吹出角度を変えるもの
であり、ステッピングモータ等のlレーバ角度可変手段
8によってルーバ角が変更されるようになっている。9
は制御装置で、前記燃料ポンプ3、バーナファン4、対
流ファン6を駆動して燃焼量および温風量を制御すると
ともにこれに連動してル−バ角度可変手段8を駆動して
ルーバ角を変えるものである。 第1図は上記制御装置のブロック図であり、推論制御す
る場合を例にして表わしである。第1図中11は室温検
出部、12は室温設定部、13は上記室温検出および設
定部11.12からの出力を入力しその出力に応じて燃
焼量および温風量を設定する制御部で、前記燃料ポンプ
3.バーナファン4で構成される燃焼量可変手段14と
、対流ファン6で構成される温風量可変手段16を駆動
する。16は偏差演算部で、室温検出部11から暖房開
始時に得る温度Toと暖房開始一定時間後に得る温度T
1 とから室温変化偏差Xnを演算する。17は制御規
則記憶部で、暖房開始時の温度Toと室温変化偏差En
とで後述する出力補正部への暖房能力指示との関係を制
御変数を用いて記述した制御規則を記憶している。ここ
で制御規則の例として「もし、室温がやや寒くかつ室温
変化偏差Enが大きいならば(条件部)、暖房能力指示
(強暖房能力指示の解除点)は少しオーバーとせよ(出
力部)」等のi f−them −形式で記述され、下
記第1表のようになる。 第1表 ここで、「やや寒いJ、「大きい」あるいは「少しオー
バーさせよ」という制御変数は第3図に示すメンバーシ
クプ関数で定義される。 なお制御規則記憶部17は制御規則の条件部を記憶する
条件部記憶部1711と、制御規則の出力部を記憶する
出力部記憶部17に+とからなる。 次に18は制御推論部で、暖房開始時の室温T。 および室温変化偏差Knと制御規則記憶部17の制御規
則とから推論を行なって暖房能力指示量を決定し出力す
る。ここで制御推論部18は室温検出部11および偏差
演算部16と条件部記憶部171Lとから暖房開始時の
室温TO+室温変化偏差Enの制御規則の条件部への適
合度を求める適合度演算部18aと、求めた適合度と出
力部記憶部17bの出力信号とで制御規則の出力部に重
み付けを行なう重み付は演算部18bと、重み付は演算
部18bから重み付けされた制御規則の出力部から暖房
能力指示を重心演算で求める重心演算部180とからな
る。19は上記制御推論部18からの暖房能力指示出力
に基づいて制御部13からの強暖房能力指示の解除時点
を修正する出力補正部で、補正した出力を燃焼量可変手
段14と温風量可変手段15に送ってこれらを制御する
。なお上記制御規則記憶部17と制御推論部18と出力
補正部19は室温Toおよび室温変化偏差Knに基づい
て暖房能力指示を出力する能力制御部19ムを構成して
いる。 上記構成においてその動作を説明する。まず運転の開始
が確認されると制御部13はあらかじめ定められたプロ
グラムにしたがって燃焼を開始させる。次に燃焼を開始
すると、室温・設定温度を検出し、その圧力差で燃焼量
を算圧して燃焼量可変手段14と温風量可変手段16に
出力し燃焼・温風量を制御する。通常暖房開始時は室温
と設定温度との差が大きいので最大暖房能力(最大燃焼
・温風量)で暖房の開始を指示する。またこの時点では
制御推論部18からの出力がないので圧力補正部19は
制御部13からの出力をそのまま呂し、最大暖房能力で
暖房を開始するようになる。 第2図のフローチャートで示すとP1〜P6の動作であ
る。 次に暖房開始後一定時間(例えば16分)が経過すると
偏差演算部16は暖房開始時の室温T。 と一定時間後の室温T1とから室温変化偏差ICn(E
n=T+  To)を求める。第2図のフローチャート
で示すとP7〜P9の動作になる。ここで求められた暖
房開始時の室温Toをto、温度偏差をeとする。次に
適合度演算部18&が上記室温To: t、と温度偏差
’Kn=e  とを条件部記憶部17亀の制御規則の条
件部(第1表および第3図のメンバーシップ関数ム、B
)を参照し適合度Wを求める。例えば、第3図(ム)の
横軸上(室温)のtoに垂線をたて各関数との交点が室
温1Dへの適合度Wになる。ここでは非常に寒いの関数
への適合度wt1、寒いの関数への適合度wt2.やや
寒いへの適合度がWt3になる。また室温変化偏差に対
しても上記室温と同様にして少し広いの関数への適合度
We51、普通の関数への適合度W52、少し狭いへの
適合度W63になる。上記の結果を第1表にあてはめ整
理すると第2表のようになる。 実際には適合度Wは、どちらか小さい方(mln法)を
採用する。例えば、寒いへの適合度Wt2と普通への適
合度W+52の大小関係がWt2)WS12とするとW
S2が出力部のメンバーシップ関数「少しオーバー」へ
の適合度となる。第2図のフローチャートではPloに
なる。次に求めた適合度Wを重み付は演算部1abで出
力記憶部17bの制御規則の圧力部(第1.2表および
第3図のメンバーシップ関数C)を参照して重み付は演
算を行う。その結果例が第3表に示すようになったとす
る。 第2図のフローチャートではPllとなる。 (以下余白) ■(皆や5箪) 次に重心演算部180は重み付けされた制御規則の出力
部の関数を合成(MAX法)し、その重心を求める(重
心法)。これが、入力された暖房開始時の室温Toおよ
び室温変化偏差Knに対する暖房能力指示になり、求め
た暖房能力指示を出力補正部19に出力する。第2図の
フローチャートのP12.PI3である。結果を第4図
に示す。 出力補正部19はこの暖房能力指示に基づき制御部13
からの暖房能力指示に優先してこれを燃焼量可変手段1
4と温風量可変手段16に出力し、これらを制御するよ
うにする。 すなわち、例えば暖房開始時の室温が第3図で示す7°
Cで、一定時間後の室温変化偏差が同図(B)で示す1
1 deg、であれば、暖房能力指示、この場合は暖房
開始時の強暖房能力を解除する時点は、一連の演算を行
ない設定温度に対して1.2 deg高めにする。同一
室温変化偏差であれば第1表の制御規則で明らかなよう
に室温が下がる(普通→やや寒い→寒い→非常に寒い)
に従って、設定温度より室温が高めになる(オーバーシ
ュートする)規則で、上記傾向は室温変化偏差の大小に
係わらず同様な傾向(程度は異なる)としである。また
、同一室温であれば室温変化偏差が大きくなる(少ない
→普通→少し大きい−大きい)に従って強暖房能力の解
除点は設定温度より高くする規則で、この傾向は暖房開
始時の室温に係わらず同様な傾向(程度は異なる)とし
である。このように、暖房開始時初期室温および室温変
化偏差の変化に対して上記制御規則を保ちつつ連続的に
設定温度に対する強暖房能力の解除点が決められること
になる。従って、制御部13から指示される強暖房能力
解除点く温度)が設定温度であっても部屋が小さい、あ
るいは暖房開始時の室温が低い時は、設定温度よりも1
 cieg 、 2 deg・・・高い温度となシ、逆
に部屋が大きい、あるいは暖房開始時の温度が高い時に
は、設定温度よりも1d6g、2(16g・・低い温度
となる。その結果部屋が小さい、暖房開始時の室温が低
い時は、設定温度よりも高目になるまで強暖房能力で暖
房するので、壁、床、天井等から冷熱輻射があっても体
感的に寒く感じることはなくなる。また部屋が大きい、
暖房開始時の温度が亮い時は、設定温度よりも低い温度
で強暖房能力が解除されて中1弱、微弱のように暖房能
力が変化するので、壁、床、天井の温度が上がりすぎて
熱く感じるということがなくなる。 発明の効果 以上実施例の説明から明らかなように本発明によれば部
屋が狭い、あるいは暖房開始時の室温が低い時には少し
高目になるまで強暖房能力で暖房するので、壁、床、天
井等からの冷熱輻射で体感的に寒く感じるようなことが
なく、また部屋が広い、あるいは暖房開始時の室温が高
い時には少し低目の温度から強暖房能力による暖房を解
除して中〜弱暖房へと移行していくので、室温が設定温
度に達した時に熱く感じるということもなくなる。 すなわち部屋の大小や暖房開始時の室温の状況を判断し
て最適な暖房が可能となり、暖房開始時において快適な
暖房状態を無駄なく効率よく早く作り出すことができる
FIG. 1 is a block diagram showing a control device for a warm air heater in an embodiment of the present invention, FIG. 2 is a flowchart showing its operation, FIG. 3 is a diagram showing the membership function, and FIG.
The figure is a cross-sectional view of the hot air heater. 11... Room temperature detection unit, 12... Room temperature setting unit, 13... Control unit, 14... Combustion amount variable means, 15...・Warm air volume variable means, 16・
... Deviation calculation section, 17 ... Control rule storage section, 1st ... Control inference section, 19 ... Output correction section. Name of agent: Patent attorney Shigetaka Awano Haka 1 person - Shipup IJl! Consideration (Removal of Unreasonable Procedural Amendment (n1) Figure 2 Name of Invention Heating Capacity Control Device for Heating Machine 3 Relationship to the Case of Person Who Amends Patent Application Person Address Name of 1006 Kadoma, Kadoma City, Osaka Prefecture name
(582) Matsushita Electric Industrial Co., Ltd. Representative Tani
Akio I 4 Agent 571 Address 1006 Bold Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Specifications 1 Name of the invention Heating capacity control device for a heater 2 Claims (1) Room temperature detection A control unit that sets the capacity of either the combustion amount or the hot air volume, or both, based on the Okayama force from the unit and the room temperature setting unit, and a control unit that determines the room temperature change deviation from the room temperature at the start of heating and the room temperature after a certain period of time after the start of heating. A heating capacity control device for a heating machine, comprising a deviation calculation unit for calculating the deviation, and a capacity control unit for correcting the output point of release of the strong heating capacity instruction at the time of starting heating that is outputted from the room temperature. (2) A control unit that sets the capacity of either the combustion volume or the hot air volume, or both, based on the pressure from the room temperature pressure detection unit and the room temperature setting unit, and the room temperature at the start of heating and after a certain period of time after the start of heating. a deviation calculation unit that calculates a room temperature change deviation from the room temperature, and a control rule storage unit that stores, as a control rule, the relationship between the room temperature, the room temperature change deviation, and a heating capacity instruction to be output to either or both of the combustion amount and the hot air amount variable means. and,
a control inference section that performs inference processing to determine the heating capacity instruction by referring to the room temperature and the room temperature change deviation and the control score 11 in the control rule storage section; A heating capacity control device for a heater, comprising an output correction section that corrects the output point of release of a strong heating capacity instruction at the time of starting heating that is being output. 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a heating capacity control device for hot air heaters and the like. 2. Description of the Related Art In general, this type of heating capacity temperature control device changes its heating capacity from strong to weak depending on the difference between a set temperature and the room temperature. Therefore, when starting heating when the room temperature is low, heating is started at the maximum (strong) heating capacity, and after the room temperature reaches the set temperature, heating at the maximum heating capacity is canceled and the heating capacity is determined by the difference between the room temperature and the set temperature. (strong to low) to heat the room. Problems to be Solved by the Invention However, when the room is small, such a heating capacity control device may make the room feel cold even when the room temperature reaches the set temperature. This is because when you start heating, especially when you start heating from a low temperature, the room will be warmed up, so even if the indoor air temperature quickly reaches the set temperature, the walls, floor, ceiling, etc. in the room, which have a large heat capacity, will be cold and will not warm up easily. This is because even if the room temperature reaches the set temperature, the temperature that humans actually feel becomes lower due to cold radiation. In addition, if the room was large, it could feel hot when the room temperature reached the set temperature. This was especially noticeable when the room temperature was relatively high when heating started. This is because when heating starts, the room air temperature rises slowly because the room is large, that is, the temperature rises almost the same as the walls, floor, ceiling, etc. in the room, which have a large heat capacity, or the temperature rises almost the same as the walls, floor, ceiling, etc., which have a large heat capacity.
Because the temperature of the ceiling, etc. is high to a certain extent, even if the temperature rises a little slowly, by the time the indoor temperature reaches the set temperature, the walls, floor, and ceiling of the room will have a temperature almost the same as the indoor temperature, and cold radiation will be radiated from these. Since he was no longer exposed to it, he felt relatively hot. The present invention was made in view of these points, and an object of the present invention is to enable a comfortable heating state to be quickly obtained regardless of the size of the room or the temperature at the start of heating. Means for Solving the Problems In order to achieve the above-mentioned objects, the present invention provides a control section that sets the capacity of either the combustion amount or the hot air amount, or both, based on the Okayama force from the room temperature detection section and the room temperature setting section; a deviation calculation unit that calculates a room temperature change deviation from the room temperature at the start and the room temperature after a fixed time period of heating start; and a strong heating capacity instruction at the time of heating start, which is output from the control unit based on the room temperature and the room temperature change deviation output. The control unit is configured with a capacity control unit that corrects the release output point, and another means for achieving the purpose is to adjust either the combustion volume or the hot air volume based on the Okayama force difference from the room temperature detection unit and the room temperature setting unit. Alternatively, a control unit that sets both capacities, a deviation calculation unit that calculates the room temperature change deviation from the room temperature at the start of heating and the room temperature after a certain period of time after the start of heating, and a control unit that calculates the room temperature change deviation from the room temperature at the start of heating and the room temperature after a certain period of time after the start of heating, and a a control rule storage unit that stores the relationship between the heating capacity instruction and the heating capacity instruction to be outputted to either or both of them as a control rule; The control inference unit is configured to include a control inference unit that determines an instruction, and an output correction unit that corrects the point in time when the strong heating capacity instruction at the time of starting heating that is output from the control unit is output based on the output from the control inference unit. be. Effects According to the present invention, with the above configuration, the larger the amount of change in room temperature and the smaller the heating load, that is, the smaller the room, the later the maximum heating capacity is released at the start of heating, that is, the temperature is set higher. Therefore, the smaller the room, the higher the heating capacity will be until the temperature reaches the set temperature.As a result, even if there is cold radiation from walls, floors, ceilings, etc., the set temperature will reach the set temperature in a shorter period of time. Heating, that is, comfortable heating becomes possible. Also, when the room is large and the heating load is large, or when the room temperature is high when heating starts, the maximum heating capacity is released earlier, that is, the temperature is set lower. Therefore, the larger the room and the higher the room temperature when heating starts, the weaker the heating capacity will be from a temperature lower than the set temperature, and as a result, the room will not be overheated and the heating will be more comfortable. . EXAMPLE An example of the present invention will be described below with reference to the drawings. 1 First, an example of a hot air heater will be explained using Fig. 6. 1 is the heater body, 2 is a heat source provided in the heater body 1, which vaporizes fuel and converts it into combustion air. A vaporizing burner is used to mix and burn the mixture. 3 is a fuel pump that supplies fuel to the heat source section 2; 4 is a burner fan that supplies combustion air to the heat source section 2; 6 is a burner fan that supplies combustion air to the heat source section 2; 6 is a pump that uses the heat of the combustion gas generated in the heat source section 2 as warm air to the front surface of the main body; A convection fan 7 blows out hot air from the hot air outlet 6, and 7 is a looper provided at the hot air outlet 6 to change the blowing angle of hot air, and the louver angle is changed by a lever angle variable means 8 such as a stepping motor. It is now possible to do so. 9
is a control device that drives the fuel pump 3, burner fan 4, and convection fan 6 to control the combustion amount and hot air amount, and in conjunction with this, drives the louver angle variable means 8 to change the louver angle. It is something. FIG. 1 is a block diagram of the above-mentioned control device, illustrating a case where inference control is performed as an example. In FIG. 1, 11 is a room temperature detection section, 12 is a room temperature setting section, and 13 is a control section that inputs the output from the room temperature detection and setting section 11.12 and sets the combustion amount and hot air amount according to the output. Said fuel pump3. The combustion amount variable means 14 made up of the burner fan 4 and the hot air amount variable means 16 made up of the convection fan 6 are driven. 16 is a deviation calculation unit which calculates the temperature To obtained from the room temperature detection unit 11 at the start of heating and the temperature T obtained after a certain period of time from the start of heating.
1, calculate the room temperature change deviation Xn. 17 is a control rule storage unit that stores the temperature To at the start of heating and the room temperature change deviation En.
A control rule is stored that describes the relationship between the heating capacity instruction to the output correction unit and the heating capacity instruction to the output correction unit, which will be described later, using control variables. Here, an example of a control rule is ``If the room temperature is a little cold and the room temperature change deviation En is large (condition part), the heating capacity instruction (the release point of the strong heating capacity instruction) should be slightly exceeded (output part).'' It is written in the if-them-format as shown in Table 1 below. Table 1 Here, the control variables such as ``slightly cold J'', ``large'', or ``make it slightly overflow'' are defined by the member shift function shown in FIG. The control rule storage section 17 includes a condition section storage section 1711 that stores the condition section of the control rule, and an output section storage section 17 that stores the output section of the control rule. Next, 18 is a control inference unit which calculates the room temperature T at the start of heating. Then, inference is made from the room temperature change deviation Kn and the control rule in the control rule storage section 17 to determine and output the heating capacity instruction amount. Here, the control inference unit 18 is a compatibility calculation unit that calculates the compatibility of the room temperature TO + room temperature change deviation En at the start of heating with the condition part of the control rule from the room temperature detection unit 11, the deviation calculation unit 16, and the condition part storage unit 171L. 18a, a weighting calculation unit 18b that weights the output part of the control rule using the obtained degree of conformance and the output signal of the output unit storage unit 17b, and a weighting calculation unit 18b that weights the output part of the control rule weighted from the calculation unit 18b. and a center-of-gravity calculation unit 180 that calculates a heating capacity instruction from the center of gravity by calculation of the center of gravity. Reference numeral 19 denotes an output correction unit that corrects the point in time when the strong heating capacity instruction from the control unit 13 is canceled based on the heating capacity instruction output from the control inference unit 18, and the corrected output is applied to the combustion amount variable means 14 and the hot air amount variable means. 15 to control these. Note that the control rule storage section 17, control inference section 18, and output correction section 19 constitute a capacity control section 19m that outputs a heating capacity instruction based on the room temperature To and the room temperature change deviation Kn. The operation of the above configuration will be explained. First, when the start of operation is confirmed, the control section 13 starts combustion according to a predetermined program. Next, when combustion is started, the room temperature and the set temperature are detected, and the combustion amount is calculated based on the pressure difference and outputted to the combustion amount variable means 14 and the hot air amount variable means 16 to control combustion and the amount of hot air. Normally, when heating starts, there is a large difference between the room temperature and the set temperature, so the system instructs to start heating at maximum heating capacity (maximum combustion/warm air volume). Further, at this point, since there is no output from the control inference section 18, the pressure correction section 19 accepts the output from the control section 13 as is, and starts heating at the maximum heating capacity. In the flowchart of FIG. 2, the operations are P1 to P6. Next, when a certain period of time (for example, 16 minutes) has elapsed after the start of heating, the deviation calculation unit 16 calculates the room temperature T at the time of starting heating. The room temperature change deviation ICn(E
Find n=T+To). In the flowchart of FIG. 2, the operations are shown in P7 to P9. Let the room temperature To at the time of heating start found here be to, and the temperature deviation be e. Next, the fitness computing section 18& stores the room temperature To: t and the temperature deviation 'Kn=e in the condition section of the turtle control rule in the condition section storage section 17 (the membership function M in Table 1 and FIG. 3, B
) to find the goodness of fit W. For example, a perpendicular line is drawn to to on the horizontal axis (room temperature) in FIG. Here, the fitness to the very cold function wt1, the fitness to the cold function wt2. The suitability for slightly cold weather is Wt3. Similarly to the above-mentioned room temperature, for the room temperature change deviation, the degree of conformity to a slightly wider function is We51, the degree of conformity to a normal function is W52, and the degree of conformity to a slightly narrower function is W63. When the above results are applied to Table 1 and organized, Table 2 becomes as shown. Actually, the smaller of the two (mln method) is used for the degree of fitness W. For example, if the magnitude relationship between the degree of suitability for cold weather Wt2 and the degree of suitability for normal weather W+52 is Wt2)WS12, then W
S2 is the degree of conformance to the membership function "slightly over" of the output part. In the flowchart of FIG. 2, it becomes Plo. Next, weighting is performed on the obtained degree of fitness W by referring to the pressure section (membership function C in Table 1.2 and FIG. 3) of the control rule in the output storage section 17b in the calculation section 1ab. conduct. Assume that the results are as shown in Table 3. In the flowchart of FIG. 2, this is Pll. (The following is a margin) ① (Everyone and 5 pieces) Next, the center of gravity calculation unit 180 synthesizes the functions of the output part of the weighted control rules (MAX method) and finds the center of gravity (center of gravity method). This becomes the heating capacity instruction for the input room temperature To and room temperature change deviation Kn at the time of heating start, and the obtained heating capacity instruction is output to the output correction section 19. P12 of the flowchart in FIG. It is PI3. The results are shown in Figure 4. The output correction unit 19 adjusts the control unit 13 based on this heating capacity instruction.
This is given priority to the heating capacity instruction from the combustion amount variable means 1.
4 and the hot air volume variable means 16 to control these. That is, for example, the room temperature at the start of heating is 7° as shown in Figure 3.
In C, the room temperature change deviation after a certain period of time is 1 as shown in the same figure (B).
If it is 1 degree, the heating capacity instruction, in this case, the point at which the strong heating capacity at the start of heating is canceled is set 1.2 degrees higher than the set temperature by performing a series of calculations. If the room temperature change deviation is the same, the room temperature will decrease as is clear from the control rules in Table 1 (normal → slightly cold → cold → very cold).
Accordingly, there is a rule that the room temperature becomes higher than the set temperature (overshoots), and the above-mentioned tendency is the same (the degree is different) regardless of the size of the room temperature change deviation. Also, if the room temperature is the same, the rule is that the release point for strong heating capacity is set higher than the set temperature as the room temperature change deviation increases (small → normal → slightly large - large), and this tendency applies regardless of the room temperature at the start of heating. There is a similar tendency (to a different degree). In this way, the point at which the strong heating ability is released for the set temperature is determined continuously while maintaining the above control rule with respect to changes in the initial room temperature at the start of heating and the room temperature change deviation. Therefore, even if the temperature at which the strong heating ability is turned off (instructed by the control unit 13) is the set temperature, if the room is small or the room temperature is low when heating is started, the temperature may be 1 level lower than the set temperature.
cieg, 2 deg... If the temperature is high, conversely, if the room is large or the temperature at the start of heating is high, the temperature will be 1d6g, 2 (16g...lower than the set temperature.As a result, the room will be small) When the room temperature is low at the start of heating, heating is performed at high heating capacity until the temperature is higher than the set temperature, so even if there is cold radiation from walls, floors, ceilings, etc., you will not feel cold. Also, the room is big.
When the temperature at the start of heating is high, the strong heating capacity is canceled when the temperature is lower than the set temperature and the heating capacity changes from medium to low to weak, causing the temperature of the walls, floor, and ceiling to rise too much. You will no longer feel hot. Effects of the Invention As is clear from the description of the embodiments, according to the present invention, when the room is small or the room temperature is low at the start of heating, heating is performed at a high heating capacity until the room temperature is a little high, so it is possible to heat the walls, floor, and ceiling. In addition, if the room is large or the room temperature is high when heating starts, the strong heating capacity can be turned off from a slightly lower temperature to provide medium to low heating. As the temperature changes, you will no longer feel hot when the room temperature reaches the set temperature. In other words, it is possible to perform optimal heating by determining the size of the room and the room temperature at the time heating starts, and it is possible to quickly and efficiently create a comfortable heating condition at the time heating starts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における温風暖房機の側脚装
置を示すブロック図、第2図はその動作を示すフローチ
ャート、第3図は同メンバー7ノブ関数を示す図、第4
図は同制御装置の重心演算手段の演算結果を示す図、第
6図は温風暖房機の断面図である。 11  ・室温検出部、12・・ 室温設定部、13 
・ 制御部、14 ゛・燃焼量可変手段、15温風量可
変手段、16 ・・偏差演算部、17・・制御規則記憶
部、18  ・制御推論部、19・・ 出力補正部、1
9ム  能力制御部。 代理人の氏名 弁理士小鍜治明 ほか2名/’7−−−
 N卿 MLlリ 配↑ms〜−一−1k 往 Wv!
  1却 11b−−−出11 Ill k’ fl郁18−一〜
 胴 岬 徨 脇部 ノ8a −−−m  S  /l  慣 1 部Rb−
−−1a+付t−t?11111β孜−l  lc  
m I 部 隔−U tl 1’J 111部 メンバーシップM数 M峙φ(Δk)
Fig. 1 is a block diagram showing a side leg device of a warm air heater in an embodiment of the present invention, Fig. 2 is a flowchart showing its operation, Fig. 3 is a diagram showing the member 7 knob function, Fig. 4
The figure shows the calculation results of the center of gravity calculating means of the control device, and FIG. 6 is a sectional view of the hot air heater. 11 - Room temperature detection section, 12... Room temperature setting section, 13
- Control unit, 14 ゛ - Combustion amount variable means, 15 Warm air volume variable means, 16 - Deviation calculation unit, 17 - Control rule storage unit, 18 - Control inference unit, 19 - Output correction unit, 1
9m Capacity control section. Name of agent: Patent attorney Haruaki Ogata and 2 others/'7---
Lord N MLl Ri distribution ↑ms~-1-1k O Wv!
1 to 11b---Exit 11 Ill k' fl Iku 18-1~
Torso Misaki Side part 8a ---m S/l Part 1 part Rb-
--1a+t-t? 11111βkei-l lc
m I part interval - U tl 1'J 111 part membership M number M ratio φ (Δk)

Claims (1)

【特許請求の範囲】[Claims] 室温検出部及び室温設定部からの両出力差に基づいて燃
焼量あるいは温風量のいづれかあるいは両方の能力を設
定する制御部と、暖房開始時の室温と暖房開始一定時間
後の室温とから室温変化偏差を求める偏差演算部と、室
温及び室温変化偏差と燃焼量あるいは温風量可変手段の
いずれかあるいは両方へ出力する暖房能力指示との関係
を制御規則として記憶する制御規則記憶部と、室温及び
室温変化偏差と前記制御規則記憶部の制御規則を参照し
推論処理を行なって前記暖房能力指示を決定する制御推
論部と、この制御推論部からの出力に基づいて前記制御
部から出力されている暖房開始時の強暖房能力指示の解
除出力時点を修正する出力補正部とからなる暖房機の暖
房能力制御装置。
A control unit that sets the capacity of either the combustion amount or the hot air volume or both based on the difference in output from the room temperature detection unit and the room temperature setting unit, and a control unit that determines the room temperature change based on the room temperature at the start of heating and the room temperature after a certain period of time after the start of heating. a deviation calculation unit that calculates the deviation; a control rule storage unit that stores the relationship between the room temperature and the room temperature change deviation and the heating capacity instruction to be output to either the combustion amount or the hot air amount variable means or both as a control rule; a control inference unit that performs inference processing with reference to the change deviation and the control rule in the control rule storage unit to determine the heating capacity instruction; and a heating output from the control unit based on the output from the control inference unit. A heating capacity control device for a heating machine, comprising an output correction section that corrects a point at which a strong heating capacity instruction at the start is output.
JP14831790A 1990-06-05 1990-06-05 Heating capacity control device for heater Expired - Lifetime JP2705282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14831790A JP2705282B2 (en) 1990-06-05 1990-06-05 Heating capacity control device for heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14831790A JP2705282B2 (en) 1990-06-05 1990-06-05 Heating capacity control device for heater

Publications (2)

Publication Number Publication Date
JPH0439514A true JPH0439514A (en) 1992-02-10
JP2705282B2 JP2705282B2 (en) 1998-01-28

Family

ID=15450085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14831790A Expired - Lifetime JP2705282B2 (en) 1990-06-05 1990-06-05 Heating capacity control device for heater

Country Status (1)

Country Link
JP (1) JP2705282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076644U (en) * 1993-06-21 1995-01-31 株式会社スイデン Hot air generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102580542B1 (en) * 2018-12-26 2023-09-19 엘지전자 주식회사 Control method of gas furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076644U (en) * 1993-06-21 1995-01-31 株式会社スイデン Hot air generator

Also Published As

Publication number Publication date
JP2705282B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JPH0439514A (en) Controller of space heating capability for space heating
JPH0439571A (en) Controller for hot air heater
JP2558927B2 (en) Control device for hot air heater
JPH0484015A (en) Hot air space heater controller
JP3397983B2 (en) How to control the set temperature of air conditioner remote control
JPH0712388A (en) Air conditioner
JP3070973B2 (en) Control device for air conditioner
JP3143143B2 (en) Control device for air conditioner
JP3129050B2 (en) Room temperature adjustment control method
JPH0484037A (en) Device for controlling heating capacity in heating apparatus
JP3091781B2 (en) Hot water temperature control device for water heater
JP3024219B2 (en) Heater control device
JP3213381B2 (en) Control device for air conditioner
JPS63156915A (en) Controller of space heating burner
JPH04217719A (en) Hot-water type air-heater
JPH0755228A (en) Air conditioner
JPH04103959A (en) Warm air heating apparatus
JP2794978B2 (en) Control device for air conditioner
JPH09287749A (en) Control equipment of floor heating system
JP2794979B2 (en) Control device for air conditioner
JPH08105659A (en) Warm air heater
JP3113740B2 (en) Bath water temperature control device
JPH0755229A (en) Air conditioner
JPH03156217A (en) Heating machine
JPS625261B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350