JPH0439454B2 - - Google Patents

Info

Publication number
JPH0439454B2
JPH0439454B2 JP12002283A JP12002283A JPH0439454B2 JP H0439454 B2 JPH0439454 B2 JP H0439454B2 JP 12002283 A JP12002283 A JP 12002283A JP 12002283 A JP12002283 A JP 12002283A JP H0439454 B2 JPH0439454 B2 JP H0439454B2
Authority
JP
Japan
Prior art keywords
optically active
crystals
phenylalanine
monosodium
pentahydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12002283A
Other languages
Japanese (ja)
Other versions
JPS6013746A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12002283A priority Critical patent/JPS6013746A/en
Publication of JPS6013746A publication Critical patent/JPS6013746A/en
Publication of JPH0439454B2 publication Critical patent/JPH0439454B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

フエニルアラニンのナトリウム塩は、溶液とし
ては、文献に記載されて公知であるが、本発明の
1ナトリウム塩5水和物結晶としての記載はな
い。 本発明者らは、新規フエニルアラニン塩結晶で
ある光学活性フエニルアラニン1ナトリウム塩の
5水和物結晶が存在することを見出した。さら
に、この光学活性フエニルアラニン1ナトリウム
5水和物結晶が発酵液及び合成液由来の不純物を
淘汰する能力が極めて大きいこと、及び、本結晶
は、光学活性フエニルアラニン結晶に比べ、比容
が小さく、取扱いが容易になるということを見出
したのである。 通常、発酵液又は合成液から光学活性フエニル
アラニンを分離、精製する手段として、遊離の光
学活性フエニルアラニンを直接晶析する方法、強
酸性陽イオン交換樹脂処理後晶析を繰り返す方
法、もしくは、光学活性フエニルアラニンを硫酸
塩、塩酸塩などの塩として分離する方法などが行
われている。 これらの方法の欠点の一つに、不純物に対する
精製効果が低いことがあげられる。これは、晶析
操作を他のアミノ酸やタンパク質の析出しやすい
PH条件で行うこと、およびフエニルアラニンが分
子吸着力の大きいアミノ酸であることなどのため
に、色素や他のアミノ酸(特に類似の特性を有す
るチロシン)などの不純物がフエニルアラニン結
晶に付着しやすいことに起因しているものと思わ
れる。 このように問題点を解決すべく、本発明者ら
は、すでにチロシンを始めとする不純物の淘汰能
力に優れるフエニルアラニン1ナトリウム1水和
物結晶およびその製法を発明し、特許出願してい
るが(特願昭58−2539(特開昭59−128365号公
報)、その結晶形が、通常微細針状晶であるため、
固液分離性が必ずしも充分に満足できるものでは
なく、そのため充分な結晶洗浄をしなくてはなら
ないという欠点があつた。 本発明者らは、さらに研究を重ねた結果、光学
活性フエニルアラニン1ナトリウム5水和物結晶
を見出し、さらにこの光学活性フエニルアラニン
1ナトリウム5水和物結晶が、通常八面体状もし
くは板状の大型結晶として析出するため、極めて
良好な固液分離性を示し、不純物の淘汰性にすぐ
れており、上述のように取扱いに有利になること
を見出し、本発明を完成した。 本発明の光学活性フエニルアラニン1ナトリウ
ム5水和物結晶は、次のような物性値を有するも
のである。なお、物性値の測定に用いた結晶は、
実施例1で得られたものである。 (1) 組成;表1の通り。
The sodium salt of phenylalanine is known in the literature as a solution, but is not described as a monosodium salt pentahydrate crystal according to the invention. The present inventors have discovered that a new phenylalanine salt crystal, a pentahydrate crystal of optically active phenylalanine monosodium salt, exists. Furthermore, this optically active phenylalanine monosodium pentahydrate crystal has an extremely high ability to filter out impurities derived from fermentation liquid and synthetic liquid, and this crystal has a specific volume that is higher than that of optically active phenylalanine crystal. They discovered that it is small and easy to handle. Usually, as a means of separating and purifying optically active phenylalanine from a fermentation liquid or a synthesis liquid, a method of directly crystallizing free optically active phenylalanine, a method of repeating crystallization after treatment with a strongly acidic cation exchange resin, or , methods of separating optically active phenylalanine as salts such as sulfate and hydrochloride have been carried out. One of the drawbacks of these methods is that they are less effective in purifying impurities. This makes the crystallization operation easier to precipitate other amino acids and proteins.
Due to the PH conditions and the fact that phenylalanine is an amino acid with strong molecular adsorption power, impurities such as dyes and other amino acids (especially tyrosine, which has similar properties) may adhere to the phenylalanine crystals. This is probably due to the ease of use. In order to solve these problems, the present inventors have already invented a crystal of phenylalanine monosodium monohydrate, which has an excellent ability to eliminate impurities such as tyrosine, and a method for producing the same, and have filed a patent application. (Japanese Patent Application No. 58-2539 (Japanese Unexamined Patent Publication No. 59-128365)), since its crystal form is usually fine needle-like crystals,
The solid-liquid separability is not always fully satisfactory, and therefore the crystals have to be thoroughly washed, which is a drawback. As a result of further research, the present inventors discovered optically active phenylalanine monosodium pentahydrate crystals, and further discovered that the optically active phenylalanine monosodium pentahydrate crystals are usually octahedral or plate-shaped. Because it precipitates as large crystals, it exhibits extremely good solid-liquid separation properties and is excellent in eliminating impurities, and as mentioned above, it was discovered that it is advantageous in handling, and the present invention was completed. The optically active phenylalanine monosodium pentahydrate crystal of the present invention has the following physical properties. The crystals used to measure the physical properties are as follows:
This was obtained in Example 1. (1) Composition; as shown in Table 1.

【表】 (2) 溶剤に対する溶解性;水、メタノールに易
溶、エタノールに可溶、アセトンに難溶、エチ
ルエーテルに不溶。 (3) 結晶の色;無色透明。 (4) 結晶形;八面体状晶。ただし、実施態様によ
つては板状晶で得られることもある。 (5) 塩基性、酸性、中性の区別;強塩基性。 このような光学活性フエニルアラニン1ナトリ
ウム5水和物結晶は、光学活性フエニルアラニン
含有液をPH約9以上、光学活性フエニルアラニン
1ナトリウム塩の1水和物結晶と5水和物結晶と
の転移点温度以下、液の凍結温度以上でナトリウ
ムイオンの存在下に晶析操作に付すと得られる。 なお、純系(水溶媒)の光学活性フエニルアラ
ニン1ナトリウム1水和物結晶、同5水和物結晶
間の転移点は約12℃である(高温で1水和物結
晶、低温で5水和物結晶が安定に存在する。)が、
不純物の存在によつては変わることもある。安定
に5水和物結晶を晶析分離するためには、当該晶
析原液についての転移点を知る必要があるが、そ
のような転移点は予備実験により、あらかじめ容
易に確認することができる。 溶液中のフエニルアラニンのモル数に対するナ
トリウムイオンのモル数は、若干のフエニルアラ
ニンの分離回収率の損失を許容すれば、実用的に
は約0.8倍以上でよい。ナトリウムイオン量の上
限は、ナトリウムイオンの共通イオン効果もあ
り、特に限定されないが、目的5水和物結晶の析
出に必要な量以上に過度に使用するのはナトリウ
ムイオン源の浪費となり得策でない。 所定量のナトリウムイオンを存在させ、かつPH
を所定の値にするには、例えば、光学活性フエニ
ルアラニン含有液にNaClおよびアンモニアを加
えてもよいが、NaOHを使用すればPH調整およ
びナトリウムイオン源を兼ねさせることができ
(実施例2参照)、好都合である。 晶析操作をPH約9以上で行うのは、フエニルア
ラニンがナトリウムイオンと塩をつくるのに、溶
液中で解離してアニオンの状態で存在する必要が
あるためである。 晶析操作は、特にいずれの方法であるかを問わ
ない。 冷却晶析による場合は、例えばフエニルアラニ
ン濃度が温度約12℃以上において光学活性フエニ
ルアラニン1ナトリウム1水和物について飽和溶
解度以下の溶液をPH約9以上でナトリウムイオン
の存在下、液温50℃ないし80℃から徐々に冷却
し、光学活性フエニルアラニン1ナトリウム5水
和物の飽和濃度に達してから必要により5水和物
結晶の種晶を加えて更に冷却を続け、約12℃以
下、好ましくは0℃以下まで冷却し、その温度に
30分ないし2時間程度保つて過飽和を解消させ
る。析出した結晶は、常法で分離できる。 濃縮晶析による場合は、例えば、光学活性フエ
ニルアラニン含有液をPH約9以上でナトリウムイ
オンの存在下、転移点温度以下で濃縮するとよ
い。 有機溶媒を使用して溶解度を低下せしめること
により5水和物を析出させることもできる。もち
ろん、このような晶析操作及びその他の晶析操作
を併用することもできる。 また、転移晶析を行う方法としては、光学活性
フエニルアラニン1ナトリウム1水和物結晶を含
むスラリーを、転移点温度以下好ましくは0℃付
近以下まで冷却し、必要に応じて5水和物の種晶
を加えて光学活性フエニルアラニン1ナトリウム
5水和物に転移させる。このような光学活性フエ
ニルアラニン1ナトリウム1水和物結晶を含むス
ラリーは、一旦なんらかの方法で得られた1水和
物結晶を、これを溶解するに足る量以下の水に投
入して調製することもできるし、また、PH約9以
上の光学活性フエニルアラニンおよびナトリウム
イオン含有液より光学活性フエニルアラニン1ナ
トリウム1水和物を析出せしめたものをそのまま
使用してもよい。前者の場合、5水和物の晶析回
収率を上げるためには、NaOHなどのナトリウ
ムイオン源を加えるとよいことはもちろんであ
る。 転移により生成した光学活性フエニルアラニン
1ナトリウム5水和物結晶は、もちろん常法によ
り分離できる。 光学活性フエニルアラニン1ナトリウム5水和
物の溶解度は、同じ温度の1水和物の溶解度より
も低いため、このような転移操作をすることによ
り、フエニルアラニンの晶析率を上げることがで
きる。また、本発明の転移操作は、純度の低い1
水和物結晶をより純度の高い5水和物結晶へ転移
せしめることによる精製法としても利用でき、さ
らに、晶癖の改良にも利用できる。 本発明の5水和物結晶は、光学活性フエニルア
ラニンを含有する溶液から広く晶析させることが
でき、また1水和物結晶のスラリーから転移晶析
により得られるが、この5水和物結晶は、発酵液
および合成液由来の不純物を淘汰する能力にすぐ
れるところから、発酵液および合成液からフエニ
ルアラニンを取得するに至る工程において晶析さ
せることによつて威力を発揮する。 このような光学活性フエニルアラニンを含有す
る溶液の例としては、発酵液、その除菌液、発酵
液又はその除菌液をイオン交換樹脂等の吸着剤に
通液してL−フエニルアラニンを吸着させて溶離
した液、発酵液又はその除菌液を通常の方法で電
気透折して得られる脱塩液、発酵液の除菌液を限
外濾過膜で精製した液、あるいは逆浸透膜で濃縮
した液又は、溶離液からフエニルアラニン結晶を
晶析分離した母液又はその結晶(粗結晶)の溶解
液、種々の方法によるフエニルアラニン合成液等
を挙げることができる。特に発酵液由来の不純物
のなかで、L−チロシンは淘汰が難しいとされて
いるが、フエニルアラニンを本発明の結晶の形で
晶析、分離することによつて、このチロシンを効
率よく淘汰することができる。 分離した光学活性フエニルアラニン1ナトリウ
ム5水和物結晶は、例えば、水に溶解してイオン
交換樹脂を用いてナトリウムを除去するか、ある
いは硫酸、塩酸等の酸で中和してから必要に応じ
て脱色して晶析操作に付することによつて、高純
度の遊離の光学活性フエニルアラニン結晶を得る
ことができる。 以下実施例を示す。 実施例 1 L−フエニルアラニン100gに水100mlおよび水
酸化ナトリウム72.6gを加え、撹拌しながら80℃
に加温して完全に溶解させた。この溶液を冷却
し、10℃付近で1gのL−フエニルアラニン1ナ
トリウム5水和物結晶を種晶として加えて、3℃
まで冷却した。3℃で20時間ゆつくり撹拌し、析
出した5水和物結晶を遠心脱水器で分離して235
gの結晶を得た。 この結晶の物性値は、前述の通りである。 実施例 2 L−フエニルアラニン発酵液(特公昭58−
14199の実施例と同様にして得られたもの)を、
強酸性陽イオン交換樹脂に通液してL−フエニル
アラニンを吸着させ、水酸化ナトリウム溶液で溶
離した。溶離液はL−Phe濃度2.5%,PH13.9,
Na/Pheモル比4.0,窒素純度70%、Try/
Phe3.5wt%であつた。 この溶離液500mlをとり、これを60℃の減圧条
件で濃縮晶析した。得られた1水和物のスラリー
を撹拌しながら冷却し5℃付近で1mのL−フエ
ニルアラニン1ナトリウム5水和物結晶を種晶と
して加え、0℃まで徐冷した。析出した結晶を0
℃で遠心脱水器で分離した。実験No.1。 また対照として、同じ溶離液500mlをとり、同
様にして濃縮晶析し、得られたスラリーを撹拌し
ながら30℃まで徐冷して結晶を遠心脱水器で分離
した。実験No.2。 実験結果を表2に示す。 なお、本実験No.1より得られた結晶について粉
末x線法で回折スペクトルを測定し、実施例1で
得られた結晶と同一のものであることを確認し
た。また、対照方法で得られた結晶は、L−フエ
ニルアラニン1ナトリウム1水和物結晶であるこ
とを同様にして確認した。
[Table] (2) Solubility in solvents; easily soluble in water and methanol, soluble in ethanol, slightly soluble in acetone, insoluble in ethyl ether. (3) Color of crystal; colorless and transparent. (4) Crystal form; octahedral crystal. However, depending on the embodiment, it may be obtained in the form of plate crystals. (5) Distinction between basic, acidic, and neutral; strong basicity. Such optically active phenylalanine monosodium pentahydrate crystals can be used to control optically active phenylalanine monosodium salt monohydrate crystals and pentahydrate crystals at a pH of about 9 or higher. It is obtained by crystallizing in the presence of sodium ions at a temperature below the transition point of the liquid and above the freezing temperature of the liquid. The transition point between optically active phenylalanine monosodium monohydrate crystals and pentahydrate crystals in a pure system (aqueous solvent) is approximately 12°C (monohydrate crystals at high temperatures, pentahydrate crystals at low temperatures). hydrate crystals exist stably), but
It may vary depending on the presence of impurities. In order to stably crystallize and separate pentahydrate crystals, it is necessary to know the transition point of the crystallization stock solution, but such a transition point can be easily confirmed in advance through preliminary experiments. The number of moles of sodium ions relative to the number of moles of phenylalanine in the solution may practically be about 0.8 times or more, if a slight loss in separation and recovery rate of phenylalanine is allowed. Although the upper limit of the amount of sodium ions is not particularly limited due to the common ion effect of sodium ions, it is not advisable to use an excessive amount beyond the amount necessary for precipitation of the target pentahydrate crystals as it wastes the sodium ion source. A predetermined amount of sodium ions is present and the pH is
For example, NaCl and ammonia may be added to the optically active phenylalanine-containing liquid in order to adjust the value to a predetermined value, but if NaOH is used, it can be used to adjust the pH and also serve as a sodium ion source (Example 2). ), which is convenient. The reason why the crystallization operation is performed at a pH of about 9 or higher is that phenylalanine needs to dissociate in solution and exist in an anionic state in order to form a salt with sodium ions. The crystallization operation is not limited to any particular method. In the case of cooling crystallization, for example, a solution in which the phenylalanine concentration is less than the saturated solubility of optically active phenylalanine monosodium monohydrate at a temperature of about 12°C or higher is prepared at a pH of about 9 or higher in the presence of sodium ions, at a liquid temperature of about 12°C or higher. Gradually cool from 50°C to 80°C, and after reaching the saturated concentration of optically active phenylalanine monosodium pentahydrate, add pentahydrate crystal seed crystals if necessary and continue cooling to about 12°C. Below, it is preferably cooled to below 0°C, and then kept at that temperature.
Leave for 30 minutes to 2 hours to eliminate supersaturation. The precipitated crystals can be separated by a conventional method. In the case of concentration crystallization, for example, it is preferable to concentrate the optically active phenylalanine-containing liquid at a pH of about 9 or more in the presence of sodium ions at a temperature below the transition temperature. The pentahydrate can also be precipitated by using organic solvents to reduce solubility. Of course, such a crystallization operation and other crystallization operations can also be used together. In addition, as a method for performing transition crystallization, a slurry containing optically active phenylalanine monosodium monohydrate crystals is cooled to below the transition point temperature, preferably below around 0°C, and if necessary, the pentahydrate is seed crystals are added to transfer to optically active phenylalanine monosodium pentahydrate. A slurry containing such optically active phenylalanine monosodium monohydrate crystals is prepared by adding the monohydrate crystals obtained by some method to water in an amount not more than enough to dissolve the monohydrate crystals. Alternatively, optically active phenylalanine monosodium monohydrate precipitated from a solution containing optically active phenylalanine and sodium ions with a pH of about 9 or higher may be used as is. In the former case, it goes without saying that a sodium ion source such as NaOH may be added to increase the crystallization recovery rate of the pentahydrate. Of course, the optically active phenylalanine monosodium pentahydrate crystals produced by the rearrangement can be separated by conventional methods. Since the solubility of optically active phenylalanine monosodium pentahydrate is lower than that of monohydrate at the same temperature, it is possible to increase the crystallization rate of phenylalanine by performing such a transition operation. can. In addition, the transfer operation of the present invention can also be carried out with low purity 1
It can also be used as a purification method by transforming hydrate crystals into pentahydrate crystals with higher purity, and can also be used to improve crystal habit. The pentahydrate crystals of the present invention can be broadly crystallized from a solution containing optically active phenylalanine, and can also be obtained by transfer crystallization from a slurry of monohydrate crystals. Since crystals have an excellent ability to filter out impurities derived from fermentation liquors and synthetic liquors, they are effective when crystallized in the process of obtaining phenylalanine from fermentation liquors and synthetic liquors. Examples of such solutions containing optically active phenylalanine include fermentation liquor, its sterilizing solution, and L-phenylalanine by passing the fermentation liquor or its sterilizing solution through an adsorbent such as an ion exchange resin. A desalinated solution obtained by adsorbing and eluting fermentation broth or its sterilizing solution by electrodialysis using a conventional method, a solution obtained by purifying the sterilizing solution of fermentation broth using an ultrafiltration membrane, or reverse osmosis. Examples include a solution concentrated with a membrane, a mother liquor obtained by crystallizing and separating phenylalanine crystals from an eluent, a solution of the crystals (crude crystals), a phenylalanine synthesis solution by various methods, and the like. Among the impurities derived from fermentation liquid, L-tyrosine is said to be difficult to eliminate, but by crystallizing and separating phenylalanine in the form of crystals according to the present invention, this tyrosine can be efficiently eliminated. can do. The separated optically active phenylalanine monosodium pentahydrate crystals can be dissolved in water and the sodium removed using an ion exchange resin, or neutralized with an acid such as sulfuric acid or hydrochloric acid before being used as needed. Highly purified free optically active phenylalanine crystals can be obtained by decolorizing and subjecting to a crystallization operation accordingly. Examples are shown below. Example 1 Add 100 ml of water and 72.6 g of sodium hydroxide to 100 g of L-phenylalanine, and heat to 80°C while stirring.
It was heated to completely dissolve. This solution was cooled, and 1 g of L-phenylalanine monosodium pentahydrate crystals were added as a seed crystal at around 10°C.
cooled down to. Stir gently for 20 hours at 3°C, separate the precipitated pentahydrate crystals using a centrifugal dehydrator, and remove 235
Crystals of g were obtained. The physical properties of this crystal are as described above. Example 2 L-phenylalanine fermentation liquid (Special Publication 1983-
(obtained in the same manner as in Example 14199),
The solution was passed through a strongly acidic cation exchange resin to adsorb L-phenylalanine, and eluted with a sodium hydroxide solution. The eluent was L-Phe concentration 2.5%, PH13.9,
Na/Phe molar ratio 4.0, nitrogen purity 70%, Try/
Phe was 3.5wt%. 500 ml of this eluate was taken and concentrated and crystallized under reduced pressure conditions at 60°C. The obtained monohydrate slurry was cooled while stirring, and 1 m of L-phenylalanine monosodium pentahydrate crystals were added as a seed crystal at around 5°C, and slowly cooled to 0°C. 0 of the precipitated crystals
Separation was performed using a centrifugal dehydrator at ℃. Experiment No.1. As a control, 500 ml of the same eluent was taken and concentrated and crystallized in the same manner. The resulting slurry was slowly cooled to 30° C. with stirring, and the crystals were separated using a centrifugal dehydrator. Experiment No.2. The experimental results are shown in Table 2. The diffraction spectrum of the crystal obtained in Experiment No. 1 was measured using a powder x-ray method, and it was confirmed that the crystal was the same as the crystal obtained in Example 1. In addition, it was similarly confirmed that the crystals obtained by the control method were L-phenylalanine monosodium monohydrate crystals.

【表】 実施例 3 L−フエニルアラニン発酵液を濾過助剤として
セライトを使用して濾過後、この濾液(Phe濃度
3g/dl)、5.4を60℃の減圧条件で濃縮晶析し
た。得られたスラリーを40℃まで徐冷し結晶を分
離してL−フエニルアラニンの粗結晶約290gを
得た。 この粗結晶に水および水酸化ナトリウムを加え
500mlとし、80℃で加熱溶解し晶析原液(Phe濃
度27%、PH14.0、窒素純度50%、Tyr/Phe0.5wt
%)とした。この晶析原液を−5℃で冷却晶析
し、一夜放置後結晶を分離した。実験No.1。 また、対照として同じ粗結晶に水および硫酸を
加えた晶析原液(Phe濃度23%、PH1.5、SO4
Pheモル比0.51、窒素純度50%、Tyr/Phe0.5wt
%)を30℃にて冷却晶析し、結晶を分離した。実
験No.2。 各実験の結果を表3に示す。 なお、本実験No.1より得られた結晶について粉
末x線法で回折スペクトルを測定し、実施例1で
得られた結晶と同一のものであることを確認し
た。また、対照方法で得られた結晶は、L−フエ
ニルアラニン1/2硫酸塩1/2水和物結晶であること
を同様にして確認した。
[Table] Example 3 After filtering the L-phenylalanine fermentation liquid using Celite as a filter aid, the filtrate (Phe concentration 3 g/dl), 5.4, was concentrated and crystallized under reduced pressure conditions at 60°C. The obtained slurry was slowly cooled to 40°C and the crystals were separated to obtain about 290 g of crude crystals of L-phenylalanine. Add water and sodium hydroxide to this crude crystal.
Dilute to 500 ml, heat and dissolve at 80℃ to obtain the crystallization stock solution (Phe concentration 27%, PH 14.0, nitrogen purity 50%, Tyr/Phe 0.5wt).
%). This crystallization stock solution was cooled and crystallized at -5°C, and after standing overnight, the crystals were separated. Experiment No.1. In addition, as a control, a crystallization stock solution (Phe concentration 23%, PH1.5, SO 4 /
Phe molar ratio 0.51, nitrogen purity 50%, Tyr/Phe 0.5wt
%) was cooled and crystallized at 30°C, and the crystals were separated. Experiment No.2. The results of each experiment are shown in Table 3. The diffraction spectrum of the crystal obtained in Experiment No. 1 was measured using a powder x-ray method, and it was confirmed that the crystal was the same as the crystal obtained in Example 1. In addition, it was similarly confirmed that the crystals obtained by the control method were L-phenylalanine 1/2 sulfate 1/2 hydrate crystals.

【表】 実施例 4 DL−アセチルフエニルアラニン40gと水酸化
ナトリウム7.7―及びCoCl20.05gを水300gに溶
解し、PH7に調整して、37℃においてアシラーゼ
0.8gを加え24時間振とうした。次にこの溶液を
100mlまで濃縮した後に20℃で冷却晶析後、結晶
を分離しL−Phe粗結晶14gを得た。 さらにこのL−Phe粗結晶14gをNaOH5gと
共に80℃で水50gに溶解し、晶析原液(Phe濃度
20.3%、Na/Phe=1.5)とした。この晶析原液
を徐々に冷却し5℃で種晶1gを加え、0℃で一
昼夜撹拌後結晶を分離した。実験No.1。 また対照として、同じ粗結晶にして得られたL
−Phe粗結晶8gを90℃で水10gに溶解した後に
徐々に冷却し、10℃において一昼夜撹拌後結晶を
分離した。実験No.2。 各実験の結果を表4に示す。 なお、本実験No.1より得られた結晶について粉
末x線法で回折スペクトルを測定し、実施例1で
得られた結晶と同一のものであることを確認し
た。また、対照方法で得られた結晶は、L−フエ
ニルアラニン結晶であることを同様にして確認し
た。
[Table] Example 4 Dissolve 40 g of DL-acetylphenylalanine, 7.7 g of sodium hydroxide, and 0.05 g of CoCl 2 in 300 g of water, adjust the pH to 7, and prepare the acylase at 37°C.
0.8g was added and shaken for 24 hours. Then add this solution
After concentrating to 100 ml and cooling at 20° C., the crystals were separated to obtain 14 g of L-Phe crude crystals. Furthermore, 14 g of this crude L-Phe crystal was dissolved in 50 g of water at 80℃ along with 5 g of NaOH, and the crystallization stock solution (Phe concentration
20.3%, Na/Phe=1.5). This crystallization stock solution was gradually cooled, 1 g of seed crystals was added at 5°C, and after stirring at 0°C all day and night, the crystals were separated. Experiment No.1. As a control, L obtained from the same crude crystals
8 g of -Phe crude crystals were dissolved in 10 g of water at 90°C, then gradually cooled, and the crystals were separated after stirring at 10°C all day and night. Experiment No.2. The results of each experiment are shown in Table 4. The diffraction spectrum of the crystal obtained in Experiment No. 1 was measured using a powder x-ray method, and it was confirmed that the crystal was the same as the crystal obtained in Example 1. In addition, it was similarly confirmed that the crystals obtained by the control method were L-phenylalanine crystals.

【表】【table】

Claims (1)

【特許請求の範囲】 1 光学活性フエニルアラニン1ナトリウム5水
和物結晶。 2 光学活性フエニルアラニン含有液をPH約9以
上、光学活性フエニルアラニン1ナトリウム1水
和物結晶と光学活性フエニルアラニン1ナトリウ
ム5水和物結晶との転移点温度以下、液の凍結温
度以上で、ナトリウムイオンの存在下に晶析操作
に付することを特徴とする光学活性フエニルアラ
ニン1ナトリウム5水和物結晶の製造法。 3 光学活性フエニルアラニンおよびナトリウム
イオン含有液として発酵液または発酵液由来の各
種溶液を用いる特許請求の範囲第2項に記載の方
法。 4 光学活性フエニルアラニンおよびナトリウム
イオン含有液としてフエニルアラニンを生成物に
持つ合成液又は合成液由来の発酵液の各種溶液を
用いる特許請求の範囲第2項に記載の方法。 5 光学活性フエニルアラニン1ナトリウム1水
和物結晶をPH約9以上でかつ光学活性フエニルア
ラニン1ナトリウム1水和物結晶と光学活性フエ
ニルアラニン1ナトリウム5水和物結晶との転移
点温度以下、液の凍結温度以上の光学活性フエニ
ルアラニン含有液に維持して光学活性フエニルア
ラニン1ナトリウム5水和物結晶に転移せしめる
ことを特徴とする光学活性フエニルアラニン1ナ
トリウム5水和物結晶の製造法。 6 PH約9以上の光学活性フエニルアラニンおよ
びナトリウムイオン含有液より光学活性フエニル
アラニン1ナトリウム1水和物結晶を析出させた
後、同水和物結晶を含有するスラリーを光学活性
フエニルアラニン1ナトリウム1水和物と光学活
性フエニルアラニン1ナトリウム5水和物との転
移点温度以下、凍結温度以上に維持することによ
り上記1水和物結晶を5水和物結晶とすることを
特徴とする特許請求の範囲第5項に記載の方法。
[Claims] 1. Optically active phenylalanine monosodium pentahydrate crystals. 2. The optically active phenylalanine-containing liquid has a pH of approximately 9 or higher, a temperature below the transition point between optically active phenylalanine monosodium monohydrate crystals and optically active phenylalanine monosodium pentahydrate crystals, and a freezing temperature of the liquid. The above is a method for producing an optically active phenylalanine monosodium pentahydrate crystal, which is characterized by subjecting it to a crystallization operation in the presence of sodium ions. 3. The method according to claim 2, in which a fermentation broth or various solutions derived from a fermentation broth is used as the optically active phenylalanine and sodium ion-containing solution. 4. The method according to claim 2, which uses various solutions of a synthetic liquid or a fermentation liquid derived from a synthetic liquid having phenylalanine as a product as the optically active phenylalanine and sodium ion-containing liquid. 5 The optically active phenylalanine monosodium monohydrate crystal at a pH of about 9 or higher and the transition point temperature between the optically active phenylalanine monosodium monohydrate crystal and the optically active phenylalanine monosodium pentahydrate crystal Hereinafter, optically active phenylalanine monosodium pentahydrate is transformed into optically active phenylalanine monosodium pentahydrate crystals by maintaining the optically active phenylalanine-containing liquid at a temperature higher than the freezing temperature of the liquid. Method of manufacturing crystals. 6 After precipitating optically active phenylalanine monosodium monohydrate crystals from a solution containing optically active phenylalanine and sodium ions with a pH of about 9 or higher, a slurry containing the same hydrate crystals was mixed with optically active phenylalanine. The monohydrate crystal is turned into a pentahydrate crystal by maintaining the temperature of monosodium monohydrate and optically active phenylalanine monosodium pentahydrate at a temperature below the transition point temperature and above the freezing temperature. The method according to claim 5.
JP12002283A 1983-07-01 1983-07-01 Novel phenylalanine salt crystal and its preparation Granted JPS6013746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12002283A JPS6013746A (en) 1983-07-01 1983-07-01 Novel phenylalanine salt crystal and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12002283A JPS6013746A (en) 1983-07-01 1983-07-01 Novel phenylalanine salt crystal and its preparation

Publications (2)

Publication Number Publication Date
JPS6013746A JPS6013746A (en) 1985-01-24
JPH0439454B2 true JPH0439454B2 (en) 1992-06-29

Family

ID=14775968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12002283A Granted JPS6013746A (en) 1983-07-01 1983-07-01 Novel phenylalanine salt crystal and its preparation

Country Status (1)

Country Link
JP (1) JPS6013746A (en)

Also Published As

Publication number Publication date
JPS6013746A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
JP3694921B2 (en) Purification method of valine
RU1774951C (en) Method of isolating keto-2-l-culonic acid from enzymic wort
JPH10237030A (en) Purification of branched chain amino acid
JPH08157433A (en) Purification of basic amino acid
US4399304A (en) L-phenylalanine 1/2 sulfate and its use
US5618936A (en) Process for preparing (S) (+)-4,4'-(1-methyl-1,2-ethanediyl)-bis (2,6-piperazinedione)
JPH0439454B2 (en)
CN110885357B (en) Method for separating and purifying glutamine dipeptide by nanofiltration membrane
JPS5939857A (en) Crystallization of amino acid
JPH0657719B2 (en) Method for recovering α-L-aspartyl-L-phenylalanine methyl ester
JP2971664B2 (en) Method for recovering amino acids from peptides
US4582928A (en) Process for producing optically active phenylalanine
JPS6338B2 (en)
JPS604168A (en) Crystallization of tryptophan
US4588818A (en) Method for recovery of optically active tryptophane
JPS6258345B2 (en)
JPS626702B2 (en)
JPH0267256A (en) Isolation and purification of carnitine and carnitinenitrile
JPH0352455B2 (en)
JPS604155A (en) Separation of l-leucine and l-isoleucine
KR850000717B1 (en) Process for recovering amino acids from protein hydrolystes
JPS63130580A (en) Purification of tryptophan
JPS6032752A (en) Production of optically active phenylalanine
JPH0342268B2 (en)
KR820001129B1 (en) Method for recovery of l-glutamic acid from fermentation broth

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees