JPH0439380A - Heat-storing and releasing method - Google Patents

Heat-storing and releasing method

Info

Publication number
JPH0439380A
JPH0439380A JP2145798A JP14579890A JPH0439380A JP H0439380 A JPH0439380 A JP H0439380A JP 2145798 A JP2145798 A JP 2145798A JP 14579890 A JP14579890 A JP 14579890A JP H0439380 A JPH0439380 A JP H0439380A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage body
medium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2145798A
Other languages
Japanese (ja)
Other versions
JP2850264B2 (en
Inventor
Kazushige Kawamura
和茂 川村
Eiji Awai
英司 粟井
Masayoshi Ioka
井岡 政禎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP2145798A priority Critical patent/JP2850264B2/en
Publication of JPH0439380A publication Critical patent/JPH0439380A/en
Application granted granted Critical
Publication of JP2850264B2 publication Critical patent/JP2850264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To store and release heat, utilizing melting latent heat and evaporating latent heat by directly bringing a heat storing element into contact with a heat medium to form boundary face, allowing the boundary face to flow, vibrating the boundary face and mixing both phases when heat is stored to carry out heat exchange and solidifying part of the heat storing element. CONSTITUTION:A heat storing element in which solid liquid phase is changed is directly brought into contact with a heat medium having difference of specific gravity to the heat storing element and flow point temperature lower than solid-producing temperature of the above-mentioned heat storing element to form a boundary face. When heat is stored, the above-mentioned boundary face is allowed to flow and vibrated and/or both element phases are mixed and heat exchanging layer is formed to carry out heat exchange and part of the above-mentioned heat storing element is solidified and separated from the liquid phase of heat storing element. Thereby storage and release of cool heat having <=15 deg.C temperature are carried out utilizing latent heat using the heat storing element and heat medium.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は融解潜熱、さらには蒸発潜熱を利用する冷熱か
ら温熱までの広範囲の温度て適用できる蓄放熱方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat storage and release method that utilizes latent heat of fusion and furthermore latent heat of vaporization and is applicable at a wide range of temperatures from cold to hot.

[従来の技術] 従来、冷熱、温熱に限らず、蓄放熱方法は、液体や固体
の顕熱を利用するものであった。
[Prior Art] Conventionally, heat storage and release methods have utilized the sensible heat of liquids and solids, regardless of whether they are cold or hot.

しかしなから、顕熱を利用する方法は蓄熱量が小さく実
用化の大きな弊害になっていた。そのため、最近では融
解潜熱を利用する方法か多く研究され、熱利用の目的に
合った温度の蓄熱材等が開発されている。
However, methods that utilize sensible heat have a small amount of heat storage, which is a major drawback to their practical application. Therefore, in recent years, many studies have been conducted on methods of utilizing latent heat of fusion, and heat storage materials and the like with temperatures suitable for heat utilization purposes have been developed.

しかし、従来から提案されている潜熱型蓄放熱方法は、
通常蓄熱材を容器内に密閉し、容器内外の熱交換によっ
て熱授受を行なうものてあり、実用化においては、容器
の強度、材質、及び熱交換の伝熱速度や不均一性に問題
かあった。
However, the latent heat storage and release methods that have been proposed so far,
Normally, a heat storage material is sealed inside a container and heat transfer is performed by heat exchange inside and outside the container.In practical use, there are problems with the strength and material of the container, as well as the heat transfer rate and non-uniformity of heat exchange. Ta.

また、蓄放熱装置の大型化の容易性や大型化に伴う操作
上の追従性及び操作の連続的安定化の可能性等も問題と
なっている。このためこれら密閉型方式に代り冷熱蓄放
熱方法ては蓄熱材を系外へ取り出す方式や、蓄熱材と熱
媒体を直接接触させる方式か提案されている。
Furthermore, the ease with which the heat storage/dissipation device can be increased in size, the ability to follow the increase in size, the possibility of continuous stabilization of operation, etc. have also become problems. Therefore, instead of these closed-type systems, proposals have been made for cold heat storage and release methods, such as a method in which the heat storage material is taken out of the system, or a method in which the heat storage material and the heat medium are brought into direct contact.

例えば、特開昭63−263:167号公報には、水よ
り比重の小さい非水溶性の液体を熱媒体に用い、熱媒体
層を水層上に浮べ、水層の水の一部を熱媒体層中を重力
により通過させつつ直接熱交換させて製氷し、その氷を
水層上部に保持して蓄熱する方法か提案されている。
For example, in JP-A-63-263:167, a water-insoluble liquid with a specific gravity smaller than water is used as a heat medium, the heat medium layer is floated on the water layer, and a part of the water in the water layer is heated. A method has been proposed in which ice is made by direct heat exchange while passing through a medium layer by gravity, and the ice is held above the water layer to store heat.

[発明か解決しようとする課題] しかしながら、上記従来法の系外に蓄熱材を取り出す方
式ては、システムか複雑になると同時に機器数が多くな
り、実用化にはコスト的な問題か生じ、また凍結トラブ
ルを完全に回避することかてきず、且つ、消費電力量が
大きい等の問題かある。
[Problem to be solved by the invention] However, the method of taking out the heat storage material outside the system in the above-mentioned conventional method requires a complicated system and a large number of devices, which poses cost problems for practical use. It is not possible to completely avoid freezing troubles, and there are problems such as high power consumption.

さらに、前記特開昭63−263:167号公報て提案
されている方式ては、水を熱媒体層中を重力による自然
落下させるため、蓄熱体である水の流下か不均一になる
欠点がある。そのため、木の凝固物、即ち氷が熱媒体内
なとて塊状態や凝結状IEとなり流下か阻害され、安定
に連続操作か出来なくなつたり、凝固物か塊状て大きく
なると蓄熱凝固物の全表面積が小さくなってしまうため
、放熱時に充分な熱交換速度が確保てきなくなる等の不
都合か生ずる。また、水中に熱媒体か包含されてしまう
問題から、完全に両者を分離することか出来ずに放熱側
の負荷機器に熱媒体の一部か流出する不都合も生ずる。
Furthermore, the method proposed in the above-mentioned Japanese Patent Application Laid-Open No. 63-263:167 has the disadvantage that water, which is a heat storage body, flows unevenly because it is allowed to fall naturally through the heat medium layer due to gravity. be. As a result, the solidified wood, that is, ice, becomes lumpy or condensed IE in the heat medium, and its flow is obstructed, making stable continuous operation impossible, and when the solidified material becomes large and lumpy, all of the heat storage solidified material becomes Since the surface area becomes small, problems arise such as not being able to secure a sufficient heat exchange rate during heat dissipation. Furthermore, due to the problem that the heat medium is included in the water, it is not possible to completely separate the two, resulting in the inconvenience that a portion of the heat medium flows out to the load equipment on the heat radiation side.

蓄放熱技術は省エネルギー技術としてその工業的実施か
長年要望されているか、上記のように技術的、経済的に
未解決の問題かあるのか現状である。
The current status of heat storage/dissipation technology is whether it has been industrially implemented as an energy-saving technology, whether it has been desired for many years, or whether there are unresolved technical and economic problems as mentioned above.

本発1!Jは、上記の問題を解決し、大型化装置にも適
用でき、簡易で且つ取り扱いが容易な、伝熱効率の高い
蓄放熱力法を提供することを目的とする。
Main departure 1! J aims to solve the above-mentioned problems and provide a heat storage/dissipation method that is simple, easy to handle, and has high heat transfer efficiency, which can be applied to large-sized equipment.

[課題を解決するための手段] 本発明によれば、蓄熱体と熱媒体を用い潜熱を利用して
15℃以下の冷熱の蓄熱と放熱を行なう方法において、
固液相変化する蓄熱体と該蓄熱体と比重差を有し且つ該
蓄熱体の固体生成温度より低い流動点温度を有する熱媒
体とを直接接触させ境界面を形成し、蓄熱時に該境界面
を流動、振動及び/または混和せしめて熱交換層を形成
して熱交換させ、該蓄熱体の一部を固化し、蓄熱体液相
から離脱させることを特徴とする蓄放熱方法か提供され
る。
[Means for Solving the Problems] According to the present invention, in a method for storing and dissipating cold heat of 15° C. or less using latent heat using a heat storage body and a heat medium,
A heat storage body that undergoes a solid-liquid phase change and a heat medium that has a specific gravity difference from the heat storage body and has a pour point temperature lower than the solid formation temperature of the heat storage body are brought into direct contact to form a boundary surface, and the boundary surface is formed during heat storage. Provided is a heat storage and release method characterized by flowing, vibrating and/or mixing the heat storage material to form a heat exchange layer to exchange heat, solidify a part of the heat storage material, and separate the heat storage material from the liquid phase. .

さらにまた、蓄熱体と熱媒体を用い潜熱を利用して5℃
以上の温熱の蓄熱と放熱を行なう方法において、固液相
変化する蓄熱体と該蓄熱体と比重差を有し且つ該蓄熱体
の固体生成温度より低い流動点温度を有する熱媒体とを
直接接触させ境界面を形成し、放熱時に該境界面を流動
、振動及び/または混和せしめて熱交換層を形成して熱
交換させ、該蓄熱体の一部を固化し、蓄熱体液相から離
脱させることを特徴とする蓄放熱方法か提供される。
Furthermore, by using a heat storage body and a heat medium and utilizing latent heat,
In the method for storing and dissipating hot heat, a heat storage body that undergoes a solid-liquid phase change and a heat medium having a specific gravity different from that of the heat storage body and having a pour point temperature lower than the solid formation temperature of the heat storage body are brought into direct contact. to form a boundary surface, and during heat dissipation, the boundary surface is made to flow, vibrate, and/or mix to form a heat exchange layer and exchange heat, solidify a part of the heat storage body, and separate from the heat storage body liquid phase. A heat storage/dissipation method is provided.

以下に1本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明の蓄熱方法は上記のように構成され、原則的には
液相状態にある熱媒体に外部から温熱または冷熱を熱媒
体に与え、先ず熱媒体に熱の蓄積を行ない、その後、上
記のように蓄熱体と熱媒体とから形成される熱交換層に
おいて熱交換して蓄熱体に温熱または冷熱を蓄積する。
The heat storage method of the present invention is configured as described above, and in principle, warm or cold heat is applied to the heat medium from the outside in a liquid phase state, heat is first accumulated in the heat medium, and then the above-mentioned method is applied. In this way, heat is exchanged in the heat exchange layer formed from the heat storage body and the heat medium, and hot or cold heat is stored in the heat storage body.

熱媒体への熱の付与は、公知のいずれの方法によっても
よいが、通常は、熱媒体層若しくは蓄熱体層中に伝熱管
を設置するか、熱媒体を外部に抜出し冷熱器等で熱交換
して行なう。例えば伝熱管を熱媒体中に設置し、放熱用
の伝熱管を蓄熱体層または蓄熱用伝熱管と共通として熱
媒体層中に設置して、蓄熱のための熱付与は基本的に熱
媒体て行ない、蓄熱体での熱の蓄積は、常時液層である
熱媒体を介して熱交換して行なわれる。
Heat may be applied to the heat medium by any known method, but usually, heat transfer tubes are installed in the heat medium layer or heat storage layer, or the heat medium is extracted outside and heat exchanged with a cooler etc. Let's do it. For example, a heat transfer tube is installed in a heat medium, and a heat transfer tube for heat radiation is installed in a heat storage layer or a heat transfer tube in common with the heat transfer tube for heat storage, and the heat transfer for heat storage is basically done using the heat medium. The heat is accumulated in the heat storage body by exchanging heat through a heat medium which is a liquid layer at all times.

熱交換は、蓄熱体と熱媒体との境界面近傍に熱交換層を
形成して行なう。熱交換層は、例えば攪拌により蓄熱体
と熱媒体との境界面近傍上下を蓄熱体と熱媒体との混和
状態としたり、超音波等により上記境界面を振動状態と
したり、IIl還ポンプにより熱媒体を、蓄熱体と熱媒
体との境界面近傍に水平に、または垂直に吐出せしめる
等の方法によって境界面の1−下に蓄熱体及び熱媒体両
者の波状接触状態や両者混在した混和状態とすることに
より形成する。上記のようにして形成された熱交換層で
冷熱蓄積時または温熱放熱時に蓄熱体と熱媒体とを熱交
換させ蓄熱体から固体を凝固せしめる。上記熱交換層は
常時運動状態にあり、また局部的な熱媒体と蓄熱体との
接触面は常に入れ換わるので、蓄熱体からは微細固体が
凝固しその蓄熱体液相及び熱交換層から離脱する。また
生成した固体は熱交換層外の蓄積体液相に分散するが、
上述の熱交換層生成による手段によって熱交換させ固体
を生成させるので、蓄熱装置内の伝熱管や内壁に凝固物
が殆ど付着しない。従って、一般に固体の析出を伴なう
操作では、機器の内壁等に固体の付着が発生しやすく、
従来の蓄放熱方法における冷却伝熱管面での凝固物付着
によるトラブルか問題となっていたのに対し、本発明に
おいては、凝固物の付着か起こりにくく連続的に安定し
た運転が確保できる。かかる熱交換層の蓄熱槽における
占有容積は、蓄熱体と熱媒体との組合せ及び使用量、蓄
熱槽容器形状、熱交換層形成手段の種類能力等によって
適宜選択すればよく、例えばcm単位から熱媒体及び蓄
熱体層の半分に及ぶ大きさとなることもある。
Heat exchange is performed by forming a heat exchange layer near the interface between the heat storage body and the heat medium. The heat exchange layer can be formed by, for example, making the upper and lower areas near the boundary between the heat storage element and the heat medium into a mixed state by stirring, by making the boundary surface vibrate by ultrasonic waves, or by using a IIl return pump to heat the heat exchange layer. By discharging the medium horizontally or vertically near the interface between the heat storage element and the heat medium, it is possible to create a wavy contact state or a mixed state of both the heat storage element and the heat medium below the interface. Form by doing. In the heat exchange layer formed as described above, heat is exchanged between the heat storage body and the heat medium during cold heat accumulation or hot heat radiation, and solids are solidified from the heat storage body. The heat exchange layer is always in motion, and the contact surface between the local heat medium and the heat storage body is constantly replaced, so fine solids solidify from the heat storage body and separate from the liquid phase of the heat storage body and the heat exchange layer. do. Also, the generated solids are dispersed in the accumulated body fluid phase outside the heat exchange layer,
Since heat is exchanged and a solid is generated by the above-mentioned method of generating a heat exchange layer, almost no solidified matter adheres to the heat exchanger tubes or inner walls within the heat storage device. Therefore, in general, operations that involve precipitation of solids tend to cause solids to adhere to the inner walls of equipment, etc.
In contrast to the conventional heat storage/dissipation method, which caused problems due to the adhesion of coagulum on the surface of the cooling heat transfer tube, in the present invention, adhesion of coagulum is less likely to occur and continuous stable operation can be ensured. The volume occupied by the heat exchange layer in the heat storage tank may be appropriately selected depending on the combination of the heat storage body and the heat medium, the amount used, the shape of the heat storage tank container, the type and capacity of the heat exchange layer forming means, etc. It can be up to half the size of the medium and heat storage layer.

また、熱交換層か接している蓄熱槽構造材や、これに関
する付帯設備機器の部分には凝固物の付着のおそれがあ
るか、これらは特定の場所に限定されることから対策が
容易で、その部分に加熱手段を設ければよい。加熱手段
は電気ヒーター、温水、冷凍用圧縮機により加圧・液化
された暖かい媒体などが使用できる。加熱は連続的ても
、間欠的に行なってもよい。
In addition, there is a risk of condensation adhering to the heat storage tank structural material that is in contact with the heat exchange layer, or to the related auxiliary equipment, and since these are limited to specific locations, countermeasures can be easily taken. A heating means may be provided in that portion. As a heating means, an electric heater, hot water, a warm medium pressurized and liquefied by a refrigeration compressor, etc. can be used. Heating may be performed continuously or intermittently.

本発明の方法は、蓄熱体及び熱媒体を選定することによ
って、冷熱から温熱までの広い温度領域の蓄放熱を行う
ことができる。
The method of the present invention can store and release heat in a wide temperature range from cold to hot by selecting a heat storage body and a heat medium.

本発明て用いる蓄熱体としては、15℃以下の冷熱を蓄
放熱する場合には、15℃以下て固液相変化するものて
あればよく、例えば水、水にメタノール、エタノールな
どの低級アルコール類、アセトン、エチレングリコール
類若しくはKCM、NaC1、Na5PO,、%a2S
O,、NaN0:+などの無41塩類のうち少なくとも
1種を加えた水溶液を用いることができる。これらは、
氷の融解潜熱を利用するものてあり、水溶液においては
添加する前記の物質の凝固点時下作用を利用して蓄熱温
度を制御したりまたは凝固物即ち氷の核生成や結晶生長
をコントロールすることができる。また、 Li(dL
O+の如く添加物が水との共晶の形成作用のために用い
られる場合もある。凝固物か氷の場合、氷は水中に浮く
が、凝固物が共晶の場合、共晶は水中を沈下する。
In the case of storing and dissipating cold heat of 15°C or lower, the heat storage body used in the present invention may be one that changes solid-liquid phase at 15°C or lower, such as water, water and lower alcohols such as methanol or ethanol. , acetone, ethylene glycols or KCM, NaCl, Na5PO, %a2S
An aqueous solution containing at least one salt-free salt such as O, NaN0:+, etc. can be used. these are,
It utilizes the latent heat of melting of ice, and in an aqueous solution, it is possible to control the heat storage temperature or control the nucleation and crystal growth of solidified matter, that is, ice, by utilizing the effect of lowering the freezing point of the above-mentioned substances added. can. Also, Li(dL
Additives such as O+ may also be used to act as a eutectic with water. If it is a solid or ice, the ice will float in the water, but if the solid is eutectic, the eutectic will sink in the water.

また、上記した蓄熱体の他に15℃以下の融点をもつ有
機化合物を用いることかできる。例えば、パラキシレン
、シクロヘキサン、n−オクタンn−ヘキサン、メタノ
ール、酢酸などが挙げられ、これらを単一または混合物
で用いることがてきる。これらは蓄放熱温度と融点がほ
ぼ等しい条件で用いるのか好ましい。
Further, in addition to the above-described heat storage body, an organic compound having a melting point of 15° C. or lower may be used. Examples include paraxylene, cyclohexane, n-octane, n-hexane, methanol, acetic acid, etc., and these can be used singly or in mixtures. These are preferably used under conditions where the heat storage/radiation temperature and melting point are approximately equal.

一方、5℃以上の温熱の蓄放熱に用いる蓄熱体としては
、塩化カルシウム・6水塩、硫酸ナトリウム・lO水塩
、酢酸ナトリウム・3木塩等の無機水和塩、あるいはI
++、 Bi、 Snなどの低融点の金属及びこれらの
玉元素合金などの低融点の合金類が用いられる。
On the other hand, as a heat storage body used for storing and dissipating heat of 5°C or higher, inorganic hydrated salts such as calcium chloride/hexahydrate, sodium sulfate/IO hydrate, sodium acetate/3-wood salt, or I
Low melting point metals such as ++, Bi, and Sn, and low melting point alloys such as alloys of these elements are used.

更に、エチレンオキサイド、ナフタリン、ベンゼン、炭
素数が14以りのパラフィン類などの融点が5℃以1−
である有機化合物を用いることがてきる。
Furthermore, the melting point of ethylene oxide, naphthalene, benzene, paraffins having 14 or more carbon atoms is 5°C or higher.
An organic compound can be used.

本発明の熱媒体としては、用いる蓄熱体によっても異な
るが、蓄熱体と比重差かありl。つ蓄熱体と境界面を形
成するものを用いる。更に、熱媒体の流動点温度が、蓄
熱温度即ち蓄熱体の固体生成温度より低いものを用い、
熱媒体層が常時液相を保持するようにする。熱媒体が常
に液相であることは、蓄熱時及び放熱時において凝固物
の伝熱管や装置内壁への付着がなく効果的である。更に
、低粘度の熱媒体は蓄放熱操作中において、熱媒体への
伝熱を促進させるための流動を容易にし、蓄熱体の凝固
物の熱媒体からの離脱を容易にすることから好ましい。
The heat medium of the present invention has a specific gravity that differs depending on the heat storage body used, but there is a specific gravity difference between the heat medium and the heat storage body. A material that forms an interface with the heat storage body is used. Furthermore, using a heat medium whose pour point temperature is lower than the heat storage temperature, that is, the solid formation temperature of the heat storage body,
The heat medium layer is made to maintain a liquid phase at all times. The fact that the heat medium is always in a liquid phase is effective because there is no adhesion of solidified matter to the heat exchanger tubes or the inner walls of the device during heat storage and heat dissipation. Furthermore, a low-viscosity heat medium is preferable because it facilitates flow to promote heat transfer to the heat medium during heat storage/dissipation operation, and facilitates separation of the solidified material of the heat storage body from the heat medium.

また、蓄熱体から固体か形成される際、該固体と蓄熱体
液相との比重関係により固体は蓄熱体液相中を浮上する
か沈降する。もし沈陵方向に熱交換層があると、固体が
熱交換層内あるいは熱交換層近傍に集まってくる0本発
明においては、熱交換層及び蓄熱体層を遅効状態におき
固体の微粒化促進及び熱交換層への集合を妨害している
が、固体濃度か増大してくるとかかる集合か増加して熱
交換の効率が低下するのを免れない、従って固体の連動
方向に熱交換層が形成されないように蓄熱体及び熱媒体
を選択することが望ましい。即ち冷熱蓄放熱の場合、氷
か生成する際には水あるいは水溶液より比重の大きい熱
媒体を選び、水と無機塩の共品、有機化合物固体の生成
するような、氷以外の固体を生成する際は蓄熱体より比
重の軒い熱媒体を選ぶのか好ましい。5℃以上の温熱蓄
放熱の際には氷生成は起こらず、すべて蓄熱体より比重
の小さな熱媒体を選ぶのか好ましい。
Further, when a solid is formed from the heat storage body, the solid floats or settles in the heat storage liquid phase depending on the specific gravity relationship between the solid and the heat storage body liquid phase. If there is a heat exchange layer in the sinking direction, solids will collect in or near the heat exchange layer. However, as the concentration of solids increases, such aggregation will inevitably increase and the efficiency of heat exchange will decrease. It is desirable to select the heat storage body and the heat transfer medium so that no formation occurs. In other words, in the case of cold heat storage and radiation, when producing ice, a heat medium with a higher specific gravity than water or an aqueous solution is selected, and a solid other than ice is produced, such as a combination of water and an inorganic salt, or a solid organic compound. In this case, it is preferable to choose a heat transfer medium with a higher specific gravity than a heat storage body. Ice formation does not occur during heat storage/radiation at temperatures above 5°C, so it is preferable to select a heat medium with a smaller specific gravity than the heat storage body.

なお、蓄熱槽のほかに撹拌機付き別槽を設け、熱交換層
の近傍の蓄熱体層から固体リッチの蓄熱体を別槽に抜き
出し、液相のみを蓄熱槽に再循環するという方法によっ
ても、前記の難点を防止出来る。
In addition, in addition to the heat storage tank, a separate tank with an agitator is provided, the solid-rich heat storage material is extracted from the heat storage layer near the heat exchange layer to the separate tank, and only the liquid phase is recirculated to the heat storage tank. , the above-mentioned difficulties can be avoided.

また、蓄熱体と境界面を形成するためには、熱媒体と蓄
熱体とが相溶性のないものか好ましい。
Further, in order to form an interface with the heat storage body, it is preferable that the heat medium and the heat storage body are incompatible.

但し、僅かに相溶性かあフても境界面を形成し分離状態
を保持するものは使用することかてきる。
However, it is possible to use materials that form an interface and maintain a separated state even if they are slightly compatible or slightly compatible.

また、乳化しやすいものも使用することは好ましくない
。これは熱媒体の流出による損失や熱媒体中の伝熱面へ
の蓄熱体凝固物の付着をさけるためである。
Furthermore, it is not preferable to use materials that are easily emulsified. This is to avoid loss due to outflow of the heat medium and adhesion of heat storage body solidified matter to the heat transfer surface in the heat medium.

に記のような熱媒体としては、例えば水、フロン系冷媒
、パラフィン系やアルコール系の有機化・合物などが挙
げられる。その他、通常用いられている冷奴や灯油、潤
滑油なども用いることかできる。
Examples of the heat medium mentioned above include water, fluorocarbon-based refrigerants, paraffin-based and alcohol-based organic compounds/compounds, and the like. In addition, commonly used cold tofu, kerosene, lubricating oil, etc. can also be used.

更に、本発明において、蓄熱槽を密閉し、熱媒体として
、沸点か蓄熱体の固体生成温度TutてT+150℃以
下の物質を用いることによって、蓄熱体の潜熱を利用す
るのみてなく、熱媒体の気化潜熱を利用することもてき
る。この場合には、全蓄熱門な大きくすることかできる
。ただし、熱媒体の沸点がT + 150℃以」−では
、蓄熱温度における熱媒体蒸気圧か小さく、効果かほと
んど認められない。さらに、固体生成温度以下では蒸発
が激しく、熱媒体としての本来の目的か達成できない、
従って、通常、熱媒体としては沸点かT+3〇−T +
 100℃範囲にあるものか好ましい。
Furthermore, in the present invention, by sealing the heat storage tank and using a substance whose boiling point or the solid formation temperature Tut of the heat storage body is T+150°C or lower, not only the latent heat of the heat storage body is utilized, but also the heat medium is heated. The latent heat of vaporization can also be used. In this case, the entire heat storage gate can be made larger. However, when the boiling point of the heat medium is T + 150°C or higher, the vapor pressure of the heat medium at the heat storage temperature is small, and almost no effect is observed. Furthermore, below the solid formation temperature, evaporation is intense and the original purpose as a heat transfer medium cannot be achieved.
Therefore, as a heat medium, the boiling point is usually T + 30 - T +
Preferably, the temperature is in the 100°C range.

また、上述したような沸点かT I! 、hてT+15
0℃以下の熱媒体は、蓄熱体と熱媒体の境界面に熱偏流
や流動を起こさせるため、固化の核発生や熱伝導を向−
トさせる。更に、この効果は熱媒体の比重が蓄熱体より
大きい場合に顕著である。
Also, the boiling point as mentioned above or T I! , hteT+15
Heat carriers at temperatures below 0°C cause thermal drift and flow at the interface between the heat storage element and the heat carrier, which promotes solidification nucleation and heat conduction.
make it work. Furthermore, this effect is remarkable when the specific gravity of the heat medium is greater than that of the heat storage body.

本発明の熱媒体と蓄熱体との熱交換は、熱交換層で両者
の境界面を介して行うものて、従来の金属やプラスチッ
ク等の固体装と面を介する熱交換では凝固物の装を面へ
の伺着固化が回避できなかったのに比し、そのようなト
ラブルか生しることがなく連続して安定した操作か可能
となる。
The heat exchange between the heat medium and the heat storage body of the present invention is performed through the interface between the two in the heat exchange layer, and in the conventional heat exchange through a solid package such as metal or plastic and a surface, a solid package is used. Unlike the case where it was impossible to avoid sticking to the surface and hardening, such trouble does not occur and continuous stable operation is possible.

本発明においては、」−記Iノたようにポンプや攪拌機
を用いて蓄熱体及び熱媒体の少なくとも一方を液混合す
ることにより、または超音波振動等を用いることにより
、蓄熱体と熱媒体の境界面を流動、振動及び/または混
和状態として熱交換層を形成するが、更に、蓄熱体もし
くは熱媒体の一方を他方内に流下させる方法か併用でき
る。即ち、この流下方法単独の場合に発生してトラブル
の原因となる大型凝固体が、本発明では熱交換層と蓄熱
体との連動により防止出来るからである。更にまた、ガ
スを導入させてもよい。
In the present invention, the heat storage body and the heat medium are mixed by liquid mixing at least one of the heat storage body and the heat medium using a pump or a stirrer, or by using ultrasonic vibration or the like, as described in Section I. Although the heat exchange layer is formed by keeping the boundary surface in a fluid, vibrating and/or mixed state, a method may also be used in which one of the heat storage body or the heat medium flows down into the other. That is, in the present invention, the large solidified bodies that occur and cause trouble when this flow down method is used alone can be prevented by the interlocking action of the heat exchange layer and the heat storage body. Furthermore, a gas may be introduced.

本発明において、蓄熱体と熱媒体との比重差は、境界面
の生成及び消滅速度を速めるため、蓄熱体凝固物を熱交
換層全体に大きく生成させることなく、微細な固体粒子
として熱交換層面から連続的に離脱させることがてきる
。これによって、蓄熱体を微細な凝固物として貯蔵し蓄
熱することができる。また、蓄熱体の固相と液相の比重
差か、凝固体の離脱にさらに役立つことか多い。
In the present invention, the difference in specific gravity between the heat storage body and the heat medium accelerates the formation and extinction rate of the boundary surface, so that the heat storage body solidified material is not generated in a large amount on the entire heat exchange layer, but is formed as fine solid particles on the heat exchange layer surface. It is possible to continuously separate from the Thereby, the heat storage body can be stored as a fine solidified material and heat can be stored therein. In addition, the difference in specific gravity between the solid phase and liquid phase of the heat storage body is often more helpful in separating the solidified body.

また、蓄熱体の熱交換による凝固物生成に関しては過冷
却の問題があるが、本発明においては、熱交換層形成に
より、境界面の熱伝導効率か向上すると共に、熱交換層
の流動、振動や波立ちなどが、更にまた過冷却を防止す
る効果かある。
In addition, there is a problem of supercooling with regard to the formation of solidified products due to heat exchange of the heat storage body, but in the present invention, by forming a heat exchange layer, the heat conduction efficiency of the boundary surface is improved, and the flow and vibration of the heat exchange layer are improved. The rippling and rippling effects also have the effect of preventing overcooling.

L記のように、本発明では蓄熱体の凝固物か生成する場
所として定められた蓄熱体と熱媒体の境界面の熱交換層
で起こることから、凝固物の生成を制御することができ
る。従って、連続的に安定した蓄放熱を行なうことかで
きる。
As shown in Section L, in the present invention, the generation of coagulated substances can be controlled because the generation of coagulated substances occurs in the heat exchange layer at the interface between the heat storage element and the heat medium, which is determined as the place where the solidified substances of the heat storage body are generated. Therefore, it is possible to continuously and stably store and release heat.

更にまた、より効果を大きくするために、蓄熱体や熱媒
体に、無機質や有機質の発核剤を添加することもてきる
。更に、蓄熱体に生成した凝固物の凝集・付着を防止す
るため、有a質例えば、蓄熱体として水を用いた場合に
エチレングリコール類などを添加してもよい。
Furthermore, in order to further increase the effect, an inorganic or organic nucleating agent may be added to the heat storage body or heat medium. Further, in order to prevent the coagulation and adhesion of the coagulated material generated on the heat storage body, an aqueous substance such as ethylene glycols may be added when water is used as the heat storage body.

本発明において、温熱の蓄放熱と冷熱の蓄放熱とでは蓄
熱体の相変化が異なり、温熱蓄放熱においては放熱時に
蓄熱体の凝固物か生成し、逆に冷熱蓄放熱では蓄熱時に
凝固物か生成する。従って、温熱の場合と冷熱の場合と
は方式の態様か異なる。下記にそれぞれ例を挙げて説明
する。
In the present invention, the phase change of the heat storage body is different between hot heat storage and release and cold heat storage and release. generate. Therefore, the mode of the method is different in the case of heat and the case of cold. Each will be explained below with examples.

(1)温熱蓄放熱の場合 (a)基本方式 第1図に示すように、蓄放熱槽1に熱媒体層2と蓄熱体
層3を形成させる。その後、熱媒体層内に設けた伝熱管
4内に、ヒーター=10’て加熱した熱媒な流し、また
攪拌器5.5′によって蓄熱体層3及び熱媒体層2を激
しく攪拌、混合し、蓄熱体の凝固物20か溶解して液状
となり、蓄熱体層3に温熱を蓄熱することかてきる。−
力、放熱は攪拌器5.5′によって、熱交換層50を形
成するように蓄熱体層3及び熱媒体層2を撹拌しながら
、熱媒体層内の伝熱管4内に熱媒を流し、熱交換器8で
被加熱物に熱を付与する。その際、熱交換層て蓄熱体の
凝固物20が生成する。
(1) In the case of thermal storage and radiation (a) Basic method As shown in FIG. 1, a heat medium layer 2 and a heat storage layer 3 are formed in a heat storage and radiation tank 1. Thereafter, the heat storage layer 3 and the heat medium layer 2 are vigorously stirred and mixed using a heat medium flow heated by a heater 10' and a stirrer 5.5' in a heat transfer tube 4 provided in the heat medium layer. The solidified material 20 of the heat storage body melts and becomes liquid, and heat can be stored in the heat storage layer 3. −
Power and heat dissipation are performed by flowing the heat medium into the heat transfer tubes 4 in the heat medium layer while stirring the heat storage layer 3 and the heat medium layer 2 to form a heat exchange layer 50 using a stirrer 5.5'. A heat exchanger 8 applies heat to the object to be heated. At this time, a solidified material 20 of the heat storage body is generated in the heat exchange layer.

また、伝熱管4は熱交換層50を避けた位置に設置し、
加熱用ヒーターlO′と放熱用熱交換器は切り換えて使
用する。
Moreover, the heat exchanger tube 4 is installed in a position avoiding the heat exchange layer 50,
The heater lO' for heating and the heat exchanger for heat radiation are used by switching.

なお、この場合、図面−Lは熱媒体か下層であるが、熱
媒体層と蓄熱体層とを逆にしてもよく、その場合は生成
凝固物が熱交換層近傍より蓄熱槽底部に集まる。また、
図面上は、伝熱管4を熱媒体中に設けであるか、熱媒体
を伝熱管4を設けずに、直接、ヒーターlO′もしくは
熱交換器8に導入し、熱の授受を行なってもよい。
In this case, drawing L shows the lower layer of the heat medium, but the heat medium layer and the heat storage layer may be reversed, in which case the produced solidified material will gather at the bottom of the heat storage tank from near the heat exchange layer. Also,
In the drawing, the heat transfer tube 4 may be provided in the heat medium, or the heat transfer medium may be introduced directly into the heater lO' or the heat exchanger 8 without providing the heat transfer tube 4, and transfer of heat may be performed. .

(b)変形方式■ 上記(a)の方式に加え、更に熱媒体を熱媒体循環ポン
プiiを用い蓄熱体層3Lに熱媒体2を循環するライン
を加えたものである。熱媒体2か蓄熱体層3内を滴下も
しくは柱状になって落下する間の熱媒体と蓄熱体の境界
面にも凝固物が生成し、さらに攪拌により凝固物は微粒
となり、熱伝導効率を補助上昇する効果がある。
(b) Modified Method ■ In addition to the above method (a), a line for circulating the heat medium 2 through the heat storage layer 3L using a heat medium circulation pump ii is added. While the heat medium 2 drips or falls in the form of a column in the heat storage layer 3, solidified matter is also generated at the interface between the heat medium and the heat storage body, and further agitation turns the solidified material into fine particles, which assists in heat transfer efficiency. It has a rising effect.

(C)変形方式■ 熱交換器8を被加熱体への熱付加用と熱媒体加熱用ヒー
ター10’との双方に使用できるようにすると共に、攪
拌機5及び5°を共通として熱媒体中の境界面近くに一
機設欝したタイプであり、放熱時に弱く攪拌して熱交換
層を形成し、蓄熱時には強く攪拌して熱媒体と蓄熱体と
が完全混合に近い状態でほぼ1層状態となるようにする
。また。
(C) Modified method■ The heat exchanger 8 can be used both for adding heat to the object to be heated and as the heater 10' for heating the heat medium, and the stirrers 5 and 5° are used in common to add heat to the heat medium. This type has one unit installed near the boundary surface, and it stirs weakly during heat dissipation to form a heat exchange layer, and stirs strongly during heat storage to form a nearly single layer state where the heat medium and heat storage body are almost completely mixed. I will make it happen. Also.

蓄熱体スラリーをポンプで蓄熱体層3上に循環させ、熱
伝導の促進、凝固物の堆積防止を図ってもよい。
The heat storage slurry may be circulated over the heat storage layer 3 using a pump to promote heat conduction and prevent the accumulation of coagulated substances.

(d)変形方式■ 上記(a)方式の熱媒体層に設けた伝熱管に接続されて
いる加熱器lO′に加え、加熱用(蓄熱用)として、蓄
熱体層内に伝熱管4′を設け、さらに循環ポンプ7と加
熱器io”を伝熱管4′に接続したものである。
(d) Modified method■ In addition to the heater lO' connected to the heat transfer tube provided in the heat medium layer of method (a) above, a heat transfer tube 4' is installed in the heat storage layer for heating (heat storage). In addition, a circulation pump 7 and a heater io'' are connected to the heat exchanger tube 4'.

(2)冷熱蓄放熱の場合 (e)基本方式 第2図(a)に示すように、熱媒体は下層の熱媒体層2
を形成し、冷却器10て冷却した冷媒を熱媒体冷却用の
伝熱管4内に流し、熱媒体に冷熱を付与し、また、冷熱
の取り出しは、蓄熱体層内に設けられた伝熱管4′、ポ
ンプ7及び熱交換器8によって行なう。それ以外は前記
第1図の方式と同様である。但し、熱交換層で蓄熱体の
凝固物20が生成され、蓄熱体層中に移動し冷熱を蓄熱
することかできる。
(2) In the case of cold heat storage and radiation (e) Basic method As shown in Figure 2 (a), the heat medium is the lower heat medium layer 2.
The refrigerant cooled by the cooler 10 flows into the heat transfer tubes 4 for cooling the heat medium to impart cold heat to the heat medium, and the cold heat is extracted through the heat transfer tubes 4 provided in the heat storage layer. ', pump 7 and heat exchanger 8. The rest is the same as the method shown in FIG. 1 above. However, the solidified material 20 of the heat storage body is generated in the heat exchange layer, moves into the heat storage body layer, and can store cold heat.

(f)変形方式■ 前記温熱蓄放熱の(b)方式と同様の方式て、攪拌と同
時に熱媒体をポンプ11て抜き出し滴状もしくは柱状て
蓄熱体層3内を落下させる。熱伝導効率を補助上昇する
効果かある。
(f) Modified Method (2) In a method similar to the method (b) of thermal storage and radiation, the heat medium is extracted by the pump 11 at the same time as stirring and is caused to fall in the heat storage layer 3 in the form of drops or columns. It has the effect of assisting and increasing heat conduction efficiency.

(g)変形方式■ 第2図(b)おいて、前記(e)方式おける攪拌機5を
界面近傍上部の蓄熱体層中に単に一機設ると共に、熱媒
体の冷却を行う冷熱器10とは別に、熱交換器8を蓄熱
体の放冷のみてなく、蓄冷時にも作動させ冷却と放冷を
切換えて行うことがてきる熱交換器とし、蓄熱体の蓄冷
を熱媒体との熱交換のみてなく熱交換器8ても行なうも
のである。
(g) Modified method■ In FIG. 2(b), only one stirrer 5 in the method (e) is installed in the heat storage layer at the upper part near the interface, and a cooler 10 for cooling the heat medium is installed. Separately, the heat exchanger 8 is a heat exchanger that is operated not only to cool the heat storage body, but also to store cold, and to switch between cooling and cooling, and to exchange the cold storage of the heat storage body with a heat medium. This is done not only for the heat exchanger 8 but also for the heat exchanger 8.

蓄冷時に、蓄熱体層に配設する熱交換用伝熱配管12表
面に熱媒体なポンプ11にて吸引して流下させることに
より、熱交換効率及び速度を高めることができ、蓄熱体
層中の配管に凝固物か付着することも防止てきる。さら
に、熱媒体の流下か安定して生成した凝固物が塊状にな
ることを防止できる。
During cold storage, the heat exchange efficiency and speed can be increased by sucking the heat medium onto the surface of the heat exchange heat transfer pipe 12 disposed in the heat storage layer using the pump 11 and causing it to flow down. It also prevents coagulum from adhering to the pipes. Furthermore, it is possible to prevent the solidified material stably generated under the flow of the heat medium from forming into lumps.

(3)水蓄放熱の場合 蓄熱体に水及び水溶液を用い氷か生成する場合には、凝
固物の氷の比重が水より小さく、他の蓄熱体を用いた場
合と異なるのて特に次に説11する。
(3) In the case of water heat storage/radiation When ice is generated using water or an aqueous solution as a heat storage body, the specific gravity of the solidified ice is smaller than that of water, which is different from the case when other heat storage bodies are used. Theory 11.

(h)基本方式 第3図(a)に示した方式は、上記の温熱蓄放熱の(a
)方式及び冷熱蓄放熱の(e)方式において、蓄熱体と
して水を用いた場合を示したものである。この場合、氷
20の比重は水に比べて小さく蓄熱体層3の上方部に浮
上するため、その部分の氷と水とのスラリーもしくは水
を抜き出して放熱すると共に1融解もしくは温度上昇し
た木を蓄熱体層3表面上部より滴下して戻す方式である
(h) Basic method The method shown in Figure 3 (a) is based on (a
) method and (e) method of cold heat storage and radiation, the case where water is used as a heat storage body is shown. In this case, the specific gravity of the ice 20 is smaller than that of water and it floats to the upper part of the heat storage layer 3, so the slurry of ice and water or water is extracted from that part and the heat is radiated, and the wood that has melted or has increased in temperature is This is a method in which the heat storage layer 3 is dripped from above the surface and returned.

(i)変形方式 第3図(b)に示した方式は、熱媒体層2の底部よりポ
ンプ11を経て、境界面近くてそれより」一部に熱媒体
を噴出するパイプ13を配設したものである。バイブ1
3は、−第3図(C)に拡大図を示したように、主流管
14から分岐した分岐管14°を設け、分岐管14°か
ら噴出する熱媒体か分岐管14°の外壁を濡れ壁を形成
するように流れ落ちるようになり、境界面30は分岐管
14°の上部から連続して形成され同時に熱交換層とな
る。従って、熱媒体と蓄熱体の熱交換境界面積か大きく
なると共に、熱交換層の流動を大きくする効果がある。
(i) Modified method In the method shown in FIG. 3(b), a pipe 13 is provided for ejecting the heat medium from the bottom of the heat medium layer 2 through a pump 11, near the boundary surface, and in a part from there. It is something. Vibrator 1
3 - As shown in the enlarged view in Fig. 3(C), a branch pipe 14° branched from the main pipe 14 is provided, and the heat medium spouted from the branch pipe 14° wets the outer wall of the branch pipe 14°. It flows down to form a wall, and the boundary surface 30 is formed continuously from the upper part of the branch pipe 14°, and at the same time serves as a heat exchange layer. Therefore, the heat exchange boundary area between the heat medium and the heat storage body becomes large, and there is an effect of increasing the flow of the heat exchange layer.

以上説明した各方式において、■ポンプによる液循環を
攪拌機に代用すること(第6図参照)、■生成した凝固
物を含有する蓄熱体スラリーを別に設置した槽に送り、
蓄熱体スラリーの液体部のみを蓄熱体層に戻す操作を繰
り返すことによって、別に設置した槽に蓄熱貯蔵するこ
と(第7図参照)、■6熱交換用のチューブを槽内に設
は冷奴等を流通して蓄熱体及び熱媒体と熱交換するよう
にしであるか、逆にチューブ内に熱媒体あるいは蓄熱体
を循環して熱交換すること等の態様を採ってもよい、ま
た■冷熱蓄放熱の場合て、冷熱を放熱する方法として、
熱交換用のチューブを設けることなく、蓄熱体を直接に
循環して、被冷熱物を冷却してもよい。
In each of the methods described above, ■ Substituting a stirrer for liquid circulation by a pump (see Figure 6), ■ Sending the heat storage slurry containing the generated coagulated material to a separately installed tank,
By repeating the operation of returning only the liquid part of the heat storage body slurry to the heat storage layer, heat is stored in a separately installed tank (see Figure 7). It is also possible to adopt modes such as circulating the heat medium or heat storage body in a tube to exchange heat with the heat storage body and heat medium, or vice versa. In the case of heat radiation, as a method of radiating cold heat,
The object to be cooled may be cooled by directly circulating the heat storage body without providing a tube for heat exchange.

また、上記の各方式において、蓄熱時と放熱時に攪拌機
の回転数またはポンプの流量を変化させることにより各
操作の効率を必要に応じて変化させることができる。
Furthermore, in each of the above systems, the efficiency of each operation can be changed as necessary by changing the rotational speed of the stirrer or the flow rate of the pump during heat storage and heat radiation.

本発明は上記のように構成され、蓄熱体を容易に取り扱
うことがてきるため、冷・温熱どちらの蓄放熱にも利用
できる。従って、同一装置て用途(温度)を変更できる
。また、異なる温度の蓄熱に使用できる蓄熱体例えば、
融点の異なり、かつ相互溶解する蓄熱体の混合物などを
用いることによって、複数点の蓄熱温度を自由に選定す
ることかできる。さらに、氷蓄熱の冷暖房システムの如
く、一方の蓄熱で顕熱を利用する場合にも、異なる温度
の蓄熱を行なうことができる。更にまた。
Since the present invention is configured as described above and the heat storage body can be easily handled, it can be used for both cold and hot heat storage and release. Therefore, the use (temperature) of the same device can be changed. In addition, heat storage bodies that can be used for heat storage at different temperatures, e.g.
By using a mixture of heat storage bodies that have different melting points and are mutually soluble, it is possible to freely select heat storage temperatures at multiple points. Furthermore, even when sensible heat is used for one type of heat storage, such as in an air-conditioning system using ice heat storage, heat storage at different temperatures can be performed. Yet again.

蓄熱体の一部を凝固物として蓄熱体中に分散させてスラ
リー状態とするもので熱伝導性が良好て、熱授受が容易
な蓄放熱方法であり大型装置にも適用できる。
A part of the heat storage body is solidified and dispersed in the heat storage body to form a slurry state, which has good thermal conductivity and is a heat storage/dissipation method that allows easy heat transfer and reception, and can be applied to large-scale equipment.

[実施例] 以下に、本発明の実施例について図面を参照にして更に
詳細に説明する。但し1本発明は以下の実施例により限
定されるものでない。
[Examples] Examples of the present invention will be described in more detail below with reference to the drawings. However, the present invention is not limited to the following examples.

(実施例1) 第4図は、本発明の氷を利用した水蓄放熱方法に関する
実施例の断面説明図である。第4図において、内径1o
sl■、長さ1000m腸のFRP製有底円筒状蓄放熱
槽lに、熱媒体としてフロン系不活性流体(旭硝子■製
、商品名ニアクルード、比重: 1.77)2Kgを入
れ、次いて蓄熱体としてエチレングリコールの2重量%
水溶液を6kg入れ、熱媒体層2と蓄熱体層3を形成し
た。攪拌機5を、蓄熱体と熱媒体との境界面から上方に
約40■■のところに翼6がくるように設置した。その
後、伝熱管4内に冷却器lOによって−20”Cに冷却
された冷媒(メタノール)を通過させた。
(Example 1) FIG. 4 is a cross-sectional explanatory diagram of an example of the water heat storage and release method using ice of the present invention. In Fig. 4, the inner diameter is 1o.
2 kg of fluorocarbon-based inert fluid (manufactured by Asahi Glass ■, trade name: Near Crude, specific gravity: 1.77) was put as a heat medium into a cylindrical heat storage/radiation tank made of FRP with a bottom and a length of 1000 m, and then heat storage was carried out. 2% by weight of ethylene glycol as a body
6 kg of aqueous solution was added to form a heat medium layer 2 and a heat storage layer 3. The stirrer 5 was installed so that the blades 6 were located approximately 40 cm above the interface between the heat storage body and the heat medium. Thereafter, a refrigerant (methanol) cooled to -20''C by a cooler 1O was passed through the heat exchanger tube 4.

また、槽内壁に氷の付着を防止するため熱媒体層2と蓄
熱体層3との境界面を含み上下10m1に亘る熱交!1
iiI層に該当する槽外表面部に電気ヒーター15を設
けた。攪拌機5を回転数400 rp曽て作動させなが
ら、熱媒体層3を−8〜−6℃に冷却制御した。
In addition, in order to prevent ice from adhering to the inner wall of the tank, heat exchange is performed over an area of 10 m1 above and below, including the interface between the heat medium layer 2 and the heat storage layer 3! 1
An electric heater 15 was provided on the outer surface of the tank corresponding to layer iii. While operating the stirrer 5 at a rotation speed of 400 rpm, the heat medium layer 3 was controlled to be cooled to -8 to -6°C.

その結果、蓄熱体層2と熱媒体層3の境界面か激しく混
合した状態になり、約lθ〜301園の幅に熱交換層(
氷生成ゾーン)50か形成され、平均粒径約0.5〜2
.0mmの木片か200〜260g/hrの速度で連続
的に生成した。生成した氷片は、比較的静状態の蓄熱体
層3の上部に浮丘し、冷熱を氷として貯蔵・蓄熱するこ
とがてきた。
As a result, the interface between the heat storage layer 2 and the heat medium layer 3 becomes intensely mixed, and the heat exchange layer (
Ice formation zone) 50 is formed, with an average particle size of approximately 0.5-2
.. Wood chips of 0 mm were produced continuously at a rate of 200 to 260 g/hr. The generated ice pieces float on top of the relatively static heat storage layer 3, and have been able to store cold heat as ice.

その後冷却を止めて、蓄熱体N3から約O″Cの蓄熱体
の一部を循環ポンプ31で抜出し、熱交換器8にて温水
9と熱交換し、ライン19を経て蓄放熱槽lに噴出循環
する放熱操作を行なった。
After that, the cooling is stopped, and a part of the heat storage body at about O''C is extracted from the heat storage body N3 by the circulation pump 31, and is exchanged with hot water 9 in the heat exchanger 8, and is ejected into the heat storage and radiation tank l through the line 19. A circulating heat dissipation operation was performed.

その結果、連続的に安定した運転を行うことかできた。As a result, we were able to achieve continuous and stable operation.

また、全操作において、蓄放熱槽lへの氷付着は発生し
なかった。
Moreover, in all operations, ice adhesion to the heat storage/radiation tank 1 did not occur.

なお、第5図(a)は攪拌機5の攪拌翼6の平面説明図
及び第5図(b)は攪拌翼6の断面説明図である。第5
図に示したように攪拌翼6は、直径65Iの円板に60
°間隔に厚さ2mm、輻12−一、長さ20mmの直方
体6ケを配置した形状のものを用いた。この攪拌翼を用
いることによって上層の蓄熱体層内の全体混合が過度に
ならないようにしたのて、氷の上昇速度が大きくなり、
貯蔵をスムーズに行なうことかできた。
Note that FIG. 5(a) is an explanatory plan view of the stirring blade 6 of the stirrer 5, and FIG. 5(b) is an explanatory cross-sectional view of the stirring blade 6. Fifth
As shown in the figure, the stirring blade 6 is arranged on a disk with a diameter of 65I.
A shape in which six rectangular parallelepipeds each having a thickness of 2 mm, a radius of 12 mm, and a length of 20 mm were arranged at intervals of .degree. was used. By using these stirring blades, the overall mixing in the upper heat storage layer is prevented from becoming excessive, and the rising speed of the ice is increased.
I was able to store it smoothly.

(実施例2) 第6図は、本発明の他の実施例を示す断面説明図である
。第6図において、攪拌機の代りに、熱媒体循環ポンプ
11を用いて熱媒体を熱媒体層2から抜出し、蓄熱体層
3と熱媒体層2の境界面30及び境界面下方部に水平方
向に噴出させて境界面を流動させ熱交換層50を形成し
た以外は実施例1と同様にした。
(Example 2) FIG. 6 is a cross-sectional explanatory diagram showing another example of the present invention. In FIG. 6, the heat medium circulation pump 11 is used instead of the stirrer to extract the heat medium from the heat medium layer 2, and horizontally apply it to the boundary surface 30 between the heat storage layer 3 and the heat medium layer 2 and the lower part of the boundary surface. The procedure was the same as in Example 1 except that the heat exchange layer 50 was formed by ejecting and fluidizing the boundary surface.

その結果、実施例1と同様に蓄放熱することができた。As a result, heat could be stored and released in the same manner as in Example 1.

(実施例3) 第7図は、本発明の他の実施例を示す断面説明図であり
、蓄放熱槽lとは別に貯蔵槽16を設け、蓄熱後の蓄熱
体をポンプ31”により貯蔵槽16に送入し、また、貯
蔵槽16から蓄熱体層3へはライン21で重力により自
然流下させ蓄熱体を戻して循環し、貯蔵槽16で蓄熱と
放熱を行なうようにした。貯蔵槽16の底部には撹拌4
118を設置して蓄熱体スラリーが維持でき、かつ、上
部のスラリー濃度が小さくなる程度に攪拌した。尚、攪
拌機5の攪拌翼は上下二段として、上翼は実施例1と同
様とし、上翼はタービン型として、上質は蓄熱体層3中
に、また上翼は熱媒体層2中に配置した。
(Embodiment 3) FIG. 7 is a cross-sectional explanatory diagram showing another embodiment of the present invention, in which a storage tank 16 is provided separately from the heat storage and radiation tank l, and the heat storage body after heat storage is pumped into the storage tank by a pump 31''. 16, and from the storage tank 16 to the heat storage layer 3, it is allowed to flow down by gravity through a line 21, and the heat storage material is returned and circulated, so that heat storage and heat radiation are performed in the storage tank 16.Storage tank 16 At the bottom of the stirrer 4
118 was installed to maintain the heat storage body slurry and stir the slurry to such an extent that the slurry concentration at the top was small. The stirring blades of the stirrer 5 are arranged in two stages, upper and lower, the upper blade is the same as in Example 1, the upper blade is a turbine type, the upper blade is placed in the heat storage layer 3, and the upper blade is placed in the heat medium layer 2. did.

第7図の装置において、蓄熱体としてれ一デカンを用い
、熱媒体として実施例1と同じフロン系不活性流体を用
いて、−30〜−40℃に冷却制御した以外は、実施例
1と同様にして蓄熱操作を行った。その結果、−30℃
付近の冷熱を約20−一の板状のn−デカン凝固物とし
て貯蔵槽16にポンプ31’より送入し、スラリー状で
貯蔵することかできた。
The apparatus shown in FIG. 7 is the same as Example 1 except that decane is used as the heat storage body, the same fluorocarbon-based inert fluid as in Example 1 is used as the heat medium, and the cooling is controlled to -30 to -40°C. Heat storage operation was performed in the same manner. As a result, -30℃
It was possible to send the cold energy from the vicinity into the storage tank 16 through the pump 31' in the form of approximately 20-1 plate-shaped n-decane solidified material, and store it in the form of a slurry.

更に放熱操作では、貯蔵[16において、伝熱管17に
0℃のメタノールを流通させて一24〜〜18℃に冷却
することかできた。
Further, in the heat dissipation operation, during storage [16], methanol at 0°C was passed through the heat exchanger tube 17 to cool it to -24 to -18°C.

(実施例4) 実施例3と同一の方法て、蓄熱体のn−デカンにアセト
ンまたはメタノールを20重量%添加してそれぞれ蓄熱
操作を行った。
(Example 4) In the same manner as in Example 3, 20% by weight of acetone or methanol was added to n-decane as a heat storage body, and a heat storage operation was performed, respectively.

その結果、いずれの場合も約Sam以下の微細な凝固物
粒子が分散されスラリー状の蓄熱体となった。また放熱
操作では、粒子が微細化したことによって溶解速度が大
きくなるため、実施例3に比べて放熱負荷に対する追従
性が良好てあった。
As a result, in each case, fine coagulated particles of about Sam or less were dispersed to form a slurry-like heat storage body. In addition, in the heat dissipation operation, the dissolution rate increased due to the finer particles, so the ability to follow the heat dissipation load was better than in Example 3.

(実施例5) 第8図は1本発明の温蓄放熱方法の一実施例を示す断面
説明図である。第8図において、内径105■、高さ1
000mmの有底円筒状FRP製蓄放熱槽lに、蓄熱体
として塩化カルシウム6木塩を6.5kgと発核材Na
Clを50g添加し、熱媒体としてシリコン系オイル2
.2kgを、それぞれ40℃に加熱して投入した。その
結果、上層部に熱媒体層2、下層部に蓄熱体層3が形成
された。
(Embodiment 5) FIG. 8 is a cross-sectional explanatory diagram showing an embodiment of the heat storage and radiation method of the present invention. In Figure 8, the inner diameter is 105cm, the height is 1
In a 000 mm bottomed cylindrical FRP heat storage/radiation tank l, 6.5 kg of calcium chloride 6 wood salt and nucleating material Na were placed as a heat storage medium.
Add 50g of Cl and use silicone oil 2 as a heat medium.
.. 2 kg were each heated to 40°C and added. As a result, a heat medium layer 2 was formed in the upper layer, and a heat storage layer 3 was formed in the lower layer.

また、熱媒体層2内の境界面の上方近傍と、蓄熱体層3
の底部に、それぞれ実施例1と同様の攪拌翼を配置する
ようにして攪拌機5を設置した。
In addition, the upper vicinity of the boundary surface in the heat medium layer 2 and the heat storage layer 3
A stirrer 5 was installed at the bottom of each container, with stirring blades similar to those in Example 1 placed therein.

その後、攪拌機5を作動しなから熱交換層50を形成し
て放熱操作として、熱媒体層2内に設けた伝熱管4に1
0〜12℃の水を通水し、伝熱管出口から18〜21”
Cの温水を得た。また、蓄熱体層3は約30℃で凝固物
粒子が分散している状態になった。
After that, the heat exchange layer 50 is formed without operating the stirrer 5, and as a heat dissipation operation, the heat exchanger tube 4 provided in the heat medium layer 2 is heated.
Water of 0 to 12℃ is passed through the tube from the outlet of the heat exchanger tube to 18 to 21".
C hot water was obtained. Moreover, the heat storage layer 3 was in a state in which coagulated particles were dispersed at about 30°C.

次いて蓄熱操作として、伝熱管4内に40〜45℃の温
水を通水した。その結果、凝固物粒子か溶解し蓄熱体層
3は再度液状となり約40〜42℃て蓄熱することかて
きた。なお、攪拌機5の回転数は、放熱操作時は400
rpm、蓄熱操作時は750 rp■であった。蓄熱操
作時は回転数を上げることにより、槽l内を全体的に混
合状態として蓄熱効率を高めた。
Next, as a heat storage operation, hot water of 40 to 45°C was passed through the heat exchanger tubes 4. As a result, the coagulated particles were dissolved and the heat storage layer 3 became liquid again and stored heat at about 40 to 42°C. Note that the rotation speed of the stirrer 5 is 400 during heat dissipation operation.
The rpm was 750 rpm during heat storage operation. During the heat storage operation, by increasing the rotation speed, the entire interior of the tank 1 was brought into a mixed state, thereby increasing the heat storage efficiency.

(実施例6) 蓄放熱槽lを密閉型とし、熱媒体としてn−へブタンを
用いた以外は実施例5と同様にして実施した。その結果
、得た温水は実施例5の結果に比べて、温度か0.5〜
1.5℃高くなり、通水埴は10%程度増加した。
(Example 6) The same procedure as in Example 5 was carried out except that the heat storage and radiation tank 1 was of a closed type and n-hebutane was used as the heat medium. As a result, the temperature of the obtained hot water was 0.5 to 0.5% higher than that of Example 5.
The temperature rose by 1.5 degrees Celsius, and the amount of tozuishi increased by about 10%.

(実施例7) 第9図は、実施例1の同様の蓄熱体、熱媒体を用いる他
の実施例の断面説明図である。第9図において、蓄放熱
槽lは密閉型とし、蓄放熱槽lの他に実施例3と同様に
開放型貯蔵槽16を設けたか、実施例3とは逆にライン
21て自然流下により蓄熱体層3の上層部の蓄熱体を貯
蔵槽16内に移送し、−力積16下部の蓄熱体をポンプ
31’により蓄熱体層3下部に圧入することにより蓄熱
体を蓄力熱槽lと貯蔵槽16間を循環させた。また、蓄
放熱槽lには攪拌機の代りにブロワ−20を設け、熱媒
体層2底部からガスを吹出すようにした。 貯蔵槽16
には放熱用に蓄熱体を抜き出すポンプ31、熱交#!槻
8、蓄熱体を循環するライン19を配置した。また、貯
蔵槽16の底部には固液分離用壁22を設け、放熱によ
り液状となった蓄熱体のみを抜き出すようにした。
(Example 7) FIG. 9 is a cross-sectional explanatory diagram of another example using the same heat storage body and heat medium as in Example 1. In FIG. 9, the heat storage and radiation tank l is a closed type, and in addition to the heat storage and radiation tank l, an open storage tank 16 is provided as in the third embodiment, or contrary to the third embodiment, a line 21 is used to store heat by natural flow. The heat storage body in the upper part of the body layer 3 is transferred into the storage tank 16, and the heat storage body in the lower part of the impulse 16 is press-fitted into the lower part of the heat storage body layer 3 by the pump 31', thereby converting the heat storage body into a power storage heat tank l. It was circulated between the storage tanks 16. In addition, a blower 20 was provided in the heat storage/radiation tank 1 instead of the stirrer, and gas was blown out from the bottom of the heat medium layer 2. Storage tank 16
There is a pump 31 that extracts the heat storage body for heat radiation, and a heat exchanger #! A line 19 for circulating the heat storage body was installed. Further, a solid-liquid separation wall 22 was provided at the bottom of the storage tank 16, so that only the heat storage material that became liquid due to heat radiation was extracted.

第9図において、ブロワ−20により20i/hrの空
気を導入し熱交換層50を形成し、回時にライン21と
ポンプ15を作動し蓄熱体を循環した以外は実施例1と
同様にして蓄熱操作と放熱操作を行った。
In FIG. 9, heat storage was carried out in the same manner as in Example 1, except that air was introduced at 20 i/hr by the blower 20 to form the heat exchange layer 50, and the line 21 and pump 15 were activated at the time of heating to circulate the heat storage body. The operation and heat dissipation operation were performed.

この結果、蓄熱により生成した氷にガスか付着し浮上刃
か増加し、熱交換層から容易に脱離して上昇し、熱交換
層全体ての氷生成を防止することがてき、伝熱効率を高
めることかできた。また、貯蔵槽16を設けることによ
り、連続的に大最の氷貯蔵することができた。
As a result, gas adheres to the ice generated by heat storage, increases the number of floating blades, easily detaches from the heat exchange layer and rises, and prevents ice formation in the entire heat exchange layer, increasing heat transfer efficiency. I was able to do something. Further, by providing the storage tank 16, it was possible to continuously store the maximum amount of ice.

(実施例8) 実施例3において、攪拌機5の上部攪拌翼を熱交換層内
に配置し、更に上部撹拌機にヒーターを内蔵させた。そ
の結果、氷の生成量か、30重量%増加した。
(Example 8) In Example 3, the upper stirring blade of the stirrer 5 was disposed within the heat exchange layer, and the upper stirrer was further equipped with a built-in heater. As a result, the amount of ice produced increased by 30% by weight.

[発明の効果] 本発明の蓄熱方法によれば、熱伝導か良好て速やかな蓄
放熱速度を有し、簡易て、取り扱いか容易である。さら
に、本発明は冷熱から温熱までの広範囲の蓄放熱に対し
、蓄熱体などを変えることによって対応することかでき
る。
[Effects of the Invention] The heat storage method of the present invention has good heat conduction and rapid heat storage/release speed, and is simple and easy to handle. Furthermore, the present invention can handle a wide range of heat storage and release from cold to hot heat by changing the heat storage body and the like.

特に本発明の方法は、熱伝導が良好であるため大型化か
容易である。また、空調用水蓄熱システムに用いた場合
、凍結トラブルかなく、シャーベット状の氷を生成てき
る方法であり、かつ、暖房にも効率的に使用できる。
In particular, the method of the present invention has good heat conduction, so it is easy to increase the size. Furthermore, when used in an air conditioning water heat storage system, this method can generate sherbet-like ice without causing freezing problems, and can also be used efficiently for heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温熱蓄放熱方法の概要図、第2図は本
発明の冷熱蓄放熱方法の概要図、$3図は本発明の水蓄
放熱方法の概要図である。第4図は本発明の一実施例の
断面説明図、第5図は本発明の一実施例で用いた攪拌機
の説明図である。第6図〜第9図はそれぞれ本発明の他
の実施例の断面説明図である。 l・・・蓄放熱槽、   2・・・熱媒体層3・・・蓄
熱体層、   4.12.17・・−伝熱管5.5’、
1B・・・攪拌機 6・・・攪拌翼       7・・・媒体循環ポンプ
8・・・熱交換器      10−・・冷却器10’
、10″・・・加熱器 1・・・熱媒体循環ポンプ 13・・・バイブ4・・・
主波管      14”・・・分岐管5・・・電気ヒ
ーター   16・・・貯蔵槽9・・・蓄熱体循環ライ
ン 2o・・・凝固物l・・・流下ライン    22
・・・固液分離用壁0・・・境界面 1.31’・−・蓄熱体循環ポンプ 0・・・熱交換層 第4図
FIG. 1 is a schematic diagram of the hot heat storage and release method of the present invention, FIG. 2 is a schematic diagram of the cold heat storage and release method of the present invention, and Figure 3 is a schematic diagram of the water heat storage and release method of the present invention. FIG. 4 is an explanatory cross-sectional view of one embodiment of the present invention, and FIG. 5 is an explanatory diagram of a stirrer used in one embodiment of the present invention. 6 to 9 are cross-sectional explanatory views of other embodiments of the present invention, respectively. l... Heat storage/radiation tank, 2... Heat medium layer 3... Heat storage layer, 4.12.17...-Heat transfer tube 5.5',
1B... Stirrer 6... Stirring blade 7... Medium circulation pump 8... Heat exchanger 10-... Cooler 10'
, 10″... Heater 1... Heat medium circulation pump 13... Vibrator 4...
Main wave pipe 14"...Branch pipe 5...Electric heater 16...Storage tank 9...Regenerator circulation line 2o...Coagulated material L...Downstream line 22
...Solid-liquid separation wall 0...Boundary surface 1.31'--Regenerator circulation pump 0...Heat exchange layer Fig. 4

Claims (6)

【特許請求の範囲】[Claims] (1)蓄熱体と熱媒体を用い潜熱を利用して15℃以下
の冷熱の蓄熱と放熱を行なう方法において、固液相変化
する蓄熱体と該蓄熱体と比重差を有し且つ該蓄熱体の固
体生成温度より低い流動点温度を有する熱媒体とを直接
接触させ境界面を形成し、蓄熱時に該境界面を流動、振
動及び/または混和せしめて熱交換層を形成して熱交換
させ、該蓄熱体の一部を固化し、蓄熱体液相から離脱さ
せることを特徴とする蓄放熱方法。
(1) In a method of storing and dissipating cold heat of 15°C or less by using latent heat using a heat storage body and a heat medium, a heat storage body that changes solid-liquid phase and a heat storage body that has a specific gravity different from that of the heat storage body and direct contact with a heat medium having a pour point temperature lower than the solid formation temperature of to form an interface, flow, vibrate and/or mix the interface during heat storage to form a heat exchange layer and exchange heat, A heat storage and release method characterized by solidifying a part of the heat storage body and separating it from the heat storage body liquid phase.
(2)該蓄熱体より生成する固体の蓄熱体液相に対する
比重が小なる場合は該蓄熱体より比重の大なる熱媒体を
用い、該固体の比重が大なる場合は該蓄熱体より比重の
小なる熱媒体を用いる請求項(1)記載の蓄放熱方法。
(2) If the specific gravity of the solid generated from the heat storage body relative to the heat storage body liquid phase is small, use a heat medium with a higher specific gravity than the heat storage body; The method for storing and dissipating heat according to claim 1, wherein a small heat medium is used.
(3)該蓄熱体が水、低級アルコール類、アセトン、エ
チレングリコール類及び無機塩類のうちの少なくとも一
種を含む水溶液または融点15℃以下の有機化合物であ
る請求項(1)または(2)記載の蓄放熱方法。
(3) The heat storage body is an aqueous solution containing at least one of water, lower alcohols, acetone, ethylene glycols, and inorganic salts or an organic compound having a melting point of 15°C or less. Heat storage and release method.
(4)蓄熱体と熱媒体を用い潜熱を利用して5℃以上の
温熱の蓄熱と放熱を行なう方法において、固液相変化す
る蓄熱体と該蓄熱体と比重差を有し且つ該蓄熱体の固体
生成温度より低い流動点温度を有する熱媒体とを直接接
触させ境界面を形成し、放熱時に該境界面を流動、振動
及び/または混和せしめて熱交換層を形成して熱交換さ
せ、該蓄熱体の一部を固化し、蓄熱体液相から離脱させ
ることを特徴とする蓄放熱方法。
(4) In a method of storing and dissipating heat of 5° C. or higher using latent heat using a heat storage body and a heat medium, a heat storage body that changes solid-liquid phase and a heat storage body that has a specific gravity difference with the heat storage body and direct contact with a heat medium having a pour point temperature lower than the solid formation temperature of to form an interface, and during heat dissipation, flow, vibrate and/or mix the interface to form a heat exchange layer to exchange heat, A heat storage and release method characterized by solidifying a part of the heat storage body and separating it from the heat storage body liquid phase.
(5)該蓄熱体より比重の小なる熱媒体を用いる請求項
(4)記載の蓄放熱方法。
(5) The heat storage/dissipation method according to claim (4), wherein a heat medium having a specific gravity smaller than that of the heat storage body is used.
(6)該蓄熱体が無機水和塩、合金類または融点5℃以
上の有機化合物である請求項(4)または(5)記載の
蓄放熱方法。
(6) The heat storage and release method according to claim 4 or 5, wherein the heat storage body is an inorganic hydrated salt, an alloy, or an organic compound having a melting point of 5° C. or higher.
JP2145798A 1990-06-04 1990-06-04 Storage and heat dissipation method Expired - Fee Related JP2850264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145798A JP2850264B2 (en) 1990-06-04 1990-06-04 Storage and heat dissipation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145798A JP2850264B2 (en) 1990-06-04 1990-06-04 Storage and heat dissipation method

Publications (2)

Publication Number Publication Date
JPH0439380A true JPH0439380A (en) 1992-02-10
JP2850264B2 JP2850264B2 (en) 1999-01-27

Family

ID=15393398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145798A Expired - Fee Related JP2850264B2 (en) 1990-06-04 1990-06-04 Storage and heat dissipation method

Country Status (1)

Country Link
JP (1) JP2850264B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008843A (en) * 2000-06-21 2002-01-11 Tokuden Co Ltd Induction heat generation roller device
JP2008025921A (en) * 2006-07-21 2008-02-07 Tamagawa Gakuen Method and device for heat exchange in multi-component dynamic type heat accumulation/heat radiation system
US7730875B2 (en) 2004-09-24 2010-06-08 Denso Corporation Flow control valve
JP2015021648A (en) * 2013-07-17 2015-02-02 株式会社デンソー Accumulator and heat accumulation control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043173B1 (en) 2011-09-30 2019-11-12 웅진코웨이 주식회사 Ice-storage tank and water cooler having the same
JP6132015B2 (en) * 2013-05-17 2017-05-24 株式会社Ihi Heat storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008843A (en) * 2000-06-21 2002-01-11 Tokuden Co Ltd Induction heat generation roller device
US7730875B2 (en) 2004-09-24 2010-06-08 Denso Corporation Flow control valve
JP2008025921A (en) * 2006-07-21 2008-02-07 Tamagawa Gakuen Method and device for heat exchange in multi-component dynamic type heat accumulation/heat radiation system
JP2015021648A (en) * 2013-07-17 2015-02-02 株式会社デンソー Accumulator and heat accumulation control method

Also Published As

Publication number Publication date
JP2850264B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
Sidik et al. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: a review
Zhang et al. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems
US7246506B2 (en) Thermal storage medium using a hydrate and apparatus thereof, and method for producing the thermal storage medium
Chandrasekaran et al. Solidification behavior of water based nanofluid phase change material with a nucleating agent for cool thermal storage system
JP3555481B2 (en) Method and apparatus for producing hydrate slurry
EP0074612B1 (en) Heat-storing apparatus
JPH0439380A (en) Heat-storing and releasing method
JP4665820B2 (en) Method for promoting solidification and melting of heat storage material and heat storage device
EP0353992A2 (en) Methods of heat transfer and apparatus therefor
JPH06185762A (en) Cooling or heating method
JPH05215369A (en) Cooling or heating method utilizing latent heat
JP3475901B2 (en) Hydrate slurry generator with different hydration numbers
JPS5855434B2 (en) Method and device for preventing supercooling of heat storage device
JPH0914705A (en) Fluid transferring device
HU188494B (en) High-capacity heat accumulator
JP2659567B2 (en) Thermal storage refrigeration system
JP4617548B2 (en) Hydrate slurry production method, hydrate slurry production apparatus and aqueous solution
JPH0525471A (en) Heat storage medium
JPH10160208A (en) Dynamic type ice making device and cold heat storage and utilizing system employing the same
JP3075395B2 (en) Thermal storage refrigeration system
JPH05339561A (en) Method of heating and cooling
JP4905690B2 (en) Heat storage device
JPH03199835A (en) Ice cold accumulator
JPH06147566A (en) Heat recovery system with low temperature difference
JPH0297845A (en) Ice making method and ice heat accumulator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees