JPH043906A - Manufacture of split-type induction electromagnetic device - Google Patents
Manufacture of split-type induction electromagnetic deviceInfo
- Publication number
- JPH043906A JPH043906A JP2105692A JP10569290A JPH043906A JP H043906 A JPH043906 A JP H043906A JP 2105692 A JP2105692 A JP 2105692A JP 10569290 A JP10569290 A JP 10569290A JP H043906 A JPH043906 A JP H043906A
- Authority
- JP
- Japan
- Prior art keywords
- split
- core
- magnetic
- filling material
- filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006698 induction Effects 0.000 title claims description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000011553 magnetic fluid Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004804 winding Methods 0.000 claims abstract description 16
- 239000000945 filler Substances 0.000 claims description 26
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 abstract description 23
- 239000000463 material Substances 0.000 abstract description 17
- 239000006061 abrasive grain Substances 0.000 abstract description 3
- 238000000975 co-precipitation Methods 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000005498 polishing Methods 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 8
- 239000000696 magnetic material Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000006249 magnetic particle Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WJZHMLNIAZSFDO-UHFFFAOYSA-N manganese zinc Chemical compound [Mn].[Zn] WJZHMLNIAZSFDO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、コアを複数に分割したチョークやトランス
のような分割型誘導電磁器の製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a split-type induction electromagnetic device such as a choke or a transformer in which the core is divided into a plurality of parts.
従来より、高周波チョークやトランスとして、軟磁性体
からなるコアを複数に分割して、コアへの巻線の巻き付
は作業を容易化した分割型のものがある。Conventionally, there are split-type high-frequency chokes and transformers in which a core made of a soft magnetic material is divided into a plurality of parts to facilitate winding of windings around the core.
ところが、このような分割型のコアでは、コアの分割面
に微小な凹凸や割れが存在することがら、エアギャップ
が生じるのは避けられず、そのため、コア全体の透磁率
が低下する。However, in such a split-type core, minute irregularities and cracks exist on the split surface of the core, so it is inevitable that an air gap will be created, and as a result, the magnetic permeability of the entire core decreases.
たとえば、分割面54を30μのダイヤモンド粒子で研
磨した場合でも、分割されていないコアの比透磁率が1
0.000程度のものは50%の5.000程度に低下
する。そのため、同一のインダクタンスを得るには、分
割されていないコアに比へ、第8図の巻線52の巻数を
約1.4倍にする必要がある。したがって、巻線52に
よる電気抵抗や分布容量が増大し、その結果、高周波チ
ョークの特性が低下するという問題を招く。For example, even if the dividing surface 54 is polished with 30μ diamond particles, the relative permeability of the undivided core is 1.
The value of about 0.000 decreases to about 5.000, which is 50%. Therefore, in order to obtain the same inductance, it is necessary to increase the number of turns of the winding 52 in FIG. 8 by about 1.4 times that of the undivided core. Therefore, the electrical resistance and distributed capacitance due to the winding 52 increase, resulting in a problem that the characteristics of the high frequency choke deteriorate.
そこで、本件出願人は、分割されたコアの両分割面の間
に磁性流体を介挿することにより、コアの透磁率を回復
させる方法を先に提案した(特願平2−13355号)
。Therefore, the applicant previously proposed a method of restoring the magnetic permeability of the core by inserting a magnetic fluid between the two divided surfaces of the divided core (Japanese Patent Application No. 13355/1999).
.
しかしながら、このような方法によっても、コアの透磁
率の回復は、分割されていないコアの比透磁率か10,
000程度の場合、75〜80%であり、未だ十分とは
いえない。However, even with this method, the recovery of the magnetic permeability of the core is limited to the relative magnetic permeability of the undivided core or 10,
000, it is 75 to 80%, which is still not sufficient.
この発明は上言己問題に鑑みてなされてもので、分割型
の誘導電磁器において、著しいコストア、ツブを招くこ
となく、コアの透磁率を十分回復させることにより、特
性を向上させることができる誘導電磁器の製造方法を提
供することを目的とする。This invention was made in view of the above-mentioned problem, and it is possible to improve the characteristics of a split-type induction electromagnetic device by sufficiently recovering the magnetic permeability of the core without incurring significant cost or loss. The purpose of the present invention is to provide a method for manufacturing induction electromagnetic ceramics.
上記目的を達成するために、この発明は、分割コアの両
分割面の間に磁性流体を含んだ充填材を介挿し、上言己
分割面と交差する方向に磁界をかけた状態で、上記充填
材を固化させている。In order to achieve the above object, the present invention interposes a filler containing magnetic fluid between both dividing surfaces of a split core, and applies a magnetic field in a direction intersecting the dividing surfaces. The filling material is solidified.
この発明によれば、両分割面の間に軟磁性体の微粒子が
介挿されるので、軟磁性体の微粒子が両分割面の間の微
小な凹凸や割れに入り込んで、エアギャップを埋める。According to this invention, since the soft magnetic particles are inserted between the two dividing surfaces, the soft magnetic particles enter into minute irregularities and cracks between the dividing surfaces and fill the air gap.
ここで、上記軟磁性体の微粒子は、通常1μ以下で、た
とえば100人〜400人であり、粒径が極めて小さい
ので、エアギャップを拡げない。したがって、コアの透
磁率が向上する。Here, the fine particles of the soft magnetic material are usually 1 micrometer or less, for example, 100 to 400 particles, and are extremely small in size, so they do not widen the air gap. Therefore, the magnetic permeability of the core is improved.
しかも、分割面と交差する方向に磁界をかけた状態で充
填材を固化させるから、磁界によって充填材か外方に膨
らんた形状となるので、充填材の磁路が広がり、その結
果、透磁率が一層向上する。Furthermore, since the filler is solidified while a magnetic field is applied in a direction that intersects the dividing plane, the magnetic field causes the filler to bulge outward, which widens the magnetic path of the filler and, as a result, increases the magnetic permeability. further improves.
以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図および第2図は、この発明の方法により製造され
た高周波チョークの一例を示す。1 and 2 show an example of a high frequency choke manufactured by the method of the present invention.
第1図において、高周波チョークのコア50は、2つに
分割されたコア(以下、分割コアという)5151から
なり、これら分割コア51.柵には、巻線52.52が
巻き付けられている。この巻線52.52は入力源から
の電流によってできる磁界か互いに逆方向になるように
バランス巻きされている。In FIG. 1, the core 50 of the high frequency choke consists of two divided cores (hereinafter referred to as divided cores) 5151, and these divided cores 51. A winding 52.52 is wound around the fence. The windings 52, 52 are balanced so that the magnetic fields generated by the current from the input source are in opposite directions.
E字状の分割コア51.51の分割面54は、粒子の大
きさが30μの砥粒により研磨されて、仕上げられてい
る。第2図の拡大図に示すように、両分割コア51.5
1の間(以下、「ギヤ・ツブ」という。)Gには、軟磁
性体の微粒子10を分散剤14中に分散させてなる磁性
流体12が、充填材12として介挿されている。さらに
、第1図の両分割コア51.51は、その側面55にお
ける分割面54の外周の数箇所に、エボキン樹脂やシリ
コン樹脂からなる接着剤(固定手段)11か塗布されて
、互いに固定されている。The divided surfaces 54 of the E-shaped divided cores 51.51 are polished and finished with abrasive grains having a particle size of 30 μm. As shown in the enlarged view of Fig. 2, both split cores 51.5
1 (hereinafter referred to as "gear knob") G, a magnetic fluid 12 made of soft magnetic fine particles 10 dispersed in a dispersant 14 is inserted as a filler 12. Further, both split cores 51.51 in FIG. 1 are fixed to each other by applying an adhesive (fixing means) 11 made of Evokin resin or silicone resin to several places on the outer periphery of the split surface 54 on the side surface 55. ing.
つぎに、この発明の製造方法の一実施例について説明す
る。Next, an embodiment of the manufacturing method of the present invention will be described.
まず、第3図(A)に示す両分割コア51.51の分割
面54を30μの砥粒により仕上げた後、巻線52を分
割コア51に巻き付ける。一方、共沈法で製造した第2
図の磁性流体からなる充填材12を、各分割面54.5
4に塗布する。この塗布後、第3図(B)に示すように
、各分割コア51.51を軽く圧接させた状態で、巻線
52.52に直流電流を流すことにより、分割面54.
54と交差する方向に磁界Bをかける。これにより、充
填材12が磁力を受けて第2図のギヤツブG内の割れC
や凹凸Hに隅な(入り込む一方で、第3図(C)に示す
ように、充填材12が磁力線B1に沿って外方に膨らん
だ形状となる。First, after finishing the split surfaces 54 of both split cores 51 and 51 shown in FIG. 3(A) with 30μ abrasive grains, the winding 52 is wound around the split cores 51. On the other hand, the second
The filling material 12 made of magnetic fluid shown in the figure is placed on each dividing surface 54.5.
Apply to 4. After this application, as shown in FIG. 3(B), by applying a direct current to the windings 52, 52 with each split core 51, 51 lightly pressed together, the split surface 54.
A magnetic field B is applied in a direction intersecting with 54. As a result, the filler 12 receives magnetic force, causing the crack C in the gear knob G in FIG.
While the filling material 12 penetrates into the irregularities H, the filling material 12 has a shape that bulges outward along the lines of magnetic force B1, as shown in FIG. 3(C).
この状態で、充填材12を乾燥固化させる。In this state, the filler 12 is dried and solidified.
つづいて、第3図(D)のように、数箇所において接着
剤11で両分割コア51.51を互いに接着して、高周
波チョークを得る。Subsequently, as shown in FIG. 3(D), both split cores 51 and 51 are bonded to each other with adhesive 11 at several locations to obtain a high frequency choke.
ここで、磁性流体12とは、界面活性剤を用いて安定に
分散させた第2図の軟磁性体の微粒子10を、上記分散
剤】4中に高濃度に分散させたもので、磁性をもった流
体としての挙動を示すものをいう。Here, the magnetic fluid 12 is one in which fine particles 10 of the soft magnetic material shown in FIG. It refers to something that behaves like a fluid.
磁性流体12としては、たとえば、軟磁性体の微粒子I
OをlO〜25体積%含有したマンカン亜鉛系フェライ
ト磁性流体などを用いることかできる。また、磁性流体
12の分散剤14としては、石油系のレッシノやパラフ
ィンの他、水などを用いることができる。さらに、軟磁
性体の微粒子10は、その粒径が通常1μ以下で、たと
えば100人〜400人程度か好ましい。As the magnetic fluid 12, for example, soft magnetic particles I
A mankanzinc-based ferrite magnetic fluid containing O in an amount of 10 to 25% by volume may be used. Further, as the dispersant 14 of the magnetic fluid 12, water or the like can be used in addition to petroleum-based Lessino or paraffin. Furthermore, the particle size of the soft magnetic fine particles 10 is usually 1 μm or less, for example, preferably about 100 to 400 particles.
上記構成においては、第2図に示した磁性流体からなる
充填材12中の軟磁性体の微粒子10がギャップGの割
れCや凹凸Hに入り込んで、ギャップGを埋める。その
ため、ギャップGの部分の透磁率が著しく向上し、しか
も、微粒子1oの粒径が小さいので、微粒子の存在によ
ってギャップGが拡がることもない。さらに、磁界Bに
よって、第3図(C)のように、充填材12が外方に膨
らんだ形状となるので、充填材12中の磁路が広がる。In the above configuration, the soft magnetic particles 10 in the filler 12 made of magnetic fluid shown in FIG. Therefore, the magnetic permeability of the gap G portion is significantly improved, and since the particle size of the fine particles 1o is small, the gap G does not widen due to the presence of the fine particles. Furthermore, the magnetic field B causes the filler 12 to take on an outwardly swollen shape as shown in FIG. 3(C), so that the magnetic path in the filler 12 widens.
その結果、第1図のコア50全体の透磁率は、分割され
ていないコアの透磁率に近い値にまで回復する。分割さ
れていないコアの比透磁率が10,000程度のコアの
場合、上記磁界Bをかけないで充填材を固化させたとき
は、充填材12の外方への膨らみが形成されないために
、比透磁率は75%〜80%程度まで回復するに過ぎな
いのに対し、この発明の方法によれば、90%程度まで
回復した。As a result, the magnetic permeability of the entire core 50 in FIG. 1 is restored to a value close to that of the undivided core. In the case of an undivided core with a relative magnetic permeability of about 10,000, when the filler is solidified without applying the magnetic field B, no outward bulge of the filler 12 is formed. While the relative magnetic permeability was only recovered to about 75% to 80%, according to the method of the present invention, it was recovered to about 90%.
このように、コア50全体の透磁率が回復するので、巻
線52の巻数を従来の分割型の高周波チョークに比べ少
なくすることができる。したがって、電気抵抗や分布容
量が小さくなるので、高周波チョークの特性が向上する
。In this way, the magnetic permeability of the entire core 50 is restored, so the number of turns of the winding 52 can be reduced compared to the conventional split-type high-frequency choke. Therefore, the electrical resistance and distributed capacitance are reduced, and the characteristics of the high frequency choke are improved.
また、分割面54をサブミクロンまで高精度に仕上げる
必要もないので、著しいコストアップを招くおそれもな
い。実際に分割面54を鏡面仕上げによって0.5〜3
μに仕上げても、上記実施例の30μの場合と比較して
、透磁率の回復率には差がなかった。Furthermore, since there is no need to finish the dividing surface 54 with high precision down to submicron levels, there is no risk of a significant increase in cost. Actually, the dividing surface 54 is mirror-finished to 0.5 to 3
Even when finished to μ, there was no difference in the recovery rate of magnetic permeability compared to the case of 30 μ in the above example.
なお、この実施例では、2つの分割コア51.51を接
着剤11によって互いに接着したが、必すしも接着する
必要はない。両分割コア51.51を互いに接着しない
場合は、コア50に衝撃力が加わると、若干透磁率が低
下する。これは、コア50に衝撃力が加わることによっ
て、2つの分割コア51.51が第1図のX方向または
Y方向に若干位置ずれするのに伴い、ギャップG(第2
図)の状態(形状)が微妙に変化することに起因するも
のと推測される。In this embodiment, the two divided cores 51.51 are bonded to each other with the adhesive 11, but it is not necessary to bond them together. If both split cores 51 and 51 are not bonded to each other, when an impact force is applied to the core 50, the magnetic permeability will decrease slightly. This occurs because the two split cores 51 and 51 are slightly displaced in the X direction or Y direction in FIG.
It is presumed that this is due to a slight change in the state (shape) of (Fig.).
これに対し、第1図の実施例のように、両分割コア51
.51を互いに固定した場合は、衝撃力が加わっても、
両分割コア51.51が互いに位置ずれするおそれがな
いので、透磁率が低下しない。したがって、衝撃力を受
は易い環境で使用する場合には、両分割コア51.51
を固定手段(接着剤11)により互いに固定するのが好
ましい。On the other hand, as in the embodiment shown in FIG.
.. 51 are fixed together, even if an impact force is applied,
Since there is no risk that the two split cores 51, 51 will be displaced from each other, the magnetic permeability will not decrease. Therefore, when used in an environment where it is easy to receive impact force, both split cores 51 and 51
are preferably fixed to each other by means of fixing means (adhesive 11).
また、充填材12に磁界Bをかける他の方法として、第
4図に示すように、コア50の上下に磁石21゜22を
配置してもよいし、第5図に示すように、方に磁石22
を、他方に鉄のような軟磁性体からなる磁路形成部材2
3をそれぞれ配置してもよい。Further, as another method of applying the magnetic field B to the filler 12, as shown in FIG. 4, magnets 21 and 22 may be placed above and below the core 50, or as shown in FIG. magnet 22
and a magnetic path forming member 2 made of a soft magnetic material such as iron on the other side.
3 may be placed respectively.
第2図の磁性流体12をギャップGに介挿する方法とし
ては、前述の塗布による方法の他、以下に述べる毛管現
象を利用する方法がある。この方法を第6図を用いて説
明する。As a method for inserting the magnetic fluid 12 shown in FIG. 2 into the gap G, in addition to the above-mentioned coating method, there is a method using capillary phenomenon described below. This method will be explained using FIG. 6.
磁性流体からなる充填材12をスポイトS中に充填した
後、このスポイトSの先端開口部S1を分割面54の外
周に押し付けると、毛管現象により、スポイトS内の磁
性流体12がギャップG(第2図)内に侵入する。After filling the filler 12 made of magnetic fluid into the syringe S, when the tip opening S1 of the syringe S is pressed against the outer periphery of the dividing surface 54, the magnetic fluid 12 in the syringe S fills the gap G (first Figure 2) Invades the inside.
このとき、磁界Bをかけておくと、充填材12の侵入が
一層速やかになされる。At this time, if a magnetic field B is applied, the filling material 12 can penetrate more quickly.
第7図はこの発明の第2実施例を示す。FIG. 7 shows a second embodiment of the invention.
第7図において、両分割面54.54の間には磁性流体
からなる充填材12が介挿され、磁界Bをにかけた状態
で乾燥固化されている。分割面54におけるコア50の
外周は、たとえばエボキン樹脂やシリコン樹脂からなる
被覆材15によって覆われている。In FIG. 7, a filler 12 made of magnetic fluid is inserted between the two dividing surfaces 54 and 54, and is dried and solidified while a magnetic field B is applied thereto. The outer periphery of the core 50 at the dividing surface 54 is covered with a covering material 15 made of evoquin resin or silicone resin, for example.
これにより、外方に膨出した充填材12の外周部が保護
されるので、周囲の物に当って、充填材12が欠けるお
それがなくなる。This protects the outer periphery of the filling material 12 that bulges outward, eliminating the risk of the filling material 12 being chipped by hitting surrounding objects.
第8図および第9図は、この発明の第3実施例を示す。8 and 9 show a third embodiment of the invention.
第8図の分割面54.54の間には、第9図のように、
樹脂16に軟磁性体の微粒子10を混入した磁性流体か
らなる接着材17か、充填材として介挿固化されている
。したがって、両分割コア51.51は硬化した樹脂1
6により互いに接合されている。Between the dividing planes 54 and 54 in Fig. 8, as shown in Fig. 9,
An adhesive 17 made of a magnetic fluid in which fine particles 10 of soft magnetic material are mixed into resin 16 is inserted and solidified as a filler. Therefore, both split cores 51.51 are made of hardened resin 1.
They are joined to each other by 6.
このように、ギャップGに接着材からなる充填材17を
介挿硬化させる方法の一例としては、まず、分散剤とし
ての熱硬化性樹脂16の単量体に軟磁性体の微粒子lO
を分散してなる磁性流体(充填材17)をギャップGに
注入する。ついで、第3図(B)〜(D)に示したのと
同一の方法で、磁界Bをかけながら加熱して重合反応に
より樹脂16を固化させる。As described above, as an example of a method of inserting and curing the filler 17 made of an adhesive into the gap G, first, microparticles lO of soft magnetic material are added to the monomer of the thermosetting resin 16 as a dispersant.
A magnetic fluid (filling material 17) made of dispersed particles is injected into the gap G. Then, in the same manner as shown in FIGS. 3(B) to 3(D), the resin 16 is heated while applying a magnetic field B to solidify the resin 16 by a polymerization reaction.
この実施例では、各分割コア51.51が接着材からな
る充填材17の固化した樹脂16により機械的に強固に
接合される。そのため、コア50に衝撃力が加わっても
、2つの分割コア51.51が互いに位置ずれしないか
ら、やはり、位置すれによって透磁率が経時的に低下す
るおそれがない。In this embodiment, each divided core 51.51 is mechanically and firmly joined by solidified resin 16 of filler 17 made of adhesive. Therefore, even if an impact force is applied to the core 50, the two divided cores 51, 51 will not be displaced from each other, so there is no risk that the magnetic permeability will decrease over time due to positional displacement.
ところで、上記各実施例において、軟磁性体の微粒子1
0として、マンガン亜鉛系フェライトの粉末の他、マン
ガン、鉄、ニッケル、銅、マグネシウムなどを含んだフ
ェライトを用いることができる。特に、分割コア51.
51を構成する軟磁性体よりも高い透磁率を有するフェ
ライトを用いることにより、コア50全体の透磁率を、
分割していないコアの透磁率に一層近づけることかでき
る。By the way, in each of the above examples, soft magnetic particles 1
In addition to manganese-zinc-based ferrite powder, ferrite containing manganese, iron, nickel, copper, magnesium, etc. can be used as the material. In particular, split core 51.
By using ferrite having a higher magnetic permeability than the soft magnetic material constituting the core 51, the magnetic permeability of the entire core 50 is
The magnetic permeability can be made even closer to that of an undivided core.
また、軟磁性体の微粒子lOは、上記共沈法のような化
学合成法により得たものの他、焼結したフェライトを微
粉末化したものも用いることができる。Further, as the soft magnetic particles 1O, in addition to those obtained by a chemical synthesis method such as the coprecipitation method described above, those obtained by pulverizing sintered ferrite can also be used.
また、上記各実施例では、第1図のように、巻線52か
バランス巻きされていたか、巻線52は一本であっても
よい。Further, in each of the embodiments described above, the winding 52 may be balanced-wound as shown in FIG. 1, or the winding 52 may be a single winding.
さらに、上記各実施例は高周波チョークについて説明し
たか、この発明はトランスについても適用できる。Furthermore, although each of the above embodiments has been described with respect to a high frequency choke, the present invention can also be applied to a transformer.
また、上記各実施例では各分割コア51かE字状である
ものについて説明したか、分割コア51の形状は、第1
0図のように、コ字状であってもこの発明を適用できる
。In addition, in each of the above embodiments, each split core 51 is E-shaped, or the shape of the split core 51 is different from the first one.
As shown in Figure 0, the present invention can be applied even to a U-shape.
以上説明したように、この発明によれば、分割コアの分
割面に生じるギャップの凹凸や割れに磁性流体を含む充
填材が入り込んで、コアの透磁率を向上させ、さらに、
磁界によって充填材が外方に膨らんで磁路が広かること
から、透磁率か一層向上するので、分割型コアを備えた
誘導電磁器の特性が向上する。As explained above, according to the present invention, the filler containing the magnetic fluid enters the unevenness and cracks of the gap that occurs on the split surface of the split core, improving the magnetic permeability of the core, and further,
The magnetic field expands the filler material outward and widens the magnetic path, further improving the magnetic permeability and improving the properties of the induction ceramic with the split core.
また、分割面を高精度に仕上げる必要もないので、著し
くコストアップするおそれがない。Furthermore, since there is no need to finish the dividing surfaces with high precision, there is no risk of a significant increase in cost.
第1図はこの発明の方法により製造された高周波チョー
クの一例を示す斜視図、第2図は同チョクのギャップの
拡大断面図、第3図はこの発明の第1実施例を示す製造
工程図、第4図および第5図は磁界をかける方法の変形
例、第6図は充填材を分割面に介挿する方法の変形例を
示す斜視図、第7図は第2実施例を示す高周波チョーク
の斜視図、第8図は第3実施例を示す高周波チョークの
斜視図、第9図は第8図のギャップの拡大断面図、第1
0図はこの発明を適用できる他の高周波チョークを示す
正面図である。
10・・・軟磁性体の微粒子、11−・固定手段(接着
剤)、12・・・充填材、15・・・シール材、16・
・・樹脂、17・・・充填材(接着材)、50・・・コ
ア、51・・・分割コア、52−・・巻線、54・・・
分割面、G・・・ギャップ(分割面の間)。
10 : 砥小生、え不奎、の黴メ1寺(C)
第
図
ら9
(D)
15:
ン
ル朴
第10
図Fig. 1 is a perspective view showing an example of a high frequency choke manufactured by the method of the present invention, Fig. 2 is an enlarged sectional view of the gap of the choke, and Fig. 3 is a manufacturing process diagram showing the first embodiment of the invention. , FIG. 4 and FIG. 5 are a modified example of the method of applying a magnetic field, FIG. 6 is a perspective view of a modified method of inserting a filler into the dividing surface, and FIG. 7 is a high-frequency diagram showing a second embodiment. FIG. 8 is a perspective view of a high-frequency choke showing the third embodiment; FIG. 9 is an enlarged sectional view of the gap in FIG. 8;
FIG. 0 is a front view showing another high frequency choke to which the present invention can be applied. DESCRIPTION OF SYMBOLS 10... Fine particles of soft magnetic material, 11-. Fixing means (adhesive), 12... Filler, 15... Sealing material, 16.
... Resin, 17... Filler (adhesive), 50... Core, 51... Split core, 52-... Winding wire, 54...
Dividing plane, G... Gap (between dividing planes). 10: 1st temple of mold of Tokosei, Efukyi (C) Fig. 9 (D) 15: Nrupak Fig. 10
Claims (1)
導電磁器の製造方法において、上記分割されたコアの両
分割面の間に、磁性流体含んだ充填材を介挿し、上記分
割面と交差する方向に磁界をかけた状態で、上記充填材
を固化させることを特徴とする分割型誘導電磁器の製造
方法。(1) In a method for manufacturing a split type induction electromagnetic device in which a core around which a winding is wound is divided into a plurality of parts, a filler containing a magnetic fluid is inserted between both split faces of the split core, and a filler containing a magnetic fluid is inserted between the split faces of the split core. A method for manufacturing a split induction electromagnetic ceramic, characterized in that the filler is solidified while a magnetic field is applied in intersecting directions.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2105692A JPH0670930B2 (en) | 1990-04-20 | 1990-04-20 | Method of manufacturing split induction porcelain |
US07/643,949 US5204653A (en) | 1990-01-22 | 1991-01-22 | Electromagnetic induction device with magnetic particles between core segments |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2105692A JPH0670930B2 (en) | 1990-04-20 | 1990-04-20 | Method of manufacturing split induction porcelain |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH043906A true JPH043906A (en) | 1992-01-08 |
JPH0670930B2 JPH0670930B2 (en) | 1994-09-07 |
Family
ID=14414450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2105692A Expired - Fee Related JPH0670930B2 (en) | 1990-01-22 | 1990-04-20 | Method of manufacturing split induction porcelain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0670930B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001338823A (en) * | 2000-05-30 | 2001-12-07 | Toshiba Corp | Magnetic core, its manufacturing method, and magnetic part equipped therewith |
WO2004027795A1 (en) * | 2002-09-19 | 2004-04-01 | Nec Tokin Corporation | Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7093047B1 (en) * | 2021-08-06 | 2022-06-29 | ダイキン工業株式会社 | Humidifier and air conditioner |
-
1990
- 1990-04-20 JP JP2105692A patent/JPH0670930B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001338823A (en) * | 2000-05-30 | 2001-12-07 | Toshiba Corp | Magnetic core, its manufacturing method, and magnetic part equipped therewith |
JP4582864B2 (en) * | 2000-05-30 | 2010-11-17 | 株式会社東芝 | Magnetic core and magnetic component using the same |
WO2004027795A1 (en) * | 2002-09-19 | 2004-04-01 | Nec Tokin Corporation | Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet |
JPWO2004027795A1 (en) * | 2002-09-19 | 2006-01-19 | Necトーキン株式会社 | Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet |
US7531050B2 (en) | 2002-09-19 | 2009-05-12 | Nec Tokin Corporation | Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet |
Also Published As
Publication number | Publication date |
---|---|
JPH0670930B2 (en) | 1994-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010538494A (en) | Bias gap inductor and manufacturing method thereof | |
JP5120690B2 (en) | Reactor core | |
CN102810386B (en) | Combined type magnetic core and method for making thereof | |
JP4802561B2 (en) | Reactor and transformer | |
JP2958807B2 (en) | Inductor and manufacturing method thereof | |
WO1992005568A1 (en) | Inductive device and method of manufacture | |
CN110853910A (en) | Preparation method of high-permeability low-loss soft magnetic composite material and magnetic ring thereof | |
JP6532198B2 (en) | Method of manufacturing magnetic core using soft magnetic composite material, method of manufacturing reactor | |
JP2021061376A (en) | Coil component and manufacturing method thereof | |
CN105280324B (en) | The manufacturing method of magnet unit and magnet unit | |
JPH043906A (en) | Manufacture of split-type induction electromagnetic device | |
JPH05326240A (en) | Dust core and manufacture thereof | |
JP6450524B2 (en) | Reactor and its manufacturing method | |
JP7163565B2 (en) | coil parts | |
JP2000114022A (en) | Powder-molded magnetic core | |
JP7568415B2 (en) | Magnetic cores and coil parts | |
JP2005019716A (en) | Magnetic core and its manufacturing method, and choke coil | |
CN104124032A (en) | Soft magnetic core and manufacturing method of the same | |
JPH08167518A (en) | High frequency dust core and manufacture thereof | |
JP2633891B2 (en) | Dust core | |
JPH04118905A (en) | Induction electromagnetic device | |
JP2004158570A (en) | Choke coil and its manufacturing method | |
JP2535251Y2 (en) | Induction magnet | |
JPH04361505A (en) | Inductor and manufacture thereof | |
JPH04304601A (en) | Magnetic material and induction electromagnetic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |