JPH0438826A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0438826A
JPH0438826A JP14435490A JP14435490A JPH0438826A JP H0438826 A JPH0438826 A JP H0438826A JP 14435490 A JP14435490 A JP 14435490A JP 14435490 A JP14435490 A JP 14435490A JP H0438826 A JPH0438826 A JP H0438826A
Authority
JP
Japan
Prior art keywords
gas
etching
etched
concentrations
diffused layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14435490A
Other languages
Japanese (ja)
Inventor
Hiroshi Naruse
成瀬 宏
Kuniaki Kumamaru
熊丸 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14435490A priority Critical patent/JPH0438826A/en
Publication of JPH0438826A publication Critical patent/JPH0438826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To etch semiconductors containing different impurities or concentrations at substantially equal speed by setting the partial pressure ratio of O2 gas to mixture pressure of NF3 gas and the O2 gas to 40% or more in a step of removing the semiconductors containing the different impurities or concentrations simultaneously by using mixture gas of the NF3 gas and O2 gas by plasma etching. CONSTITUTION:A semiconductor surface formed with an N<+> type diffused layer, an N<-> type diffused layer, a P<+> type diffused layer is plasma etched by microwave discharging mixture gas containing NF3 gas and O2 gas. Here, when the partial pressure ratio of the O2 to the pressure of the mixture gas of the NF3 gas and the O3 gas is set to 40% or more, the semiconductors containing different impurities or concentrations are simultaneously etched at substantially equal etching speed. Accordingly, even if a damage layer of the semiconductor is removed, a diffused layer containing high concentration impurity is not excessively etched, but the diffused layers can be etched to necessary minimum limit, and junction leakage of the diffused layer having a shallow junction, improper voltage resistance can be suppressed.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、半導体装置の製造方法に関し、特にプラズマ
エツチングを用いた半導体のエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for etching a semiconductor using plasma etching.

(従来の技術) 従来、NF3ガスと02ガスを含む混合ガスを用いてマ
イクロ波放電させて行うプラズマエツチングは、半導体
装置の製造方法の一つとして用いられている。この場合
、NF3ガスと02ガスの混合比により被エツチング材
料のエツチング速度が大きく変化することが知られてお
り、被エツチング材料によってこれらのガスのさまざま
な最適混合比が存在する。
(Prior Art) Conventionally, plasma etching performed by microwave discharge using a mixed gas containing NF3 gas and 02 gas has been used as one of the methods for manufacturing semiconductor devices. In this case, it is known that the etching rate of the material to be etched changes greatly depending on the mixing ratio of NF3 gas and 02 gas, and there are various optimum mixing ratios of these gases depending on the material to be etched.

一方、このエツチングでは、プラズマ中てNF3ガスか
ら解離した活性なF原子との化学的な反応により半導体
のエツチングが進行するため、反応性イオンエツチング
などにより損傷を受けた半導体表面の損傷除去にも用い
られている。例えば、絶縁膜に電極接続用のコンタクト
ホールを反応性イオンエツチングにより開孔した場合、
半導体表面に深さ約100人程度の非晶質層を含む損傷
層が発生して、金属/半導体接合特性をいちじるしく劣
化させる。第6図にM合金/Slショットキー接合特性
と損傷層除去量との関係を示す。(a) = (b) 
On the other hand, in this etching, semiconductor etching progresses through a chemical reaction with active F atoms dissociated from NF3 gas in plasma, so it is also effective in removing damage from semiconductor surfaces that have been damaged by reactive ion etching. It is used. For example, if a contact hole for electrode connection is made in an insulating film by reactive ion etching,
A damaged layer including an amorphous layer with a depth of about 100 nm is generated on the semiconductor surface, significantly deteriorating the metal/semiconductor junction characteristics. FIG. 6 shows the relationship between the M alloy/Sl Schottky junction characteristics and the amount of damaged layer removed. (a) = (b)
.

(C)はそれぞれエツチング深さに対するショットキー
バリア高さ、n値、リーク電流の関係を示し、61はA
j−8t(1%)−Cu(0,5%)/ n −3i、
  62はM−8l(1%)−Cu(2,0%)/n−
3tのショットキー接合特性を示している。この図から
明らかなように、良好なショットキー接合を得るために
は少なくとも100Å以上エツチングを行う必要がある
ことになる。
(C) shows the relationship between Schottky barrier height, n value, and leakage current with respect to etching depth, and 61 indicates A
j-8t(1%)-Cu(0,5%)/n-3i,
62 is M-8l(1%)-Cu(2,0%)/n-
3t Schottky junction characteristics are shown. As is clear from this figure, in order to obtain a good Schottky junction, it is necessary to perform etching of at least 100 Å or more.

ところが、一般にコンタクトホールを形成する領域には
、異なる不純物・濃度を有する拡散層がすでに形成され
ているため、これらの表面を同時にエツチングする場合
、拡散領域によってエツチング量に差が生じるという欠
点がある。特に、高濃度のN型不純物が含まれている場
合には、エツチング速度が他の場合の2〜3倍にもなる
ため、浅い接合を有する拡散層における接合リークや耐
圧不良の原因となる。
However, in general, diffusion layers with different impurity concentrations have already been formed in the region where the contact hole is to be formed, so if these surfaces are etched at the same time, there is a drawback that the amount of etching will differ depending on the diffusion region. . In particular, when a high concentration of N-type impurities is included, the etching rate is two to three times higher than in other cases, which causes junction leakage and breakdown voltage failure in a diffusion layer having a shallow junction.

(発明が解決しようとする課題) 従来の製造方法では、異なる不純物または濃度を有する
半導体を同時にエツチングする場合、不純物または濃度
によって半導体のエツチング量が異なってしまうという
問題があった。
(Problems to be Solved by the Invention) In conventional manufacturing methods, when semiconductors having different impurities or concentrations are etched at the same time, there is a problem in that the amount of etching of the semiconductors differs depending on the impurity or concentration.

本発明は、以上の点に鑑み、異なる不純物または濃度を
有する半導体を同時にほぼ等しい速度でエツチングする
半導体装置の製造方法を提供する。
In view of the above points, the present invention provides a method for manufacturing a semiconductor device in which semiconductors having different impurities or concentrations are simultaneously etched at approximately the same rate.

[発明の構成コ (課題を解決するための手段) 本発明に係わる半導体装置の製造方法は、異なる不純物
または濃度の半導体をNF3ガスと02ガスを含む混合
ガスを用いて同時にプラズマエツチング除去する工程に
おいて、NFaガスと02ガスの混合圧力に対する02
ガスの分圧比を40%以上とすることを特徴とする。
[Structure of the Invention (Means for Solving the Problem) A method for manufacturing a semiconductor device according to the present invention includes a step of simultaneously removing semiconductors with different impurities or concentrations by plasma etching using a mixed gas containing NF3 gas and 02 gas. 02 for the mixed pressure of NFa gas and 02 gas
It is characterized by having a gas partial pressure ratio of 40% or more.

(作 用) NF3ガスと02ガスを含む混合ガスを用いてプラズマ
エツチングを行う際、NF3ガスと02ガスの混合圧力
に対する02ガスの分圧比が40%以上であるため、異
なる不純物または濃度を含む半導体をほぼ等しい速度で
エツチングする。
(Function) When performing plasma etching using a mixed gas containing NF3 gas and 02 gas, the partial pressure ratio of 02 gas to the mixed pressure of NF3 gas and 02 gas is 40% or more, so different impurities or concentrations may be included. Etches the semiconductor at approximately equal rates.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

N′″拡散層、N−拡散層、P″″拡散層が形成された
半導体表面を、NF3ガスと02ガスを含む混合ガスを
マイクロ波放電させることによりプラズマエツチングを
行う。条件は、NF3ガスとo2ガスの混合ガスの流量
を500sec叢、圧力を50Pa、パワーを300胃
とした。
Plasma etching is performed on the semiconductor surface on which the N''' diffusion layer, N- diffusion layer, and P'' diffusion layer are formed by discharging a mixed gas containing NF3 gas and 02 gas using microwaves.The conditions are: NF3 gas The flow rate of the mixed gas of and O2 gas was 500 seconds, the pressure was 50 Pa, and the power was 300 gas.

第2図は、本実施例のNF3ガスと02ガスの混合ガス
中の02ガスの分圧比に対する各拡散層のエツチング速
度を示し、第1図は、NF3と02の混合ガス中のo2
ガスの分圧比に対する、エツチング速度の比(N−拡散
層のエツチング速度を1とする)を示している。第2図
に示すように、N゛拡散領域21、N−拡散領域22、
P゛拡散領域23のエツチング速度は、02ガスの分圧
比P02/(PNF3 + PO2)が0.2付近で最
大となり、これより02ガスを添加していくとエツチン
グ速度は徐々に減少していく。しかしながら、各拡散層
のエツチング速度の比に着目すると、第1図に示すよう
に、N−拡散層に対するN゛拡散層のエツチング速度1
1. N−拡散層に対するP゛拡散層のエツチング速度
12ともPo2 / (PNF3 +PO2)が0.4
付近から徐々に1に近づき、Po2 / (PNF3 
+ Po2 )が0.6付近で各拡散層のエツチング速
度がほぼ等しくなる。
FIG. 2 shows the etching rate of each diffusion layer with respect to the partial pressure ratio of O2 gas in the mixed gas of NF3 gas and O2 gas in this example, and FIG.
The ratio of the etching rate to the gas partial pressure ratio (the etching rate of the N-diffused layer is assumed to be 1) is shown. As shown in FIG. 2, an N-diffusion region 21, an N-diffusion region 22,
The etching rate of the P diffusion region 23 reaches its maximum when the partial pressure ratio P02/(PNF3 + PO2) of the 02 gas is around 0.2, and as the 02 gas is added from this point on, the etching rate gradually decreases. . However, if we focus on the ratio of the etching rates of each diffusion layer, as shown in FIG.
1. The etching rate 12 of the P diffusion layer relative to the N− diffusion layer is 0.4 (Po2/(PNF3 +PO2)).
It gradually approaches 1 from the vicinity, Po2 / (PNF3
+Po2) is around 0.6, the etching rate of each diffusion layer becomes approximately equal.

よって、第1図からNF3ガスと02ガスの混合ガスの
圧力に対する02の分圧比が40%以上のとき、異なる
不純物または濃度を含む半導体をほぼ等しいエツチング
速度で同時にエツチングできる。
Therefore, from FIG. 1, when the partial pressure ratio of O2 to the mixed gas pressure of NF3 gas and O2 gas is 40% or more, semiconductors containing different impurities or concentrations can be simultaneously etched at approximately the same etching rate.

したがって、本発明を半導体表面の損傷層を除去する場
合に用いても、高濃度の不純物を含む拡散層における過
剰エツチングを行うことなく各拡散層の必要最小限のエ
ツチングを行うことができ、浅い接合を持つ拡散層の接
合リークや耐圧不良の発生を抑制することができる。ま
た、従来と比較してエツチング速度が小さいため、エツ
チング時間をコントロールすることにより容易にエツチ
ング深さを制御することができる。
Therefore, even when the present invention is used to remove a damaged layer on a semiconductor surface, each diffusion layer can be etched to the minimum necessary level without excessively etching a diffusion layer containing a high concentration of impurities. It is possible to suppress the occurrence of junction leakage and breakdown voltage failure in a diffusion layer having a junction. Furthermore, since the etching speed is lower than that of the conventional method, the etching depth can be easily controlled by controlling the etching time.

第3図は、C140S素子とシシットキートランジスタ
を含むバイポーラ素子が混在するBi  CMO3IC
のコンタクトホール開孔後の断面図を示したものである
。半導体基板30上に素子分離領域33が形成され、そ
の上にシリコン酸化膜31が形成されている。NMO3
素子のソース領域38′  ドレイン領域39′および
バイポーラ素子のエミッタ領域37には高濃度のN型不
純物が含まれており、PMO8素子のソース領域38、
ドレイン領域39゛およびバイポーラ素子のベース領域
3Bには高濃度のP型不純物が含まれている。そして、
それぞれのソース、ドレイン領域間にはゲート電極32
が形成されている。
Figure 3 shows a Bi CMO3IC in which bipolar elements including C140S elements and Sishitkey transistors coexist.
FIG. 3 shows a cross-sectional view of the contact hole after the contact hole is formed. An element isolation region 33 is formed on a semiconductor substrate 30, and a silicon oxide film 31 is formed thereon. NMO3
The source region 38' and drain region 39' of the device and the emitter region 37 of the bipolar device contain a high concentration of N-type impurity.
The drain region 39' and the base region 3B of the bipolar element contain a high concentration of P-type impurity. and,
A gate electrode 32 is provided between each source and drain region.
is formed.

また、ショットキー接合部35には比較的低濃度のN型
不純物が含まれ、コレクター領域はN“の埋め込み拡散
領域との接続のためにN+拡散領域34が形成されてい
る。
Further, the Schottky junction 35 contains a relatively low concentration of N-type impurity, and the collector region is formed with an N+ diffusion region 34 for connection to the N" buried diffusion region.

このBi  CMO8Icのそれぞれのコンタクトホー
ル開孔を反応性イオンエツチングにより行なった場合、
半導体表面に深さ100人程度の損傷層が発生する。こ
の損傷層を除去するために、NF3ガスと02ガスを含
む混合ガスをマイクロ波放電させることにより、プラズ
マエツチングを行う。これらの損傷層を除去するために
、NF3と02の混合圧力に対する02の分圧比PO2
/ (PNF3 + PO2)−0,2と0.6の二種
類の条件でプラズマエツチングを行った。そのときのエ
ツチング時間と各拡散層のエツチング深さの関係を第4
図に示す。41〜43はPO2/ (PNF3 + P
o2 )−0,8,44〜46は0.2の場合で、41
.44はN′″拡散領域、42.45はP4拡散領域、
43.46はN−拡散領域の場合を示している。
When each contact hole of this Bi CMO8Ic was formed by reactive ion etching,
A damage layer about 100mm deep is generated on the semiconductor surface. In order to remove this damaged layer, plasma etching is performed by microwave discharging a mixed gas containing NF3 gas and 02 gas. In order to remove these damaged layers, the partial pressure ratio of 02 to the mixed pressure of NF3 and 02 PO2
/ (PNF3 + PO2) - Plasma etching was performed under two conditions: 0.2 and 0.6. The relationship between the etching time and the etching depth of each diffusion layer is shown in the fourth table.
As shown in the figure. 41 to 43 are PO2/ (PNF3 + P
o2) -0, 8, 44 to 46 is 0.2, 41
.. 44 is the N'' diffusion region, 42.45 is the P4 diffusion region,
43 and 46 show the case of N-diffusion region.

明らかに、 Po2 / (PNP2 + PO2)−
0,6の時の方が拡散層の種類による依存性が少なく、
またエツチング速度が小さいためにエツチング深さの制
御が容易であることがわかる。
Obviously, Po2/(PNP2 + PO2)−
When it is 0.6, there is less dependence on the type of diffusion layer,
It can also be seen that since the etching rate is low, the etching depth can be easily controlled.

第5図には、非常に浅い接合を持つnpn トランジス
タアレイパターンの反応性イオンエツチング後の損傷層
除去を、上記条件と同様にPO2/(PNF3 + P
O2)−0,2と0.6の二種類の条件を用いて行った
場合のN−拡散領域のエツチング深さに対する1個のト
ランジスタの生成確率を示す。
Figure 5 shows damage layer removal after reactive ion etching of an npn transistor array pattern with very shallow junctions using PO2/(PNF3 + P
The probability of producing one transistor with respect to the etching depth of the N- diffusion region is shown when two types of conditions, O2)-0.2 and 0.6 are used.

PO2/ (PNF3 + Po2 )−0,2の場合
52、エツチング深さが約200人でトランジスタ生成
確率は99.7%程度と非常に悪いレベルであるのに対
し、P02/(PNF3 +PO2)−0,8の場合5
1にはエツチング深さが約200人でもトランジスタ生
成確率はほぼ100%を維持している。つまり、トラン
ジスタアレーの歩留りが向上する。
In the case of PO2/ (PNF3 + Po2) - 0.2, the etching depth is about 200 and the transistor generation probability is at a very poor level of about 99.7%, whereas in the case of P02/ (PNF3 + PO2) - 5 if 0,8
In No. 1, even if the etching depth is about 200, the probability of transistor generation remains almost 100%. In other words, the yield of transistor arrays is improved.

なお、本実施例ではNF3ガスと02ガスの混合ガスを
用いたが、例えばこの混合ガスにさらに不活性ガスなど
の他のガスを加えてもよい。
Note that although a mixed gas of NF3 gas and 02 gas was used in this embodiment, other gas such as an inert gas may be further added to this mixed gas, for example.

[発明の効果] 本製造方法を用いることによって、異なる不純物または
濃度を有する半導体を同時にほぼ等しい速度でエツチン
グできる。
[Effects of the Invention] By using the present manufacturing method, semiconductors having different impurities or concentrations can be etched simultaneously at approximately the same rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる02ガスの分圧比に対する各拡
散領域のエツチング速度の比を示した図、第2図は本発
明に係わる02ガスの分圧比に対する各拡散領域のエツ
チング速度の関係を示した図、第3図は本発明に係わる
Bi  CklOS ICの断面図、第4図は本発明に
係わるBI  CMO9ICのエツチング時間に対する
各拡散層のエツチング深さの関係を示した図、第5図は
本発明に係わるN−拡散領域のエツチング深さに対する
npnトランジスタ生成確率の関係を示した図、第6図
はM合金/ n −81シヨツトキ一接合特性を損傷層
除去量との関係を示した図である。 11・・N゛拡散層に対するN゛拡散層、12・N−拡
散層に対するP゛拡散層。
FIG. 1 is a diagram showing the ratio of the etching rate of each diffusion region to the partial pressure ratio of 02 gas according to the present invention, and FIG. 2 is a diagram showing the relationship of the etching rate of each diffusion region to the partial pressure ratio of 02 gas according to the present invention. 3 is a cross-sectional view of a Bi CklOS IC according to the present invention, FIG. 4 is a diagram showing the relationship between the etching depth of each diffusion layer and the etching time of the BI CMO9 IC according to the present invention, and FIG. Figure 6 shows the relationship between the etching depth of the N-diffused region and the probability of NPN transistor formation according to the present invention, and Figure 6 shows the relationship between the M alloy/N-81 shot junction characteristics and the amount of damaged layer removed. It is a diagram. 11...N'' diffusion layer for N'' diffusion layer, 12.P'' diffusion layer for N- diffusion layer.

Claims (1)

【特許請求の範囲】[Claims]  異なる不純物または濃度の半導体をNF_3ガスとO
_2ガスを含む混合ガスを用いて同時にプラズマエッチ
ング除去する工程において、NF_3ガスとO_2ガス
の混合圧力に対するO_2ガスの分圧比を40%以上と
することを特徴とする半導体装置の製造方法。
Semiconductors with different impurities or concentrations are mixed with NF_3 gas and O
A method for manufacturing a semiconductor device, characterized in that in the step of simultaneously performing plasma etching and removal using a mixed gas containing _2 gas, the partial pressure ratio of O_2 gas to the mixed pressure of NF_3 gas and O_2 gas is set to 40% or more.
JP14435490A 1990-06-04 1990-06-04 Manufacture of semiconductor device Pending JPH0438826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14435490A JPH0438826A (en) 1990-06-04 1990-06-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14435490A JPH0438826A (en) 1990-06-04 1990-06-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0438826A true JPH0438826A (en) 1992-02-10

Family

ID=15360159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14435490A Pending JPH0438826A (en) 1990-06-04 1990-06-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0438826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321222A (en) * 1997-01-21 1998-07-22 Air Prod & Chem Cleaning semiconductor fabrication equipment using heated NF3/oxygen mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321222A (en) * 1997-01-21 1998-07-22 Air Prod & Chem Cleaning semiconductor fabrication equipment using heated NF3/oxygen mixture
GB2321222B (en) * 1997-01-21 2001-05-30 Air Prod & Chem Nitrogen trifluoride-oxygen thermal cleaning process

Similar Documents

Publication Publication Date Title
US4585517A (en) Reactive sputter cleaning of semiconductor wafer
US4110125A (en) Method for fabricating semiconductor devices
KR100886883B1 (en) Method for fabricating forward and reverse blocking devices
JPH0580142B2 (en)
US4554046A (en) Method of selectively etching high impurity concentration semiconductor layer
JPS6145382B2 (en)
EP0653785A2 (en) Di-electric isolated type semiconductor device
US4545113A (en) Process for fabricating a lateral transistor having self-aligned base and base contact
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
KR20050071156A (en) Method for fabricating gate spacer of semiconductor device
CN109119473B (en) Transistor and manufacturing method thereof
JPH0438826A (en) Manufacture of semiconductor device
CN210040206U (en) Novel form of power metal oxide semiconductor field effect transistor
US5350700A (en) Method of fabricating bipolar transistors with buried collector region
KR100257080B1 (en) Method for manufacturing semiconductor device
US20020182852A1 (en) Method for reducing micro-masking defects in trench isolation regions
US3855008A (en) Mos integrated circuit process
JP3071840B2 (en) Method for manufacturing semiconductor device
JPH07106336A (en) Manufacture of planar diode
EP0066675A1 (en) Processes for the fabrication of field effect transistors
JPH05243262A (en) Manufacture of semiconductor device
JP3419956B2 (en) Method for manufacturing semiconductor device
JP2006093185A (en) Mesa semiconductor device manufacturing method
CN117373922A (en) Bidirectional diode and manufacturing method thereof
JPS63250839A (en) Manufacture of semiconductor device