JPH0438810B2 - - Google Patents

Info

Publication number
JPH0438810B2
JPH0438810B2 JP19631988A JP19631988A JPH0438810B2 JP H0438810 B2 JPH0438810 B2 JP H0438810B2 JP 19631988 A JP19631988 A JP 19631988A JP 19631988 A JP19631988 A JP 19631988A JP H0438810 B2 JPH0438810 B2 JP H0438810B2
Authority
JP
Japan
Prior art keywords
hot metal
dephosphorization
flux
desiliconization
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19631988A
Other languages
Japanese (ja)
Other versions
JPH0247212A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19631988A priority Critical patent/JPH0247212A/en
Publication of JPH0247212A publication Critical patent/JPH0247212A/en
Publication of JPH0438810B2 publication Critical patent/JPH0438810B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、石炭系フラツクスによる溶銑の脱
硅脱燐方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for desiliconization and dephosphorization of hot metal using coal-based flux.

(従来の技術) 従来、Si<0.15%程度に脱硅された溶銑を石炭
系フラツクスを用いて脱燐処理をする方法の一つ
に、溶銑中に前記フラツクスを不活性ガスと共に
吹き込む、所謂、インジエクシヨン法がある。こ
のインジエクシヨン法はフラツクスの吹き込みに
長時間を要し、しかも事前に脱硅処理を必要とす
る。さらに、フラツクスとしてミルスケール等を
使用する場合はミルスケールを粉砕する必要があ
る。
(Prior Art) Conventionally, one method of dephosphorizing hot metal that has been desiliconized to about Si<0.15% using a coal-based flux is to blow the flux together with an inert gas into the hot metal. There is an injection method. This injection method requires a long time to inject the flux and also requires desiliconization treatment in advance. Furthermore, if mill scale or the like is used as a flux, it is necessary to crush the mill scale.

尚、特公昭63−18643号公報に脱燐用フラツク
スの一部をインジエクシヨン法によつて溶銑中に
吹込み、残りのフラツクスを溶銑上に上置し、フ
ラツクスの溶銑中への吹込み時間を短縮する溶銑
の脱燐方法が知られているが、この方法において
も事前に脱硅処理を必要とするものである。
In Japanese Patent Publication No. 63-18643, a part of the flux for dephosphorization is injected into hot metal by the injection method, the remaining flux is placed on top of the hot metal, and the time for blowing the flux into the hot metal is determined. A method of dephosphorizing hot metal that shortens the process time is known, but this method also requires a desiliconization treatment in advance.

(発明が解決しようとする課題) 溶銑を脱燐処理する際、インジエクシヨン法で
はフラツクスの吸込み時間が長くなる問題点及び
脱硅脱燐を同時に行う有利な方法の出現が待たれ
ているのを本発明は解消するものである。
(Problems to be Solved by the Invention) The present invention has discovered that when dephosphorizing hot metal, the injection method has a problem in that the flux suction time is long, and that an advantageous method for simultaneously performing desiliconization and dephosphorization has been awaited. Invention is something that dissolves.

(課題を解決するための手段・作用) 本発明の要旨は未脱硅処理溶銑中にCaO、
CaCO3を主成分とする脱燐用フラツクスの一部
を不活性ガスと共に吹き込み、残りのフラツクス
を塊状のまま前記溶銑上に添加し、酸素源を溶銑
トン当たり0.8Nm3/〓以上の速度で上方より添
加することを特徴とする溶銑の脱硅脱燐方法であ
る。
(Means and effects for solving the problem) The gist of the present invention is that CaO,
A part of the dephosphorization flux mainly composed of CaCO 3 is blown in with an inert gas, the remaining flux is added in the form of a lump onto the hot metal, and an oxygen source is supplied at a rate of 0.8 Nm 3 /〓 or more per ton of hot metal. This is a method for desiliconization and dephosphorization of hot metal, which is characterized in that it is added from above.

本発明者等は、脱硅処理を省略すると共に脱燐
処理時間を短縮することのできる脱燐方法を得る
べく種々検討を重ねた。
The present inventors have conducted various studies in order to obtain a dephosphorization method that can omit the desiliconization treatment and shorten the dephosphorization treatment time.

その結果、第1図に示すように、酸素源の供給
速度を増やすことにより事前に脱硅処理を必要と
することなく脱燐が可能であること、第2図に示
すように、脱硅により生成したSiO2によりスラ
グの塩基度が低くなるため塊状の生石炭を使用し
ても滓化性が良好であること、第3図に示すよう
に脱燐用フラツクスの一部を不活性ガスと共に吹
き込むと塊状の生石炭のみを使用したときに比べ
さらに滓化性が向上することに着目し、、酸素源
の供給速度を増やすと共に脱燐用フラツクスの一
部をインジエクシヨンすることにより脱硅処理を
省略すると共に脱硅処理時間を短縮することがで
きるといつた知見を得た。
As a result, as shown in Figure 1, it was found that by increasing the supply rate of the oxygen source, dephosphorization was possible without the need for prior desiliconization treatment, and as shown in Figure 2, dephosphorization was possible by The generated SiO 2 lowers the basicity of the slag, so it has good slagability even when using lumpy raw coal. Focusing on the fact that blowing improves the slagability even more than when using only lump raw coal, we increased the supply rate of the oxygen source and injected a portion of the dephosphorization flux to improve the desiliconization process. We have obtained the knowledge that it is possible to omit this process and shorten the desiliconization treatment time.

酸素源の添加速度は溶銑トン当たり0.8Nm3
〓以上とするものである。
The oxygen source addition rate is 0.8Nm3 /ton of hot metal.
〓This is the above.

その理由は脱硅処理をしない溶銑(一般的には
Si=30〜0.40%)の場合、酸素源の添加速度を溶
銑トン当たり0.8Nm3/〓以上にすれば脱硅反応
に酸素が消費されても、脱燐反応に十分な酸素濃
度がスラグと溶銑の界面に供給できるからであ
る。
The reason for this is that hot metal that is not subjected to desiliconization treatment (generally
(Si = 30 to 0.40%), if the oxygen source addition rate is set to 0.8 Nm 3 /〓 or more per ton of hot metal, even if oxygen is consumed in the desiliconization reaction, the oxygen concentration sufficient for the dephosphorization reaction will be maintained in the slag. This is because it can be supplied to the interface of hot metal.

この発明の一実施態様図面を参照しながら説明
する。
One embodiment of this invention will be described with reference to the drawings.

第4図は、この発明の方法の説明図である。第
4図に示すように、転炉1内の脱硅処理をされて
いない溶銑2中に底吹き羽口からブロータンク4
内のフラツクス(CaO、CaCO3)をN2ガスと共
に連続的に吹き込む。前記フラツクスの量は、
CaOの場合には脱燐用全CaO量の40%、CaCO3
の場合にはCaO分で脱燐用全CaO量の20%とす
る。このフラツクスの吹き込み比率の差は、
CaCO3の場合には吹き込み後分解ガス(CO2)に
より撹拌力が増加することに基づいている。残り
のフラツクス(CaO、CaF2により酸化鉄等)は
転炉1に設置したホツパー5から溶銑2上に一括
または連続的に投入する。同時に酸素ランス6か
ら酸素ジエツトを溶銑2に吹き付ける。
FIG. 4 is an explanatory diagram of the method of the present invention. As shown in FIG.
The flux (CaO, CaCO 3 ) inside is continuously blown in together with N 2 gas. The amount of the flux is
In case of CaO, 40% of the total amount of CaO for dephosphorization, CaCO3
In this case, the CaO content should be 20% of the total amount of CaO for dephosphorization. This difference in flux blowing ratio is
In the case of CaCO 3 , this is based on the fact that the stirring power is increased by the cracked gas (CO 2 ) after blowing. The remaining flux (CaO, iron oxide due to CaF2, etc.) is charged onto the hot metal 2 from a hopper 5 installed in the converter 1 either all at once or continuously. At the same time, an oxygen jet is blown onto the hot metal 2 from the oxygen lance 6.

このように、酸素ランス6を主体に溶銑2への
酸素源の供給速度を増やすと共に脱燐用フラツク
スの一部をインジエクシヨンすることにより全イ
ンジエクシヨン法では困難であつた脱硅処理の省
略と共に脱燐処理時間を大幅に短縮することがで
きる。
In this way, by increasing the supply rate of the oxygen source to the hot metal 2 mainly through the oxygen lance 6, and by injecting a part of the dephosphorization flux, it is possible to omit the desiliconization process, which was difficult with the full-injection method, and to remove the phosphor. Processing time can be significantly reduced.

溶銑2に吹き付けられた酸素ジエツトにより脱
炭が進行し溶銑温度が上昇するが、事前に転炉1
内に装入しておいたスクラツプ7により、またホ
ツパー5から酸化鉄を溶銑2に投入することによ
り溶銑温度を脱燐に有利な温度に調整することが
できる。
The oxygen jet blown onto the hot metal 2 causes decarburization to progress and the temperature of the hot metal to rise.
The temperature of the hot metal can be adjusted to a temperature that is advantageous for dephosphorization by using the scrap 7 charged in the hot metal and by charging iron oxide into the hot metal 2 from the hopper 5.

(実施例) この発明の実施例について説明する。(Example) Examples of this invention will be described.

第4図に示した装置において、脱硅処理をしな
い155トンの溶銑2(Si=0.31%)と5.0トンのス
クラツプ7を転炉1に装入し、底吹き羽口3から
N2ガスと共にブロータンク4内のフラツクス
(CaCO3:5.8Kg/T)を約8分間連続して溶銑2
中に吹き込んだ。この吹き込みと同時にホツパー
5内のフラツクス(CaOの塊状:9.1Kg/T、
CaF2の塊状:2.9Kg/T、転炉スラグ:13.6Kg/
T、鉄鉱石:17.4Kg/Tダスト:11.9Kg/T)を
溶銑2中に投入した。同時に酸素ランス6から酸
素ジエツトを7m3/Tの割合で溶銑2に8分間吹
き付けた。溶銑温度は脱燐前で1387℃、脱燐後で
1309℃であつた。
In the apparatus shown in Fig. 4, 155 tons of hot metal 2 (Si = 0.31%) that is not subjected to desiliconization treatment and 5.0 tons of scrap 7 are charged into the converter 1, and are passed through the bottom blowing tuyere 3.
The flux (CaCO 3 : 5.8Kg/T) in blow tank 4 together with N 2 gas is continuously pumped into hot metal 2 for about 8 minutes.
I blew it inside. At the same time as this blowing, the flux in the hopper 5 (CaO lump: 9.1Kg/T,
CaF 2 lump: 2.9Kg/T, converter slag: 13.6Kg/
T, iron ore: 17.4Kg/T dust: 11.9Kg/T) were charged into hot metal 2. At the same time, an oxygen jet was blown onto the hot metal 2 from the oxygen lance 6 at a rate of 7 m 3 /T for 8 minutes. Hot metal temperature is 1387℃ before dephosphorization, after dephosphorization
It was 1309℃.

この時の溶銑成分の時間的推移を第5図に示
す。
Figure 5 shows the time course of the hot metal components at this time.

第5図から明らかなように脱Siと同時に脱Pが
進行し、処理時間8分後には溶銑Pは0.019%ま
で低下した。
As is clear from FIG. 5, P removal progressed simultaneously with Si removal, and the hot metal P content decreased to 0.019% after 8 minutes of treatment time.

溶銑Siと溶銑Pが0.020%以下に低下するのに
要する時間との関係を第6図に示す。第6図から
明らかなように、脱硅処理をしない溶銑でも短時
間で安定して脱燐処理をすることができる。
Figure 6 shows the relationship between hot metal Si and the time required for hot metal P to drop to 0.020% or less. As is clear from FIG. 6, even hot metal that is not subjected to desiliconization treatment can be stably dephosphorized in a short period of time.

(発明の効果) 以上説明したように、この発明によれば脱硅処
理が省略できると共に、脱燐処理時間が短縮さ
れ、しかもフラツクスは大部分が溶銑上に投入す
ることができるのでフラツクスの粉砕費用がいら
ない等種々の有用な効果がもたらされる。
(Effects of the Invention) As explained above, according to the present invention, the desiliconization process can be omitted, the dephosphorization process time can be shortened, and most of the flux can be poured onto the hot metal, so the flux can be crushed. Various useful effects such as no cost are brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素供給速度と同時脱硅・脱燐の可能
な溶銑Siとの関係を示すグラフ、第2図は計算塩
基度と分析塩基度の関係を示すグラフ、滓化率=
分析塩基度/計算塩基度×100(%)、第3図は脱
燐用全CaO分に対するインジエクシヨン比率と滓
化率の関係を示すグラフ、第4図はこの発明の一
実施態様の説明図、第5図は処理中の溶銑成分の
推移を示すグラフ、第6図は溶銑Siと脱燐処理時
間の関係を示すグラフである。 1……転炉、2……溶銑、3……底吹き羽口、
4……ブロータンク、5……ホツパー、6……酸
素ランス、7……スクラツプ。
Figure 1 is a graph showing the relationship between oxygen supply rate and hot metal Si that can be simultaneously desiliconized and dephosphorized, Figure 2 is a graph showing the relationship between calculated basicity and analytical basicity, slag formation rate =
Analytical basicity/calculated basicity x 100 (%), Figure 3 is a graph showing the relationship between the in-die extraction ratio and slag formation rate with respect to the total CaO content for dephosphorization, Figure 4 is an explanatory diagram of one embodiment of this invention, FIG. 5 is a graph showing the transition of hot metal components during treatment, and FIG. 6 is a graph showing the relationship between hot metal Si and dephosphorization treatment time. 1...Converter, 2...Hot metal, 3...Bottom blowing tuyere,
4...Blow tank, 5...Hopper, 6...Oxygen lance, 7...Scrap.

Claims (1)

【特許請求の範囲】[Claims] 1 未脱硅処理溶銑中にCaO、CaCO3を主成分
とする脱燐用フラツクスの一部を不活性ガスと共
に吹き込み、残りのフラツクスを塊状のまま前記
溶銑上に添加し、酸素源を溶銑トン当たり0.8N
m3/〓以上の速度で上方より添加することを特徴
とする溶銑の脱硅脱燐方法。
1 A part of the dephosphorization flux containing CaO and CaCO 3 as main components is blown into the undesiliconized hot metal along with an inert gas, and the remaining flux is added in the form of a lump onto the hot metal, and an oxygen source is added to the hot metal by a ton. 0.8N per
A method for desiliconization and dephosphorization of hot metal, characterized in that it is added from above at a rate of m 3 /〓 or more.
JP19631988A 1988-08-06 1988-08-06 Method for desiliconizing and dephosphorizing molten iron Granted JPH0247212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19631988A JPH0247212A (en) 1988-08-06 1988-08-06 Method for desiliconizing and dephosphorizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19631988A JPH0247212A (en) 1988-08-06 1988-08-06 Method for desiliconizing and dephosphorizing molten iron

Publications (2)

Publication Number Publication Date
JPH0247212A JPH0247212A (en) 1990-02-16
JPH0438810B2 true JPH0438810B2 (en) 1992-06-25

Family

ID=16355838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19631988A Granted JPH0247212A (en) 1988-08-06 1988-08-06 Method for desiliconizing and dephosphorizing molten iron

Country Status (1)

Country Link
JP (1) JPH0247212A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467898B2 (en) * 2010-03-09 2014-04-09 株式会社神戸製鋼所 Hot metal desiliconization method

Also Published As

Publication number Publication date
JPH0247212A (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US4543125A (en) Process of making steel in converter using a great amount of iron-bearing cold material
JPH11158526A (en) Production of high p slag
JP5585151B2 (en) Anti-slipping method
JPH04120209A (en) Slag forming agent reutilizing converter slag
JPH0438810B2 (en)
EP0360954B1 (en) Method of melting cold material including iron
JP4863334B2 (en) Hot metal pretreatment method
JPH0617498B2 (en) High blowout Mn operating method in upper and lower blow converter
JP7211557B2 (en) Molten iron smelting method
JPH05156338A (en) Method for reusing low phosphorus converter slag
JP3852144B2 (en) Hot metal pretreatment method
JPH083612A (en) Method for refining clean steel
JP2004010935A (en) Method for manufacturing molten steel
JPS60200904A (en) Dephosphorization of molten iron
JP2896838B2 (en) Molten steel manufacturing method
KR19980038366A (en) Simultaneous Tallinn Desulfurization of Charter
JPH05302109A (en) Method for pre-treating molten iron
JPS63176403A (en) Low si operation method for blast furnace
JP2000282124A (en) Method for deforming converter slag and method for dephosphorizing molten iron using reformed slag
JPH0660341B2 (en) Method of dephosphorization and desulfurization of hot metal
JPS5852004B2 (en) Low-hydrogen steel melting process in pure oxygen bottom-blown converter
JPH01275711A (en) Smelt-reduction method
JPH0726316A (en) Method for dephosphorizing molten metal using lime stone
JPS6356286B2 (en)
JPH02209410A (en) Method for melting scrap in molten iron pre-treating furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees