JPH043844A - Method of controlling air conditioner - Google Patents

Method of controlling air conditioner

Info

Publication number
JPH043844A
JPH043844A JP2102938A JP10293890A JPH043844A JP H043844 A JPH043844 A JP H043844A JP 2102938 A JP2102938 A JP 2102938A JP 10293890 A JP10293890 A JP 10293890A JP H043844 A JPH043844 A JP H043844A
Authority
JP
Japan
Prior art keywords
temperature
compressor
air
rotation speed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2102938A
Other languages
Japanese (ja)
Inventor
Taichi Tanaami
店網 太一
Hiroshi Kogure
博志 小暮
Shinya Yoshinaga
信也 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2102938A priority Critical patent/JPH043844A/en
Publication of JPH043844A publication Critical patent/JPH043844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To get air of high temperature within a short period of time by a method wherein a temperature of a compressor under a hot air operation mode is compared with a normal operating mode as a control for a thermal accumulation during a stopping operation and then a heater around the compressor and a motor coil are electrically energized to keep it at a high temperature. CONSTITUTION:Under a hot air operation mode, a heating calorie for a compressor 1 is increased and an amount of electrical energization for a heater 13 fixed around a compressor and a motor coil is increased. In addition, a degree of opening of an expansion valve 5 is set to a minimum value within a range of a degree of opening of control when energized and as its subsequent temperature is increased, it is increased in sequence. A degree of opening at this time is set such that an over-cooling of an indoor heat exchanger 3 is not initially taken much at the beginning of operation and when it is stabled, it is less than a limited temperature of the compressor 1 so as to keep a higher temperature than that of the normal heating operation. An amount of indoor air is set such that a fan 6 is operated at its minimum speed when a temperature of the indoor heat exchanger is less than its predetermined value and when it exceeds a predetermined value, it is changed over to the number of revolution gradually increased and at the same time an air blowing temperature is sensed by a thermistor 10 and when it reaches its target temperature, it is changed in sequence to its subsequent number of revolution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気調和機の制御方法およびその装置に係り
、特に回転数制御圧縮機を用いた空気講和機において、
高温風を短時間に発生させ、且つ圧縮機の信頼性を確保
するため吐出圧力及び吐出温度の上昇を抑制する制御方
法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and device for controlling an air conditioner, and particularly to an air peace machine using a rotation speed controlled compressor.
The present invention relates to a control method for generating high-temperature air in a short time and suppressing increases in discharge pressure and discharge temperature in order to ensure reliability of a compressor.

〔従来の技術〕[Conventional technology]

従来の圧縮機蓄熱法として、特開昭61−16278号
に記載のように低温時にモータに低電圧を与えて加熱す
る方法が述べられている。
As a conventional compressor heat storage method, a method is described in JP-A-61-16278, in which a low voltage is applied to a motor at low temperatures to heat it.

また、従来の膨張弁制御として、特開昭64−7955
1号に記載のように膨張弁開度を圧縮機回転数に応じて
、高速程開度を大きく、逆に低速程開度を小さくする制
御方法が示されている。
In addition, as a conventional expansion valve control, Japanese Patent Application Laid-Open No. 64-7955
As described in No. 1, a control method is disclosed in which the opening degree of the expansion valve is made larger as the speed increases and conversely as the speed becomes lower, the opening degree is decreased in accordance with the compressor rotation speed.

また、室内風量の制御として、特開昭61−17304
5号に記載のように室内熱交換器の温度に応じて、段階
状に設定された温度に対して高温程風量を多く、逆に低
温程風量を少なくする方法が示されている。
In addition, as a control of indoor air volume, JP-A-61-17304
As described in No. 5, a method is disclosed in which the temperature of the indoor heat exchanger is set in stages, and the higher the temperature, the greater the air volume, and conversely, the lower the temperature, the smaller the air volume.

更に、圧縮機回転数の制御として、特開昭6゜−259
869号に記載のように、現在室温と設定温度との偏差
に応じて、偏差が大きい程圧縮機回転数を高速に、逆に
小さい程低速で運転する制御法が示されている。
Furthermore, as a control of the compressor rotation speed,
As described in No. 869, a control method is disclosed in which, depending on the deviation between the current room temperature and the set temperature, the larger the deviation, the higher the compressor rotation speed, and conversely, the smaller the deviation, the lower the rotation speed of the compressor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の圧縮機加熱方法は、低温時に加熱を行うもの
であり、油と冷媒の二層分離を防止する信頼性の確保と
冷凍サイクルを短時間に適正化するための方法であり、
圧縮機温度を外気より若干高くする程度である。高温風
を短時間に吹出させるためには、特別に圧縮機温度をほ
ぼ通常暖房時の温度に上昇させておく必要がある。
The conventional compressor heating method described above performs heating at low temperatures, and is a method to ensure reliability by preventing two-layer separation of oil and refrigerant and to optimize the refrigeration cycle in a short time.
This is enough to make the compressor temperature slightly higher than the outside air. In order to blow out high-temperature air in a short time, it is necessary to specially raise the compressor temperature to approximately the temperature during normal heating.

また、従来の膨張弁制御技術は、圧縮機回転数に応じた
開度となっているため、冷凍サイクルの適正化を図るに
は適しているが、高速程開度が大きく吐出圧力、圧縮機
温度を短時間に上昇させ高温の吹出空気を早く得るには
不適である。
In addition, conventional expansion valve control technology is suitable for optimizing the refrigeration cycle because the opening degree corresponds to the compressor rotation speed. It is unsuitable for raising the temperature in a short time and obtaining high-temperature blown air quickly.

また、従来の室内風量制御技術は、室内熱交換器の温度
に応じて室内風量を変化させているが、熱交換器が高温
になるにつれて風量咎増しているため、小風量で吹出空
気をある程度高温にしても次の風量に切換ってしまうた
め、それ以上高温とならない。しかも熱交換器温度検知
のため、入口冷媒が高温な過熱域の大きな冷凍サイクル
や、逆に出口冷媒が低温の過冷却の大きい場合など、吹
出空気温度を正確に制御することが困難である。
In addition, conventional indoor air volume control technology changes the indoor air volume according to the temperature of the indoor heat exchanger. Even if the temperature reaches a high temperature, the air volume will switch to the next level, so the temperature will not rise any higher. Furthermore, since the temperature of the heat exchanger is detected, it is difficult to accurately control the temperature of the blown air, such as in a refrigeration cycle where the inlet refrigerant is high in temperature and has a large superheated region, or conversely, in cases where the outlet refrigerant is low and highly subcooled.

更に、従来の圧縮機制御技術は、回転数を現在室温と設
定室温との偏差に基づいて決定しており、外気温度が高
温な過負荷条件でも設定温度が更に高温に設定されれば
圧縮機は高速で運転され、吐出圧力や圧縮機温度が高く
なり、信頼性をそこなう恐れがある。
Furthermore, conventional compressor control technology determines the rotation speed based on the deviation between the current room temperature and the set room temperature. The compressor is operated at high speed, resulting in high discharge pressure and compressor temperature, which may impair reliability.

本発明は、上記従来技術の問題点を解決するためになさ
れたもので、吐出圧力、圧縮機温度を短時間に上昇させ
て高温空気を得るとともに、高負荷条件においても吐出
圧力の限界値オーバー防止など信頼性の確保も行う空気
調和機の制御方法を提供することを、目的とするもので
ある。
The present invention was made in order to solve the problems of the prior art described above.It increases the discharge pressure and compressor temperature in a short time to obtain high-temperature air, and even under high load conditions, the discharge pressure exceeds the limit value. The purpose of this invention is to provide a method for controlling an air conditioner that also ensures reliability, such as prevention.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、空気調和機停止中の圧縮機
への蓄熱は高温風運転モードの場合、通常暖房時よりも
加熱量を大きくし、圧縮機を高温に保つため運転開始後
に圧縮機温度を上昇させるために費される熱量が大巾に
減少し、室内へ送り出される能力を短時間に増加できる
In order to achieve the above objective, heat storage in the compressor when the air conditioner is stopped is carried out in high-temperature air operation mode by increasing the amount of heating compared to normal heating mode, and in order to keep the compressor at a high temperature, the compressor is The amount of heat expended to raise the temperature is greatly reduced, and the capacity pumped into the room can be increased in a short period of time.

更に運転スタート時の圧縮機回転数の上昇率を通常の暖
房運転時よりも大きくすることにより、所定の吐出圧力
、温度を短時間に得ることができる。
Further, by increasing the rate of increase in the compressor rotational speed at the start of operation compared to during normal heating operation, predetermined discharge pressure and temperature can be obtained in a short time.

また、膨張弁開度は圧縮機起動時に制御開度範囲の最小
開度に設定され、起動後の圧縮機の温度上昇と共に開度
を大きくするものである。即ち、圧縮機起動から短時間
に圧力、温度を上昇させ、室内熱交換器を高温にし、高
温の吹出空気を短時間に得ると共に圧縮機が高温となる
につれ開度を大きくし、限界温度を越えないよう信頼性
も確保するものである。
Further, the expansion valve opening degree is set to the minimum opening degree in the control opening degree range when the compressor is started, and the opening degree is increased as the temperature of the compressor increases after startup. In other words, the pressure and temperature are increased in a short period of time after the compressor is started, the indoor heat exchanger is heated to a high temperature, and high-temperature blown air is obtained in a short period of time. It also ensures reliability so that it does not exceed the limit.

また、室内風量も吹出空気温度を検知して目標とする温
度まで低風量を維持し、風量の切換えは常に一定の目標
温度に達してから行うことにより吐出圧力の上昇が早く
しかも低風量からスタートのため吹呂空気も熱交換器温
度に近づき、高温風を短時間に得ると共に、同一温度を
維持しながら風量を増加できる。
In addition, the indoor air volume is maintained at a low air volume until the target temperature is detected by detecting the outlet air temperature, and the air volume is always switched after reaching a certain target temperature, so that the discharge pressure increases quickly and starts from a low air volume. Therefore, the bath air also approaches the heat exchanger temperature, allowing high-temperature air to be obtained in a short time and increasing the air volume while maintaining the same temperature.

更に、圧縮機回転数の最高指令値を外気温度を検知して
決定し、高温な時程その指令値を低くすることにより高
負荷で圧縮機の圧力、温度が急上昇する条件においても
圧力、温度を限界値内で使用することができる。
In addition, the maximum command value for the compressor rotation speed is determined by detecting the outside air temperature, and by lowering the command value when the temperature is high, the pressure and temperature can be maintained even under conditions where compressor pressure and temperature rapidly increase under high load. can be used within limits.

〔作用〕[Effect]

圧縮機への加熱量は高温風運転モートにおいては、圧縮
機周囲に取付けたヒータとモータコイルへの通電量を大
きくすることにより増大する。
The amount of heat applied to the compressor is increased by increasing the amount of current applied to the heater and motor coil installed around the compressor in the high-temperature air operation motor.

また、膨張弁開度は、起動時に制御開度範囲の最小値に
設定され、その後の温度上昇に伴なって順次大きくなる
。一般に膨張弁開度が小さいと圧縮機の冷媒吸入温度が
上昇し、吐出温度及び吐出圧力が上昇する。逆に開度が
大きいと吐出温度、吐出圧力が低下する。この時の開度
は運転当初に室内熱交換器の過冷却を取り過ぎず、安定
時は圧縮機の限界温度以下で通常の暖房運転時よりも高
温を保つよう圧縮機温度に対応して設定されでいる。こ
こで何らかの要因で圧縮機温度が低下した場合は前回の
開度に戻す制御法となっている。
Further, the expansion valve opening degree is set to the minimum value of the control opening degree range at the time of startup, and gradually increases as the temperature rises thereafter. Generally, when the expansion valve opening degree is small, the refrigerant suction temperature of the compressor increases, and the discharge temperature and discharge pressure increase. Conversely, if the opening degree is large, the discharge temperature and discharge pressure will decrease. The opening degree at this time is set in accordance with the compressor temperature so that the indoor heat exchanger is not overcooled at the beginning of operation, and when stable, the temperature is kept below the compressor's limit temperature and higher than during normal heating operation. It's been done. If the compressor temperature drops for some reason, the control method returns the opening to the previous opening.

また、室内風量はファン回転数を室内熱交換器温度が所
定値以下の時は最低速で運転し、所定値を越えると次に
上昇した回転数に切換え、同時に吹出空気温度を検知し
目標温度に達した時点て更に次の回転数に順次切換わる
。ここで、ファン回転数が切り換わった時点から一定時
間はその回転数を維持し、温度検知サーミスタの時間遅
れを考慮している。
In addition, to control the indoor air volume, the fan rotation speed is operated at the lowest speed when the indoor heat exchanger temperature is below a predetermined value, and when it exceeds the predetermined value, it is switched to the next increased rotation speed, and at the same time, the blowing air temperature is detected and the target temperature is reached. When the rotation speed is reached, the rotation speed is sequentially changed to the next rotation speed. Here, the rotation speed of the fan is maintained for a certain period of time after the rotation speed is changed, and the time delay of the temperature detection thermistor is taken into consideration.

更に、圧縮機の最高回転数は起動時の外気温度を検知し
、その温度に応じた回転数で運転を行う。運転途中で外
気温度が変動した時はその温度に応じた回転数に切換ね
る。
Furthermore, the maximum rotational speed of the compressor is determined by detecting the outside air temperature at the time of startup, and the compressor is operated at a rotational speed corresponding to that temperature. If the outside temperature fluctuates during operation, the rotation speed will change according to the temperature.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第7図を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 7.

第1図は、本発明の一実施例に係る冷凍サイクル制御構
成図、第2図、第3図は膨張弁の制御方法を示すフロー
チャート及び動作図、第4図、第5図は室内ファンの制
御方法を示すフローチャート及び動作図、第6図、第7
図は圧縮機の回転数指令の変化を示すフローチャート及
び動作図である。
Fig. 1 is a refrigeration cycle control configuration diagram according to an embodiment of the present invention, Figs. 2 and 3 are flow charts and operation diagrams showing a method of controlling an expansion valve, and Figs. 4 and 5 are diagrams of an indoor fan control method. Flowchart and operation diagram showing the control method, Figures 6 and 7
The figures are a flowchart and an operation diagram showing changes in the rotation speed command of the compressor.

第1図において、1は圧縮機、2は冷房、暖房の冷媒流
路を切換える四方弁、3は室内側熱交換器、4は室外側
熱交換器、5は電動式膨張弁、6は室内側ファン、7は
室外側ファン、8は圧縮機温度を検出するサーミスタ、
9は室外の温度を検出するサーミスタ、10は室内側熱
交換器の温度を検出するサーミスタ、11は室内ファン
の吹出空気温度を検出するケーシング14により形成さ
れる吹出口に取付けられたサーミスタ、12は圧縮機を
所定の回転数で駆動するとともに停止中においてもモー
タコイルに通電を行って圧縮機温度を上昇させるインバ
ータ、13は圧縮機周囲に密着して取付けられたヒータ
である。15は室外側の制御回路であり、圧縮機速度の
指令、圧縮機温度、外気温度の取込み及び膨張弁の開度
設定を行う。16は室内側の制御回路であり、熱交換器
温度吹出空気温度を取込みファン速度設定を行う。
In Fig. 1, 1 is a compressor, 2 is a four-way valve that switches the refrigerant flow path for cooling and heating, 3 is an indoor heat exchanger, 4 is an outdoor heat exchanger, 5 is an electric expansion valve, and 6 is an indoor 7 is an outdoor fan; 8 is a thermistor that detects the compressor temperature;
9 is a thermistor for detecting the outdoor temperature; 10 is a thermistor for detecting the temperature of the indoor heat exchanger; 11 is a thermistor attached to the outlet formed by the casing 14 for detecting the temperature of the air blown from the indoor fan; 12 13 is an inverter that drives the compressor at a predetermined rotational speed and energizes the motor coil to raise the temperature of the compressor even when the compressor is stopped, and 13 is a heater that is closely attached around the compressor. Reference numeral 15 denotes an outdoor control circuit, which commands the compressor speed, takes in the compressor temperature and outside air temperature, and sets the opening degree of the expansion valve. 16 is a control circuit on the indoor side, which takes in the temperature of the heat exchanger and the temperature of the discharged air and sets the fan speed.

第1図において一点鎖線の左側に示す機器は室外ユニッ
トに組込まれ、右側に示す機器は室内ユニットに組込ま
れる。
In FIG. 1, the equipment shown on the left side of the dashed line is installed in the outdoor unit, and the equipment shown on the right side is installed in the indoor unit.

このような冷凍サイクル構成の空気調和機において、高
温風運転モートが選定されると、空調機停止中にインバ
ータは圧縮機モータコイルとヒータに通電を行い圧縮機
を高温に保ち、高温風運転のスタートに備える。
In an air conditioner with such a refrigeration cycle configuration, when the high-temperature air operation mode is selected, the inverter energizes the compressor motor coil and heater to keep the compressor at a high temperature while the air conditioner is stopped. Prepare for the start.

また、電動膨張弁の制御法について第2図のフローチャ
ート、第3図の動作図を用いて説明する。膨張弁の初期
開度は、高温風運転時の開度制御範囲の最小開度200
パルスに設定される。この開度は圧縮機が高速で運転さ
れる立上り時において吐出圧力、温度を急考に上昇させ
、しかも室内熱交換器の過冷却を小さくして熱交換器温
度を高温にする値であり圧縮機が90℃となるまで保持
される。次に圧縮機の起動と同時に圧縮機温度を計測し
、この温度に応じて開度を選定する。開度は90℃から
121℃までの間を7段階に分けである。通常の運転で
は、圧縮機温度は起動時から上昇していくため、開度も
順次大きくなる。また、時間経過と共に温度が低下した
場合は元の開度となる。ここで用いる圧縮機温度と彫版
弁開度の関係は立上り時に圧縮機の限界温度をオーバー
せず、且つ安定時の温度を高温に保つよう設定されてい
る。
Further, a method of controlling the electric expansion valve will be explained using the flowchart shown in FIG. 2 and the operation diagram shown in FIG. 3. The initial opening of the expansion valve is the minimum opening of 200 in the opening control range during high-temperature air operation.
Set to pulse. This opening is a value that suddenly increases the discharge pressure and temperature at startup when the compressor is operated at high speed, and also reduces the subcooling of the indoor heat exchanger and raises the heat exchanger temperature. The temperature is maintained until the temperature reaches 90°C. Next, the compressor temperature is measured at the same time as the compressor is started, and the opening degree is selected according to this temperature. The opening degree is divided into seven stages from 90°C to 121°C. In normal operation, the compressor temperature increases from the time of startup, so the opening degree gradually increases. In addition, if the temperature decreases over time, the opening degree will return to its original value. The relationship between the compressor temperature and the opening degree of the engraving valve used here is set so as not to exceed the limit temperature of the compressor at the time of startup and to maintain the temperature at a high temperature during the stable state.

室内ファンの制御法について第4図のフローチャート、
第5図の動作図を用いて説明する。運転開始時の速度は
最低速の370 m i nlに設定される。次に室内
熱交換器の温度を計測し、温度が24℃を越えればファ
ン速度は次のステップ75Qm i rilに増速され
る。この増速するまでの時間は一般に冷風が直接当らな
いようにするための予熱時間と言われる。予熱中のファ
ン速度が小さいため室内の放熱量が減少し吐出圧力、吐
出温度の上昇が早い。しかし、この状態を保持すると、
圧力の限界を越えると共にインバータの電流も増えて保
護回路の働きにより、圧縮機速度が下がり能力も低下す
るため、予熱終了後にファンの増速が行われる。この時
間が解除されると検知する温度を熱交換器温度から吹出
空気温度に切換え、吹出温度が80’Cに達するとファ
ン速度は更に50m1h″増速する。この速度は吹出温
度を2〜3℃の低下に抑える増速量である。ここで、増
速後90秒間は検出サーミスタの熱容量、即ち時定数を
考慮して温度検知を行わずにファン速度を維持する。
The flowchart in Figure 4 regarding the indoor fan control method,
This will be explained using the operation diagram shown in FIG. The speed at the start of operation is set to the lowest speed of 370 m inl. Next, the temperature of the indoor heat exchanger is measured, and if the temperature exceeds 24°C, the fan speed is increased to the next step 75Qm i ril. The time it takes to increase the speed is generally called the preheating time to prevent direct exposure to cold air. Since the fan speed during preheating is low, the amount of heat dissipated into the room decreases, and the discharge pressure and temperature rise quickly. However, if this state is maintained,
As the pressure limit is exceeded, the inverter current also increases and the protection circuit works, causing the compressor speed to drop and its capacity to decrease, so the fan speed is increased after preheating is completed. When this time is released, the detected temperature is switched from the heat exchanger temperature to the blowing air temperature, and when the blowing temperature reaches 80'C, the fan speed is further increased by 50ml/h''.This speed increases the blowing temperature by 2 to 3 This is the amount of speed increase that suppresses the drop in temperature.Here, for 90 seconds after speed increase, the fan speed is maintained without temperature detection in consideration of the heat capacity of the detection thermistor, that is, the time constant.

ファン速度の増加により吐出圧力が低下し、その分圧縮
機速度が増加して吹出温度が再び80でに達すると更に
前ステップと同様ファン速度が50m ]n’増速され
る。ここで、仮に吹出温度が74°Cまで低下するとフ
ァン速度は50m i n″減速れる。尚、ここでは、
ファン速度の切換温度を8o′C一定としたが、−担8
0’Cを越えた後は、順次目標値を下げる等の制御を加
えても良い。更に、高温風運転時間が終了すると、ファ
ン速度は通常暖房の設定速度に切換る。
As the fan speed increases, the discharge pressure decreases, the compressor speed increases accordingly, and when the blowout temperature reaches 80 again, the fan speed is further increased by 50 m 2 ]n' as in the previous step. Here, if the blowout temperature drops to 74°C, the fan speed will be reduced by 50 min.
The switching temperature of the fan speed was kept constant at 8 o'C, but -8 o'C
After the temperature exceeds 0'C, control such as sequentially lowering the target value may be applied. Further, when the hot air operation time ends, the fan speed switches to the normal heating set speed.

次に圧縮機回転数の上限指令値の選択法を第6図のフロ
ーチャート、第7図の動作図を用いて説明する。運転開
始時の圧縮機速度は8000miri1に設定される。
Next, a method for selecting the upper limit command value of the compressor rotation speed will be explained using the flowchart of FIG. 6 and the operation diagram of FIG. 7. The compressor speed at the start of operation is set to 8000 miri1.

この速度は外気温度が8℃以下の空調機の負荷が小さい
時の最高速度であり、外気温度が高い過負荷運転におい
てもこの速度を指令すると室内温度も高温のため、吐出
圧力が限界値を越えてしまう。そこで、起動と同時に外
気温度を検出し、この温度に対応した速度で圧縮機を駆
動する。ここで運転途中で外気温度が変化しても圧縮機
速度の選定は本方法が適用される。またここでは、速度
の変化を外気温度に対してステップ状に決定しているが
、外気温度の上昇、下降に対してヒスを設けたり、速度
を外気温度の関数として決定しても差しつかえない。圧
縮機速度もファン速度と同様、高温風運転時間が終了す
ると、通常暖房の指令速度によって運転される。
This speed is the maximum speed when the load of the air conditioner is light when the outside temperature is 8℃ or less.If this speed is commanded even during overload operation when the outside temperature is high, the indoor temperature is also high, so the discharge pressure will exceed the limit value. I'll go beyond it. Therefore, the outside air temperature is detected at the same time as startup, and the compressor is driven at a speed corresponding to this temperature. Here, even if the outside temperature changes during operation, this method is applied to select the compressor speed. In addition, here, the change in speed is determined in steps with respect to the outside temperature, but it is also possible to set a hysteresis as the outside temperature rises or falls, or to determine the speed as a function of the outside temperature. . Like the fan speed, the compressor speed is also operated at the normal heating command speed when the high temperature air operation time ends.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので以下
に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

空気調和機停止中の圧縮機蓄熱は通常暖房の加熱量より
も大きいので高温となり、高温風運転開始時に、圧縮機
温度の上昇に費される熱量を軽減できる他、回転数上昇
率も大きいため所定の圧力、温度に達する時間も短く熱
量を素早く室内側に送ることができる。
When the air conditioner is stopped, the heat stored in the compressor is larger than the amount of heating for normal heating, resulting in a high temperature.When high-temperature air operation starts, the amount of heat consumed to raise the compressor temperature can be reduced, and the rate of increase in rotation speed is also large. It takes less time to reach the specified pressure and temperature, and the amount of heat can be quickly sent indoors.

また、彫版弁開度は運転初期に小さく設定されるため圧
縮機の圧力、温度が早く立上り、室内熱交換器の温度が
上昇し高温風を短時間に吹出させると共に、その後も圧
縮機温度を高温に保つため、高温風を安定して吐出でき
る。同様に室内ファン速度は運転初期に低速に設定され
るため圧縮機の圧力上昇が早く高温風を短時間に吹出さ
せると共に、吹出温度が充分に高温となってから速度を
上げるため暖房感が向上する。更に、この時の圧縮機回
転数は外気温度に対応して温度が高い程低速に設定され
るため、高負荷時の圧力急上昇も抑制でき、限界圧力を
オーバーせず信頼性も確保できる。
In addition, since the engraving valve opening is set small at the beginning of operation, the pressure and temperature of the compressor rise quickly, the temperature of the indoor heat exchanger rises, blowing out high-temperature air in a short time, and the compressor temperature continues to rise. Because it maintains a high temperature, it can stably discharge high-temperature air. Similarly, since the indoor fan speed is set to a low speed at the beginning of operation, the pressure of the compressor increases quickly, blowing out high-temperature air in a short time, and the speed is increased after the blowing temperature reaches a sufficiently high temperature, which improves the feeling of heating. do. Furthermore, since the compressor rotational speed at this time is set to a lower speed as the temperature increases in accordance with the outside air temperature, a sudden rise in pressure during high load can be suppressed, and reliability can be ensured without exceeding the limit pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る冷凍サイクル制御構
成図、第2図、第3図は膨圧弁の制御法を説明するため
のフローチャート及び動作図、第4図、第5図は室内フ
ァンの制御法を説明するためのフローチャート及び動作
図である。第6図、第7図は圧縮機の速度指令を説明す
るためのフローチャート及び動作図である。 1・・・圧縮機、3,4・・熱交換器、5・・膨張弁。 6.7 ファン、8.9.1o、11・・サーミスタ、
13・・ヒータ、15.16・・・制御回路。 第 λ 第 閃
FIG. 1 is a refrigeration cycle control configuration diagram according to an embodiment of the present invention, FIGS. 2 and 3 are flow charts and operation diagrams for explaining the expansion pressure valve control method, and FIGS. 4 and 5 are FIG. 2 is a flowchart and an operation diagram for explaining a method of controlling an indoor fan. FIG. FIG. 6 and FIG. 7 are a flowchart and an operation diagram for explaining the speed command of the compressor. 1... Compressor, 3, 4... Heat exchanger, 5... Expansion valve. 6.7 Fan, 8.9.1o, 11...Thermistor,
13...Heater, 15.16...Control circuit. λth flash

Claims (1)

【特許請求の範囲】 1、圧縮機、熱交換器、膨脹弁、送風機及び、各部の温
度を検出するサーミスタなどから成り、高温風運転スイ
ッチを設けた高温風運転機能を有する空気調和機におい
て、停止中の蓄熱制御として圧縮機温度を高温風運転モ
ードでは通常暖房モードに比較して、圧縮機周囲に密着
して取付けたヒータ、及びモータコイルに通電を行って
高温に保つことを特徴とする空気調和機の制御方法。 2、高温風運転時の圧縮機の回転数上昇率を通常暖房時
よりも大きくしたことを特徴とする特許請求の範囲第1
項記載の空気調和機の制御方法。 3、高温風運転時の圧縮機温度の目標値を通常暖房運転
時よりも高温に設定し、膨脹弁の初期開度は制御開度範
囲の最小開度からスタートし、運転後の圧縮機温度の上
昇に伴い開度を大きく、下降に伴い開度を小さく選定す
ることを特徴とする特許請求の範囲第1項、第2項記載
の空気調和機の制御方法。 4、室内ファンを圧縮機起動後室内熱交換器温度が所定
値以下の時は最低回転数で運転し、所定値以上の時は次
に高い回転数で運転し、更に吹出空気温度が所定値に達
した時、次の回転数に移行すると同時に一定時間、該回
転数を維持し、その後吹出空気温度が所定値を越えると
同様に順次、回転数を高速側に移行し、高温風運転終了
後は通常暖房運転の回転数とすることを特徴とする特許
請求の範囲第1項、第2項、第3項記載の空気調和機の
制御方法。 5、圧縮機の最高回転数を外気温度により選定すること
を特徴とする特許請求の範囲第1項、第2項、第3項、
第4項記載の空気調和機の制御方法。
[Claims] 1. In an air conditioner having a high-temperature air operation function, which consists of a compressor, a heat exchanger, an expansion valve, an air blower, a thermistor for detecting the temperature of each part, etc., and is equipped with a high-temperature air operation switch, As heat storage control during stoppage, the compressor temperature is maintained at a higher temperature in the high-temperature air operation mode than in the normal heating mode by energizing the heater installed closely around the compressor and the motor coil. How to control an air conditioner. 2. Claim 1, characterized in that the rate of increase in the rotational speed of the compressor during high-temperature air operation is greater than during normal heating.
The method for controlling an air conditioner described in Section 1. 3. Set the target value of the compressor temperature during high-temperature air operation to a higher temperature than during normal heating operation, and the initial opening of the expansion valve starts from the minimum opening of the control opening range, and the compressor temperature after operation 3. The method of controlling an air conditioner according to claim 1, wherein the opening degree is selected to be large as the opening degree increases, and the opening degree is selected to be small as the opening degree is decreased. 4. After starting the compressor, the indoor fan operates at the lowest rotation speed when the indoor heat exchanger temperature is below a predetermined value, and when it is above the predetermined value, it operates at the next highest rotation speed, and furthermore, the blowing air temperature is set to a predetermined value. When the rotation speed reaches the next rotation speed, the rotation speed is maintained for a certain period of time, and then when the temperature of the blown air exceeds a predetermined value, the rotation speed is sequentially shifted to the high speed side and the high-temperature air operation ends. 4. The method of controlling an air conditioner according to claim 1, 2, or 3, wherein the rotation speed is then set to the rotation speed of normal heating operation. 5. Claims 1, 2, and 3, characterized in that the maximum rotational speed of the compressor is selected depending on the outside air temperature.
The method for controlling an air conditioner according to item 4.
JP2102938A 1990-04-20 1990-04-20 Method of controlling air conditioner Pending JPH043844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2102938A JPH043844A (en) 1990-04-20 1990-04-20 Method of controlling air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2102938A JPH043844A (en) 1990-04-20 1990-04-20 Method of controlling air conditioner

Publications (1)

Publication Number Publication Date
JPH043844A true JPH043844A (en) 1992-01-08

Family

ID=14340778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2102938A Pending JPH043844A (en) 1990-04-20 1990-04-20 Method of controlling air conditioner

Country Status (1)

Country Link
JP (1) JPH043844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP2011237110A (en) * 2010-05-11 2011-11-24 Fujitsu General Ltd Air conditioner
JP2012072962A (en) * 2010-09-29 2012-04-12 Panasonic Corp Air conditioner
WO2020008514A1 (en) * 2018-07-03 2020-01-09 三菱電機株式会社 Indoor unit of air conditioner, and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP2011237110A (en) * 2010-05-11 2011-11-24 Fujitsu General Ltd Air conditioner
JP2012072962A (en) * 2010-09-29 2012-04-12 Panasonic Corp Air conditioner
WO2020008514A1 (en) * 2018-07-03 2020-01-09 三菱電機株式会社 Indoor unit of air conditioner, and air conditioner
JPWO2020008514A1 (en) * 2018-07-03 2021-04-08 三菱電機株式会社 Indoor unit of air conditioner and air conditioner
DE112018007794B4 (en) 2018-07-03 2023-09-28 Mitsubishi Electric Corporation Indoor unit of an air conditioning and air conditioning system

Similar Documents

Publication Publication Date Title
KR900005982B1 (en) Method and control system for limiting compressor capacity in a refrigeration system upon a recycle start
KR0164917B1 (en) Operating control method of airconditioner
KR900005983B1 (en) Method and control system for limiting the load palced on a refrigeration system a recycle start
JP2723339B2 (en) Heat pump heating equipment
KR900005977B1 (en) Protective capacity control system for a refrigeration system
JP2007522430A (en) Defrosting mode of HVAC heat pump system
JP4231247B2 (en) Air conditioner
JP4844147B2 (en) Air conditioner
KR900003871B1 (en) Air conditioning apparatus
JP6191490B2 (en) Air conditioner
JPH043844A (en) Method of controlling air conditioner
AU2018444215B2 (en) Outdoor unit, indoor unit, and air conditioner
JP4827416B2 (en) Cooling system
KR20000037566A (en) Method for controlling inverter compressor of air conditioner
JP2000097479A (en) Air conditioner
KR100858542B1 (en) Method for controlling compressor freguency for inverter airconditioner
JP3332012B2 (en) Air conditioner
JP4033186B2 (en) vending machine
KR100487780B1 (en) A control method of air conditioner
JP2878727B2 (en) Air conditioner
KR20010036767A (en) operation control method of air-conditioner
JPH0719575A (en) Air conditioner
JPH05240493A (en) Air conditioner
JPH0618113A (en) Air conditioner
JPH0510624A (en) Air conditioner