JPH0438400B2 - - Google Patents

Info

Publication number
JPH0438400B2
JPH0438400B2 JP62052182A JP5218287A JPH0438400B2 JP H0438400 B2 JPH0438400 B2 JP H0438400B2 JP 62052182 A JP62052182 A JP 62052182A JP 5218287 A JP5218287 A JP 5218287A JP H0438400 B2 JPH0438400 B2 JP H0438400B2
Authority
JP
Japan
Prior art keywords
aflatoxin
medium
afb
antibodies
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62052182A
Other languages
Japanese (ja)
Other versions
JPS63219394A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62052182A priority Critical patent/JPS63219394A/en
Publication of JPS63219394A publication Critical patent/JPS63219394A/en
Publication of JPH0438400B2 publication Critical patent/JPH0438400B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は抗アフラトキシンモノクローナル抗体
に関する。さらに詳しくは、IgG型抗アフラトキ
シンモノクロナール抗体に関する。 [従来の技術] アフラトキシン類は真菌類のAspergillus属に
より産生されが、その中でもAspergillusflavus
およびAspergillus parasiticusが主となり産生す
る有毒二次代謝産物である。 アフラトキシンB1(以下AFB1ということがあ
る)はアフラトキシンの中でも最も強力な発癌性
を有するものの1つであり一定量以上の経口投与
により肝臓癌を誘発する物質と考えられている。 アフラトキシンによる食物汚染は1953年日本で
起きた黄変米事件、1960年イギリスで起きた七面
鳥事件を始めとし、最近でもその汚染のため食品
の出荷停止が新聞で報道されている。 このように、アフラトキシンはマイコトキシン
の中でも毒性の強いものの一つであり、現在で
は、穀物、飼料、食肉などの汚染が問題となつて
いる。 アフラトキシンを穀物あるいはその加工製品か
ら検出する方法としては、薄層クロマトグラフイ
ーや高速液体クロマトグラフイー等が用いられて
おり、最近では免疫測定法も試みられている。 さて免疫測定法で特異的にアフラトキシンを測
定する為には特異性の高い抗体が必要であること
は論ずるまでもない。 アフラトキシンB1の様な低分子化合物に対す
る抗体を作製する場合は、低分子化合物それ自身
が免疫原性を持たないので蛋白質などの高分子キ
ヤリアーと結合させてハプテン抗原となし動物に
免疫するのが通常の方法である。しかし、アフラ
トキシン類のように類縁化合物が多く存在する場
合、その中の一種の化合物にのみ特異的な抗体を
作製することは困難であり、通常はその化合物が
属する群のその他の多くの化合物と交叉反応する
のが普通である。 アフラトキシンB1に対する抗体の作製は、従
来アフラトキシンB1をウシ血清アルブミン
(BSA)に結合させたハプテン抗原でウサギを免
疫して行つてきたが、得られた抗体の特異性は十
分ではなく、アフラトキシン類全般に交叉反応を
示すものであつた[たとえばJ.J.Pestka,P.K.
Gaur,F.S.Chu,Appl.Environ.Microbiol.,40
1027(1980)、参照]。 又、J.D.Groopmanらによる[Proc.Natl.
Acad.Sci.USA,81,7728(1984)参照]アフラ
トキシンB1に対するモノクロナール抗体も他の
アフラトキシン類と交差性を持つ上にそのモノク
ロナール抗体のタイプがIgM型であり、実用上使
用し難い。この様にアフラトキシンに対する特異
性の高い抗体を作製することは多くの研究者の努
力にもかかわらず未だ充分なものが得られておら
ず、穀類中のアフラトキシンの特異的な測定法の
開発が要求されている折りから特異抗体の作製が
強く待ち望まれている所であつた。 [発明が解決すべき問題点] 本発明の目的は、新規なIgM型アフラトキシン
モノクロナール抗体を提供することにある。 本発明の他の目的は、アフラトキシン類に対し
て特異性の高いIgM型アフラトキシンモノクロナ
ール抗体を提供することにある。 本発明のさらに他の目的および利点は以下の説
明から明らかとなろう。 [問題点を解決するための手段および作用] 本発明者はハプテン抗原を免疫し、目的とする
抗原に特異的に作用する抗体を産生するクローン
を選び出して単クローンとすることにより、特異
性の高い抗体を製造することができることを究明
し、かかる究明事実に基ずいて本発明を完成する
に至つたものである。 また、一般に抗血清の製造を目的として動物を
免疫する都度に新たにハプテン抗原を作製する従
来の方法では、ハプテン抗原の作り方や動物の固
体差、免疫の仕方によつてその都度、力価、特異
性、抗体サブクラスの異なつた抗体が得られ、そ
のためこの抗体を測定試薬に応用した場合、測定
結果に微妙な影響を与えるが、本抗体産生ハイブ
リドーマを用いて抗体を製造すれば抗原を作る必
要もなく又、動物の固体差にわずらわされず常に
安定した品質の抗体が得られる。これは本発明の
もう一つの利点である。 上記本発明の目的および利点は、本発明によれ
ば、アフラトキシンB1をハプテンとする抗原で
予め免疫されたマウスのリンパ球とマウスのミエ
ローマとの細胞融合により形成されたハイブリド
ーマから産生されるIgG型抗アフラトキシンモノ
クローナル抗体であつて、アフラトキシンB1
の反応性比を100%とした時、それぞれアフラト
キシンB2との反応性比が1.4〜2.3%であり、アフ
ラトキシンG1との反応性比が1.2〜3.1%であり、
アフラトキシンM1との反応性比が1.7〜4.5%であ
り且つアフラトキシンB2aとの反応性比が0.8〜
1.3%であることを特徴とするモノクローナル抗
体によつて達成される。 本発明の目的を達成する為の第一段階は、抗体
を産生する新規な単クローンハイブリドーマを確
立することである。このハイブリドーマを確立す
る方法の具体的詳細は実施例で示すが、簡単には
次の3工程から成る。 1 免疫 2 細胞融合 3 ハイブリドーマの選択と単クローン化 アフラトキシンB1は単独では抗原になり得な
い為アフラトキシンB1を蛋白質と結合して免疫
抗原とする。蛋白質としては一般に入手出来るも
のなら特に選択の必要はないが、通常入手し易い
ウシ血清アルブミン(BSA)などが有利に用い
られる。アフラトキシンB1と蛋白質との結合自
体は公知の方法、例えば前記のJ.J.Pestkaの方法
が有効に採用される。 蛋白質の結合方法としては、例えばアフラトキ
シンB1をオキシム化してアフラトキシンB1−O
−カルボキシメチルオキシムし、次いでこれを1
−エチル−3,3−ジメチルアミノ−プロピルー
カルボジイミドを用いて牛血清アルブミン
(BSA)や卵白アルブミン(OVA)と結合させ
る。 免疫動物は細胞融合に使用する腫瘍細胞株によ
つて決められる。一般にはラツト、マウスが多く
用いられる。マウスの種類の中でも免疫グロブリ
ンを産生しない腫瘍細胞株の確立されている
BALB/C系統がよく用いられる。 ハプテン抗原は、等張緩衝液或は生理食塩水な
どに溶解して使用するがマウス一匹あたり1回に
10μgから300μgを投与するのが好ましい。免疫は
数回に分けて行うが、初回免疫はアジユバントと
共に投与することが多い。アジユバントとして
は、ミヨウバン、結核死菌、核酸などが使用され
る。免疫は2〜4週間隔で行い、最終免疫はアジ
ユバントを使用せず生理食塩水等に溶解し腹腔内
或は静脈内に投与する。 最終免疫後2〜4日後にリンパ節或は脾臓を摘
出し、得られるリンパ球を細胞融合に供する。一
方、細胞融合に使用される腫瘍細胞株としては初
期にはMPC−11、P3−X63−Ag8等があつたが
これらは自身免疫グロブリンを産生するので近来
ではP3−X63−Ag8−U1、P3−NS−1,SP2/
O−Ag14(SP2/0)、P3−X63−Ag8・653
(653)等が汎用されている。 細胞融合時は、腫瘍細胞に比べリンパ球を5〜
20倍量多く用いる。DMEM培地、McCOy培地、
RPMI1640培地、或は等張緩衝液等で洗浄した腫
瘍細胞、リンパ球を混合後遠心分離し、ペレツト
とする。ペレツトをほぐした後、HVJ(センダイ
ウイルス)或は、ポリエチレングリコール
(PEG)で細胞を融合させるが、一般には取扱い
の便利なPEGの平均分子量1000〜8000の40〜60
%溶液を0.5〜2ml使用する。融合を促進する為
にコルヒチン、ジメチルスルホキシド、ポリ−L
−アルギニン等を添加することもあるが必須では
ない。 PEG溶液で融合反応を1〜10分間程度おこな
つた後DMEM培地やRPMI1640培地等を10〜50
ml徐々に加え融合反応を停止させる。停止後遠心
し上清を除去する。ウシ胎児血清(FCS)を5〜
20%含むDMEM培地或はRPMI1640培地を加え
24穴の培養プレートにリンパ球が1穴あたり1×
105〜5×106個となるよう1ml毎分注する。或い
は96穴培養プレートにリンパ球が1穴当り1〜2
×106個となるよう0.1ml毎分注する。両方共にフ
イーダー細胞は添加した方が好ましい。フイーダ
ー細胞としてはラツトの胸線細胞、脾細胞、マウ
スの胸線細胞、脾細胞等が用いられ、濃度として
は0.5〜2×106/mlとなるように添加する。次に
ヒボキサンチン1×104M、アミノプテリン4×
10-7M、チミジン1.6×10-5Mを含むRPMI1640培
地(或いはDMEM培地)即ちHAT培地に換えて
行く。HAT培地交換の方法は一般には翌日培養
プレートに融合時に分注した容量と等容量加え、
更に翌日その半量をHAT培地と交換する。その
後2〜3日毎HAT培地で半量ずつ交換する。融
合後10〜14日目にアミノプテリンを除いたHAT
培地即ちHT培地に半量交換し、更にその1〜3
日後より1〜3日毎に培地の半量をHATを含ま
ない通常の培地に交換する。ハイブリドーマの増
殖の盛んな穴の細胞培養上清を種々の分析法〜例
えばRIA、プラーク法、凝集反応、ELISAなど
〜で目的の抗体産生ハイブリドーマを選択する。
ハイブリドーマを得たならクローニングを行う。
クローニングの方法としてはFACS(Fluorescent
Activated Cell Sorter)を用いたり、Soft
Agarを用いてコロニーを拾い上げる方法、一般
によく用いられる限界希釈法などがある。クロー
ニングはコロニーが一つのハイブリドーマから形
成されるような細胞濃度で行う。限界希釈法では
96穴プレートの1穴あたり細胞が0.6個以下にな
るように行う。どの方法を用いてもクローニング
は2回繰返しおこない、単一クローンとする。ク
ローンを確立したなら抗体は大量にIn vitroで培
養するか、或いはin vivoで培養するかによつて
産生される。In vitroで産生された抗体は他の抗
体の混入はないが抗体価は低い。in vivoで産生
された抗体は宿主からの抗体が若干混じるが抗体
価はin vitroに比し非常に高い。どちらの方法で
抗体を産生させるかは目的による。抗アフラトキ
シンB1モノクローナル抗体はRIA、ELISA等に
応用出来る。ELISAに使用する時は標準酵素と
してα−ガラクトシダーゼ、アルカリホスフアタ
ーゼ、ペルオキシダーゼ等を用いることが出来
る。 以下に実施例を挙げて更に詳細に説明するが、
以下の実施例が発明の範囲を拘束するものではな
い。 [実施例] 実施例 1 抗アフラトキシンB1モノクローナル抗体を産
生するハイブリドーマ及び抗体の作製: 1 AFB1−3−O−カルボキシメチルオキシム
の作製 AFB110mgをメタノール5〜7ml中に加え、加
温(60℃)に溶解後、それに、塩酸カルボキシメ
トキシルアミン100mgを加え、5N−NaOHでPH
7.0とした。60℃、2時間還流し、オキシム化を
行つた。この操作により、AFB1はAFB1−3−
O−カルボキシメチルオキシム(AFB1−オキシ
ム)に誘導された。メタノールを減圧留去後、残
留物を水5mlに溶解し、5N−NaOHでPH9.5と
し、2mlの酢酸エチルで2回未反応のAFB1を抽
出した。水層に、5N−HC1を加えてPHを2.0と
し、AFB1−オキシムのみを沈澱させ、遠心分離
後、乾燥してAFB1−オキシムを得た。 2 免疫抗原、分析用抗原の作製 ウシ血清アルブミン(BSA)(10mg)を0.05M
リン酸緩衝液(PH7.0)4mlに溶解し、1−エチ
ル−3−(ジメチルアミノプロピル)カルボジイ
ミド(EDPC)50mgを加えた。この溶液にAFB1
−オキシム1mgをメタノール0.1mlに溶解したも
のを室温攪拌下、滴下した。さらに、6時間後、
12時間後50mgのEDPCを加え、24時間室温攪拌を
行つた後、反応液を生理食塩水に対して透析し、
非透析画分を2000r.p.m:10分間遠心し、若干の
不溶物を沈澱させ、上清をAFB1−オキシム−
BSAの生理食塩水液とした。 またBSAの代わりに卵白アルブミン(OVA)、
を用いて、上記と同様の操作でAFB1−オキシム
−OVAを作成した。 3 免疫 AFB1−オキシム−BSA1mgを溶解した生理食
塩水1mgとフロイントの完全アジユバント1mlを
混合してエマルジヨンとし、その20μを
BALB/cマウス(雌性.4週齢)の背部皮内
に投与した。10日後及び20日後、AFB1−オキシ
ム−BSA20μの生理食塩水溶液を腹腔内投与あ
るいは尾静脈に注射することにより追加免疫を行
つた。 4 細胞融合 最終免疫より3日後、マウスの脾臓を摘出し、
10mlのMEM培地を入れたプラスチツクシヤーレ
中で脾リンパ球をほぐした。脾リンパ球は、遠心
操作(1000回転、10分)を繰返し、MEM培地で
3回洗浄した。脾リンパ球1.8×105個と8−アザ
グアニン耐性ミエローマSP2/0−Ag14(SP2)、
又はX63−Ag8.6532×107個混合し、1000回転、
10分遠心してペレツトした。上清のMEM培地を
吸引除去し、ペレツトをほぐした。50%
PEG40001mlを1分間かけて加え、用いたピペツ
トで攪拌しながら37℃で1分間反応させた。続い
て1mlのDMEM培地1mlを37℃のもと、1分間
かけて加えた。同様の操作をもう1度行つた後、
37℃に温めておいたDMEM培地7mlを2〜3分
間で加えた。直ちに、800回転、6分、室温で遠
心して、上清を除去。37℃に温めていた20%ウシ
胎児血清(FCS)−DMEM培地30mlを加え、ペレ
ツトを懸濁させた。さらに30mlの20%FCS−
DMEM培地を加えて良く懸濁させた後、96穴培
養プレート7枚にこの懸濁液を1穴あたり0.1ml
分注し、CO2インキユベーター内で培養した。以
下、細胞融合を行つた日を第0日として記述す
る。 5 HAT選択 第1日に、HAT培地(ヒポキサンチン1×
10-4M、アミノプテリン4×10-7M、チミジン
1.6×10-5Mを含む20%FCS−DMEM培地)を1
穴あたり0.1ml加えた。第2,3,5,8及び11
日目に培地の半分を吸引除去し、HAT培地0.1ml
を加えた。以降3,4日毎にHT培地(アミノプ
テリンを除いたHAT培地)を同様の操作で交換
した。ハイブリドーマはほぼ全穴に増殖してき
た。 6 ハイブリドーマの選択 融合して、2週間後から3週間後までの間、
3,4日毎に培養上清を穴ごとに集め、ELISA
にて分析した。 先ず、ELISAプレートにAFB1−オキシム−
OVAを75μ分注し、4℃一晩静置して抗原をプ
レートに固定化した。Tween20を0.05%含む
PBSで3回洗浄した後、培養上清中の蛋白質の
非特異的吸着を避ける為、卵白アルブミンOVA
(500μg/100μ)を分注し、室温で1時間静置
した。次に同上緩衝液で3回洗浄後、上記の各細
胞培養上清を50μ分注し、室温で1時間静置し
た。陰性対照として20%FCS−DMEM培地100μ
を分注した。更に同上緩衝液で4回洗浄後、抗
マウス免疫グロブリン抗体−アルカリフオスフア
ターゼ複合体溶液50μをプレートに分注し、室
温1時間静置。同上緩衝液で4回洗浄後、P−ニ
トロフエニルリン酸2ナトリウム・6H2O(1
mg/ml)溶液を100μずつ分注し、室温で1時
間反応後、O.D.405nmを測定して、アルカリフオ
スフアターゼ活性を定量した。 また、カルボジイミドを用いて作製した抗原
は、カルボジイミドの一部が分子内転位を起しN
−置換ウレアとしてタンパクに残るので、カルボ
ジイミドのみで処理したOVA(EDPC−OVA)
を作製し、EDPC−OVAをプレートに固定化し
てELISAを行い、AFB1−オキシムOVAに対し
て陽性、かつ、EDPC−OVAに対して陰性を示
した、培養上清で増殖しているハイブリドーマを
抗AFB1Ab producingハイブリドーマとして選
択した。 2096穴中に72穴に抗AFB1抗体産生が認められ
た。 さらに、真の抗アフラトキシン抗体産生ハイブ
リドーマを同定するために、遊離型アフラトキシ
ンによる阻害試験を行つた。すなわち、実施例
1、5で述べたELISAの実験系で0.5μgのアフラ
トキシン存在下での各穴のアフラトキシン−HS
−OAに対する活性を測定し、アフラトキシンで
活性が阻害されるものを真の抗アフラトキシン抗
体産生ハイブリドーマと決定した。抗アフラトキ
シン抗体産生ハイブリドーマは、最終的に35穴に
認められた。 7 1mlの培養スケールの拡大 どの穴で抗AFB1抗体を産生しているかが判明
したら、24穴培養プレートへ植え換え、1mlスケ
ールでの培養を行つた。この際、BALB/cマ
ウスの胸線細胞を支持細胞として用いた。 HT培地0.5mlを24穴培養プレートに分注する。
それぞれの穴に1〜2×107個の胸線細胞を加え
る。これには4、5週齢のマウスから胸線を摘出
し、少なくとも3回洗浄した後、胸線1個あたり
1mlの20%FCS−DMEM培地に懸濁する。この
懸濁液を50〜100μずつそれぞれの穴に加える。
それから、96穴培養プレートにおける抗体産生穴
の細胞懸濁液を24穴培養プレートに移す。これを
再懸濁し、そのうちの250μを元の96穴培養プ
レートの穴にもどす。これが、複製となり、新し
い細胞株の損失をふせぐことができる。 2、3日後、24穴培養プレートに20%FCS−
DMEM培地0.5mlを加える。(ここでは支持細胞
は必要としない)さらに2日後、上清を除き新し
い培地を加える。細胞が、ほぼ全面に拡がつてき
たら、抗体活性を再テストをする。 もしも、引続き抗体を産生しているようであれ
ば即座にクローニングを行う。 もしも、抗体を産生している穴がそれほど沢山
でなければ、96穴培養プレートで培養している段
階から、直接クローニングをしてもよい。が、24
穴培養プレートに植え換えてもなお抗体を産生し
ているものから、クローニングすることにより、
より不安定な株をクローニングするという無駄を
省くことができる。 8 モノクローン化 クローニング培地は、BALB/cマウス胸線
細胞を107個/ml含んだ20%FCS−DMEM培地で
ある。もし、クローニングを直接96穴培養プレー
トから行うときは、培地はHT培地を用いる。 抗AFB1抗体産生ハイブリドーマを計数し、ク
ローニング培地1ml中に10個の細胞が含まれるよ
うに希釈した。この懸濁液を100μずつ、96穴
培養プレート中の60穴に分注する。5日目に
100μの培地を加えた。14日目に、ELISAによ
り活性を測定し、活性のあるクローンを24穴培養
プレートで増殖させた。さらに、同様の方法で再
クローニングを行い、抗アフラトキシンB1抗体
産生ハイブリドーマのクローン5株(以下、AF
−1、AF−2、AF−3、AF−4およびAF−5
株という)を得た。 9 モノクローナル抗体の生産 モノクローナル抗体は培養上清中に10〜
50μg/ml分泌される。 ハイブリドーマを増殖させた後、ほとんど全て
のハイブリドーマを死ぬ直前まで培養し、培養上
清を回収した。 また、AF−1〜AF−5の5株の各培養細胞を
それぞれ2×106個でDMEM培地0.5mlに浮遊さ
せ、BALB/cマウス(♀、6週齢、あらかじ
め3〜10日前にプリスタン0.5mlを腹腔内投与し
ておいたもの)の腹腔内に投与し、腹水を回収し
た。 10 モノクローナル抗体のクラスの決定 それぞれのハイブリドーマクローンの産生する
免疫グロブリンのクラスは、各クラスに特異的な
抗血清(抗IgG1、IgG2a、IgG2b、IgM、IgA)
を用いたオクタロニー法および酵素免疫測定法に
よつて決定した。 その結果、上記AF−1〜5の5株の全てが産
生するモノクローナル抗体(AF−1〜AF−5)
は全てIgG1に属することがわかつた。また各ク
ローンの産生するモノクローナル抗体のペプチド
短鎖はAF−1〜4でλ型、AF−5でκ型であつ
た。 実施例 2 モノクローナル抗体AF−1,2,3,4,5
の特異性抗アフラトキシンB1モノクローナル抗
体AF−1〜5の特異性を調べるためAFB1の類
似化合物であるAFB2,AFB2a,AFG1,AFG2
AFM1,AFP1,AFQ1およびアフラトキシコー
ルI,(ColI,)との交差反応性をELISA
にて検討した。 測定操作は実施例1の6)のハイブリドーマの
選択で記載した方法に準じた。 ただし細胞培養上清の代りに、多段階に希釈さ
れたAFB1あるいはアフラトキシン類似化合物の
10%メタノールPBS−Tween溶液50μと同時に
それぞれのモノクローナル抗体を用いた。例とし
てAF−1とAF−3との場合の結果をそれぞれ第
1図および第2図に示す。又、AF−1〜5まで
の全てについてまとめた結果を第1表に示した。
下記第1表において、AF−3及びAF−4と表示
されたモノクローナル抗体が本発明に属し、他は
参考のためのモノクローナル抗体である。またモ
ノクローナル抗体AF−3を産生するハイブリド
ーマは微工研受託番号 微工研条寄第1609号
(FERM BP−1609)として微工研に寄託されて
いる。
[Industrial Application Field] The present invention relates to anti-aflatoxin monoclonal antibodies. More specifically, it relates to an IgG type anti-aflatoxin monoclonal antibody. [Prior art] Aflatoxins are produced by the fungus genus Aspergillus, and among them, Aspergillus flavus
It is a toxic secondary metabolite mainly produced by Aspergillus parasiticus and Aspergillus parasiticus. Aflatoxin B 1 (hereinafter sometimes referred to as AFB 1 ) is one of the most potent carcinogenic substances among aflatoxins, and is thought to be a substance that induces liver cancer when administered orally in excess of a certain amount. Examples of food contamination caused by aflatoxin include the yellowing rice incident that occurred in Japan in 1953 and the turkey incident that occurred in the United Kingdom in 1960, and recently there have been newspaper reports of food shipments being stopped due to aflatoxin contamination. As described above, aflatoxin is one of the most toxic mycotoxins, and contamination of grains, feed, meat, etc. is currently a problem. Thin layer chromatography, high performance liquid chromatography, and the like are used as methods for detecting aflatoxin from grains or their processed products, and recently, immunoassay methods have also been attempted. Now, it goes without saying that highly specific antibodies are required to specifically measure aflatoxin by immunoassay. When producing antibodies against low-molecular-weight compounds such as aflatoxin B 1 , the low-molecular-weight compounds themselves are not immunogenic, so it is best to combine them with a polymeric carrier such as a protein and use them as hapten antigens to immunize animals with. This is the normal method. However, when there are many related compounds such as aflatoxins, it is difficult to create an antibody that is specific only for one of them, and it is usually difficult to create an antibody that is specific for only one type of compound. Cross-reactions are common. Antibodies against aflatoxin B 1 have traditionally been produced by immunizing rabbits with a hapten antigen in which aflatoxin B 1 is bound to bovine serum albumin (BSA), but the specificity of the antibodies obtained is not sufficient, and aflatoxin It showed cross-reactivity across all classes [e.g. JJPestka, PK
Gaur, FSChu, Appl.Environ.Microbiol., 40 ,
1027 (1980), see]. Also, JDGroopman et al. [Proc. Natl.
Acad.Sci.USA, 81 , 7728 (1984)] Monoclonal antibodies against aflatoxin B1 also have cross-reactivity with other aflatoxins, and the type of monoclonal antibodies is IgM, making them difficult to use practically. . Despite the efforts of many researchers, the production of highly specific antibodies against aflatoxin has not yet been achieved, and there is a need to develop a specific method for measuring aflatoxin in grains. Since then, the production of specific antibodies has been eagerly awaited. [Problems to be Solved by the Invention] An object of the present invention is to provide a novel IgM type aflatoxin monoclonal antibody. Another object of the present invention is to provide an IgM type aflatoxin monoclonal antibody that is highly specific for aflatoxins. Further objects and advantages of the invention will become apparent from the description below. [Means and Effects for Solving the Problems] The present inventor immunizes with a hapten antigen, selects a clone that produces an antibody that specifically acts on the target antigen, and makes it a monoclone, thereby improving specificity. The present invention was completed based on the findings of the present invention. In general, in the conventional method of producing a new hapten antigen each time an animal is immunized for the purpose of producing antiserum, the titer, titer, etc. Antibodies with different specificities and antibody subclasses are obtained, so when these antibodies are applied to measurement reagents, they have a subtle effect on the measurement results, but if antibodies are produced using this antibody-producing hybridoma, there is no need to make antigens. Moreover, antibodies of stable quality can always be obtained regardless of individual differences between animals. This is another advantage of the invention. The above objects and advantages of the present invention are that, according to the present invention, IgG is produced from a hybridoma formed by cell fusion of mouse myeloma and lymphocytes of a mouse previously immunized with an antigen containing aflatoxin B 1 as a hapten. They are anti-aflatoxin monoclonal antibodies, and when the reactivity ratio with aflatoxin B 1 is taken as 100%, the reactivity ratio with aflatoxin B 2 is 1.4 to 2.3%, and the reactivity ratio with aflatoxin G 1 is 1.4% to 2.3%. 1.2-3.1%,
The reactivity ratio with aflatoxin M 1 is 1.7 to 4.5% and the reactivity ratio with aflatoxin B 2a is 0.8 to 4.5%.
This is achieved by a monoclonal antibody characterized by 1.3%. The first step in achieving the objectives of the present invention is to establish new monoclonal hybridomas that produce antibodies. The specific details of the method for establishing this hybridoma will be shown in Examples, but it simply consists of the following three steps. 1. Immunization 2. Cell fusion 3. Selection and monocloning of hybridomas Aflatoxin B 1 alone cannot serve as an antigen, so aflatoxin B 1 is combined with a protein and used as an immunizing antigen. There is no need to select a protein that is generally available, but bovine serum albumin (BSA), which is generally easily available, is advantageously used. For the binding of aflatoxin B 1 to a protein itself, a known method, such as the method of JJPestka described above, can be effectively employed. As a protein binding method, for example, aflatoxin B 1 is converted into oxime to form aflatoxin B 1 -O
-carboxymethyl oxime, which is then combined with 1
- Ethyl-3,3-dimethylamino-propyl-carbodiimide is used to combine with bovine serum albumin (BSA) and ovalbumin (OVA). Immunized animals are determined by the tumor cell line used for cell fusion. Generally, rats and mice are often used. Tumor cell lines that do not produce immunoglobulins have been established among mouse types.
BALB/C strain is often used. Hapten antigens are used after being dissolved in an isotonic buffer solution or physiological saline, but only once per mouse.
Preferably, doses of 10 μg to 300 μg are administered. Immunization is carried out in several doses, but the first immunization is often administered with an adjuvant. As the adjuvant, alum, killed tuberculosis bacteria, nucleic acid, etc. are used. Immunization is carried out at intervals of 2 to 4 weeks, and the final immunization is administered intraperitoneally or intravenously after dissolving in physiological saline or the like without using an adjuvant. Two to four days after the final immunization, the lymph nodes or spleen are removed, and the obtained lymphocytes are subjected to cell fusion. On the other hand, tumor cell lines used for cell fusion were initially MPC-11, P3-X63-Ag8, etc., but since these cells produce their own immunoglobulin, recently P3-X63-Ag8-U1, P3 -NS-1,SP2/
O-Ag14 (SP2/0), P3-X63-Ag8・653
(653) etc. are commonly used. During cell fusion, 5 to 5 lymphocytes compared to tumor cells
Use 20 times more. DMEM medium, McCOy medium,
Tumor cells and lymphocytes washed with RPMI1640 medium or isotonic buffer are mixed and then centrifuged to form a pellet. After loosening the pellet, cells are fused with HVJ (Sendai virus) or polyethylene glycol (PEG), but in general, PEG has an average molecular weight of 1000 to 8000, which is 40 to 60.
% solution is used. colchicine, dimethyl sulfoxide, poly-L to promote fusion.
-Arginine etc. may be added, but it is not essential. After performing the fusion reaction with the PEG solution for about 1 to 10 minutes, add DMEM medium, RPMI1640 medium, etc. for 10 to 50 minutes.
ml slowly to stop the fusion reaction. After stopping, centrifuge and remove the supernatant. Fetal calf serum (FCS) from 5 to
Add DMEM medium or RPMI1640 medium containing 20%
Lymphocytes were placed 1x per well in a 24-well culture plate.
Pour 1 ml each so that 10 5 to 5 x 10 6 cells are obtained. Or, place 1-2 lymphocytes per well in a 96-well culture plate.
Pour 0.1 ml per minute to make 6 x 10 pieces. It is preferable to add feeder cells to both. As the feeder cells, rat thymocytes, splenocytes, mouse thymocytes, splenocytes, etc. are used, and the feeder cells are added at a concentration of 0.5 to 2×10 6 /ml. Next, Hyboxanthin 1×10 4 M, Aminopterin 4×
10 -7 M, thymidine 1.6 x 10 -5 M, RPMI1640 medium (or DMEM medium), ie, HAT medium. The method for replacing HAT medium is generally to add the same volume to the culture plate the next day as that dispensed at the time of fusion.
Next day, half of the volume is replaced with HAT medium. Thereafter, replace half the volume with HAT medium every 2 to 3 days. HAT with aminopterin removed 10-14 days after fusion
Replace half of the medium with HT medium, and then add 1 to 3
After a few days, half of the medium is replaced with a normal HAT-free medium every 1 to 3 days. The cell culture supernatant of the well where hybridomas are actively proliferating is analyzed using various methods such as RIA, plaque method, agglutination reaction, ELISA, etc. to select hybridomas producing the antibody of interest.
Once a hybridoma is obtained, cloning is performed.
The cloning method is FACS (Fluorescent
Activated Cell Sorter) or Soft
There are methods to pick up colonies using Agar, and the commonly used limiting dilution method. Cloning is performed at cell concentrations such that colonies are formed from a single hybridoma. In the limiting dilution method
Perform so that the number of cells per well of a 96-well plate is 0.6 or less. Regardless of the method used, cloning is performed twice to produce a single clone. Once a clone has been established, antibodies can be produced by culturing in large quantities either in vitro or in vivo. Antibodies produced in vitro are free from contamination with other antibodies, but have low antibody titers. Antibodies produced in vivo are slightly contaminated with antibodies from the host, but the antibody titer is much higher than that produced in vitro. Which method to use to produce antibodies depends on the purpose. Anti-aflatoxin B 1 monoclonal antibody can be applied to RIA, ELISA, etc. When used in ELISA, α-galactosidase, alkaline phosphatase, peroxidase, etc. can be used as standard enzymes. Examples will be given below to explain in more detail,
The following examples do not limit the scope of the invention. [Example] Example 1 Preparation of hybridoma and antibody producing anti-aflatoxin B 1 monoclonal antibody: 1 Preparation of AFB 1 -3-O-carboxymethyl oxime 10 mg of AFB 1 was added to 5 to 7 ml of methanol and heated ( 60℃), add 100mg of carboxymethoxylamine hydrochloride, and PH with 5N-NaOH.
It was set to 7.0. The mixture was refluxed at 60°C for 2 hours to form an oxime. With this operation, AFB 1 becomes AFB 1 −3−
derived from O-carboxymethyl oxime (AFB 1 -oxime). After methanol was distilled off under reduced pressure, the residue was dissolved in 5 ml of water, adjusted to pH 9.5 with 5N-NaOH, and unreacted AFB 1 was extracted twice with 2 ml of ethyl acetate. 5N-HC1 was added to the aqueous layer to adjust the pH to 2.0 to precipitate only AFB 1 -oxime, which was centrifuged and dried to obtain AFB 1 -oxime. 2 Preparation of immune antigen and antigen for analysis Bovine serum albumin (BSA) (10mg) at 0.05M
It was dissolved in 4 ml of phosphate buffer (PH7.0), and 50 mg of 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDPC) was added. AFB 1 in this solution
- A solution of 1 mg of oxime in 0.1 ml of methanol was added dropwise under stirring at room temperature. Furthermore, 6 hours later,
After 12 hours, 50 mg of EDPC was added, and after stirring at room temperature for 24 hours, the reaction solution was dialyzed against physiological saline.
The non-dialyzed fraction was centrifuged at 2000 rpm for 10 minutes to precipitate some insoluble matter, and the supernatant was purified by AFB 1 -oxime.
BSA in physiological saline solution. Also, ovalbumin (OVA) instead of BSA,
AFB 1 -oxime-OVA was produced using the same procedure as above. 3 Immunity Mix 1 mg of physiological saline in which 1 mg of AFB 1 -oxime-BSA has been dissolved and 1 ml of Freund's complete adjuvant to make an emulsion, and add 20μ of the mixture.
It was administered intradermally to the back of BALB/c mice (female, 4 weeks old). After 10 and 20 days, booster immunization was performed by intraperitoneal administration or tail vein injection of 20μ of AFB 1 -oxime-BSA in physiological saline. 4 Cell fusion Three days after the final immunization, the spleen of the mouse was removed,
Splenic lymphocytes were disaggregated in a plastic jar containing 10 ml of MEM medium. Splenic lymphocytes were repeatedly centrifuged (1000 rpm, 10 minutes) and washed three times with MEM medium. 1.8 x 10 5 splenic lymphocytes and 8-azaguanine-resistant myeloma SP2/0-Ag14 (SP2),
Or X63−Ag8.6532×10 7 pieces mixed, 1000 rotations,
The mixture was centrifuged for 10 minutes and pelleted. The supernatant MEM medium was removed by suction and the pellet was loosened. 50%
1 ml of PEG4000 was added over 1 minute, and the mixture was reacted at 37°C for 1 minute while stirring with the pipette used. Subsequently, 1 ml of DMEM medium was added over 1 minute at 37°C. After performing the same operation again,
7 ml of DMEM medium warmed to 37°C was added over 2-3 minutes. Immediately centrifuge at 800 rpm for 6 minutes at room temperature and remove the supernatant. 30 ml of 20% fetal calf serum (FCS)-DMEM medium warmed to 37°C was added to suspend the pellet. Additionally 30ml of 20% FCS−
Add DMEM medium and suspend well, then add 0.1ml of this suspension per well to seven 96-well culture plates.
It was aliquoted and cultured in a CO 2 incubator. Hereinafter, the day when cell fusion was performed will be described as day 0. 5 HAT selection On the first day, HAT medium (hypoxanthine 1×
10 -4 M, aminopterin 4x10 -7 M, thymidine
20% FCS-DMEM medium containing 1.6×10 -5 M)
Added 0.1 ml per hole. 2nd, 3rd, 5th, 8th and 11th
On day 1, aspirate half of the medium and 0.1ml of HAT medium.
added. Thereafter, the HT medium (HAT medium without aminopterin) was replaced every 3 or 4 days using the same procedure. Hybridomas have grown in almost all holes. 6 Selection of hybridomas From 2 weeks to 3 weeks after fusion,
Collect culture supernatant from each well every 3 or 4 days and perform ELISA
It was analyzed in First, AFB 1 -oxime- was added to the ELISA plate.
75μ of OVA was dispensed and allowed to stand overnight at 4°C to immobilize the antigen on the plate. Contains 0.05% Tween20
After washing three times with PBS, use ovalbumin OVA to avoid nonspecific adsorption of proteins in the culture supernatant.
(500μg/100μ) was dispensed and allowed to stand at room temperature for 1 hour. Next, after washing three times with the same buffer solution, 50μ of each of the above cell culture supernatants was dispensed and allowed to stand at room temperature for 1 hour. 100μ of 20% FCS-DMEM medium as negative control
was dispensed. After further washing four times with the same buffer solution, 50μ of the anti-mouse immunoglobulin antibody-alkaline phosphatase complex solution was dispensed onto the plate and left at room temperature for 1 hour. After washing four times with the same buffer solution, P-nitrophenyl phosphate disodium 6H 2 O (1
The alkaline phosphatase activity was determined by dispensing 100μ of the solution (mg/ml) and reacting for 1 hour at room temperature, then measuring OD405nm. In addition, in antigens prepared using carbodiimide, part of the carbodiimide undergoes intramolecular rearrangement, resulting in N
-OVA treated with carbodiimide only (EDPC-OVA) as it remains in the protein as substituted urea
EDPC-OVA was immobilized on a plate and ELISA was performed to find hybridomas growing in the culture supernatant that were positive for AFB 1 -oxime OVA and negative for EDPC-OVA. It was selected as an anti-AFB 1 Ab producing hybridoma. Anti-AFB 1 antibody production was observed in 72 out of 2096 wells. Furthermore, in order to identify hybridomas that truly produce anti-aflatoxin antibodies, we conducted an inhibition test using free aflatoxin. That is, in the ELISA experimental system described in Examples 1 and 5, aflatoxin-HS in each well in the presence of 0.5 μg of aflatoxin.
-The activity against OA was measured, and those whose activity was inhibited by aflatoxin were determined to be true anti-aflatoxin antibody-producing hybridomas. Anti-aflatoxin antibody-producing hybridomas were finally found in 35 wells. 7. Expansion of the 1 ml culture scale Once it was determined in which well the anti-AFB 1 antibody was being produced, the cells were transplanted to a 24-well culture plate and cultured on a 1 ml scale. At this time, thymus cells of BALB/c mice were used as supporting cells. Dispense 0.5 ml of HT medium into a 24-well culture plate.
Add 1-2 x 10 7 thymus cells to each well. For this purpose, the thymus is removed from a 4- or 5-week-old mouse, washed at least three times, and then suspended in 1 ml of 20% FCS-DMEM medium per thymus. Add 50-100μ of this suspension to each well.
Then, transfer the cell suspension in the antibody-producing wells in the 96-well culture plate to a 24-well culture plate. Resuspend this and return 250μ of it to the original well of the 96-well culture plate. This can lead to replication and prevent loss of new cell lines. After 2 to 3 days, add 20% FCS to a 24-well culture plate.
Add 0.5 ml of DMEM medium. (Feeder cells are not needed here) After another 2 days, remove the supernatant and add fresh medium. Once the cells have spread over most of the area, test again for antibody activity. If antibodies continue to be produced, cloning will be performed immediately. If there are not that many wells producing antibodies, cloning can be performed directly from the stage of culturing in a 96-well culture plate. But 24
By cloning those that still produce antibodies even after being transplanted into well culture plates,
This eliminates the waste of cloning more unstable strains. 8. Monocloning The cloning medium was a 20% FCS-DMEM medium containing 10 7 BALB/c mouse thymocytes/ml. If cloning is performed directly from a 96-well culture plate, use HT medium. Anti-AFB 1 antibody-producing hybridomas were counted and diluted so that 1 ml of cloning medium contained 10 cells. Dispense 100μ of this suspension into 60 wells in a 96-well culture plate. on the fifth day
100μ of medium was added. On day 14, activity was measured by ELISA and active clones were grown in 24-well culture plates. Furthermore, recloning was performed using the same method to obtain 5 anti-aflatoxin B 1 antibody-producing hybridoma clones (hereinafter referred to as AF
-1, AF-2, AF-3, AF-4 and AF-5
(referred to as stocks). 9 Production of monoclonal antibodies Monoclonal antibodies are present in culture supernatants at
Secreted at 50μg/ml. After growing the hybridomas, almost all the hybridomas were cultured until just before death, and the culture supernatant was collected. In addition, 2 × 10 6 cultured cells of each of the 5 strains of AF-1 to AF-5 were suspended in 0.5 ml of DMEM medium, and BALB/c mice (female, 6 weeks old, 3 to 10 days old) were prepared with pristane. 0.5 ml was administered intraperitoneally) and the ascites was collected. 10 Determining the class of monoclonal antibodies The class of immunoglobulin produced by each hybridoma clone is determined by antiserum specific to each class (anti-IgG1, IgG2a, IgG2b, IgM, IgA).
It was determined by the Ouchterlony method and enzyme-linked immunosorbent assay. As a result, monoclonal antibodies (AF-1 to AF-5) produced by all five strains of AF-1 to AF-5 mentioned above were found.
All of them were found to belong to IgG 1 . Furthermore, the short peptide chains of the monoclonal antibodies produced by each clone were λ type for AF-1 to AF-4, and κ type for AF-5. Example 2 Monoclonal antibody AF-1, 2, 3, 4, 5
In order to investigate the specificity of anti-aflatoxin B 1 monoclonal antibodies AF-1 to AF-5, similar compounds of AFB 1 such as AFB 2 , AFB 2a , AFG 1 , AFG 2 ,
ELISA for cross-reactivity with AFM 1 , AFP 1 , AFQ 1 and aflatoxycol I, (ColI,)
It was considered. The measurement operation was carried out in accordance with the method described in Example 1 6) Selection of hybridomas. However, instead of cell culture supernatant, multi-level dilutions of AFB 1 or aflatoxin-like compounds can be used.
Each monoclonal antibody was used simultaneously with 50μ of a 10% methanol PBS-Tween solution. As an example, the results for AF-1 and AF-3 are shown in FIGS. 1 and 2, respectively. Table 1 shows the results summarized for all of AF-1 to AF-5.
In Table 1 below, the monoclonal antibodies labeled AF-3 and AF-4 belong to the present invention, and the others are monoclonal antibodies for reference. Furthermore, the hybridoma producing monoclonal antibody AF-3 has been deposited with the FERM under the FERM accession number FERM BP-1609.

【表】【table】

【表】 *** 最小測定感度
[Table] *** Minimum measurement sensitivity

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の他のモノクローナル抗体
(AF−1)の交差反応性を示す図である。第2図
は本発明のモノクローナル抗体(AF−3)の交
差反応性を示す図である。
FIG. 1 is a diagram showing the cross-reactivity of another monoclonal antibody (AF-1) of the present invention. FIG. 2 is a diagram showing the cross-reactivity of the monoclonal antibody (AF-3) of the present invention.

Claims (1)

【特許請求の範囲】 1 アフラトキシンB1をハプテンとする抗原で
予め免疫されたマウスのリンパ球とマウスのミエ
ローマとの細胞融合により形成されたハイブリド
ーマから産生されるIgG型抗アフラトキシンモノ
クロナール抗体であつて、アフラトキシンB1
の反応性比を100%とした時、それぞれアフラト
キシンB2との反応性比が1.4〜2.3%であり、アフ
ラトキシンG1との反応性比が1.2〜3.1%であり、
アフラトキシンM1との反応性比が1.7〜4.5%であ
り且つアフラトキシンB2aとの反応性比が0.8〜
1.3%であることを特徴とするモノクローナル抗
体。 2 該モノクローナル抗体が微工研受託番号微工
研条寄第1609号(FERM BP−1609)として微
工研に寄託されたハイブリドーマが産生する抗体
である特許請求の範囲第1項記載のモノクローナ
ル抗体。
[Scope of Claims] 1. An IgG type anti-aflatoxin monoclonal antibody produced from a hybridoma formed by cell fusion of mouse myeloma and lymphocytes of a mouse previously immunized with an antigen containing aflatoxin B 1 as a hapten. Therefore, when the reactivity ratio with aflatoxin B 1 is taken as 100%, the reactivity ratio with aflatoxin B 2 is 1.4 to 2.3%, and the reactivity ratio with aflatoxin G 1 is 1.2 to 3.1%,
The reactivity ratio with aflatoxin M 1 is 1.7 to 4.5% and the reactivity ratio with aflatoxin B 2a is 0.8 to 4.5%.
A monoclonal antibody characterized by 1.3%. 2. The monoclonal antibody according to claim 1, wherein the monoclonal antibody is an antibody produced by a hybridoma deposited with FERM under the FERM accession number FERM BP-1609. .
JP62052182A 1987-03-09 1987-03-09 Antiaflatoxin monoclonal antibody and hybridoma producing said antibody Granted JPS63219394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052182A JPS63219394A (en) 1987-03-09 1987-03-09 Antiaflatoxin monoclonal antibody and hybridoma producing said antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052182A JPS63219394A (en) 1987-03-09 1987-03-09 Antiaflatoxin monoclonal antibody and hybridoma producing said antibody

Publications (2)

Publication Number Publication Date
JPS63219394A JPS63219394A (en) 1988-09-13
JPH0438400B2 true JPH0438400B2 (en) 1992-06-24

Family

ID=12907665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052182A Granted JPS63219394A (en) 1987-03-09 1987-03-09 Antiaflatoxin monoclonal antibody and hybridoma producing said antibody

Country Status (1)

Country Link
JP (1) JPS63219394A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279561B1 (en) 1993-04-23 2007-10-09 Wyeth Anti-rapamycin monoclonal antibodies
WO2008059837A1 (en) 2006-11-17 2008-05-22 Horiba, Ltd. Antibody against aflatoxins, support using the antibody, method of immunologically detecting aflatoxins and method of concentrating and purifying aflatoxins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOLOGICAL ABSTRACTS=1984 *
LETTERS IN APPLIED MICROBIOLOGY=1985 *

Also Published As

Publication number Publication date
JPS63219394A (en) 1988-09-13

Similar Documents

Publication Publication Date Title
US4536479A (en) Use of anti-idiotype antibodies in immunoassays
Haasnoot et al. Direct versus competitive biosensor immunoassays for the detection of (dihydro) streptomycin residues in milk
JPH0438400B2 (en)
JPS61171500A (en) Antiochratoxin a monoclonal antibody and determination of ochratoxin
EP1098198A1 (en) Method for the qualitative and quantitative determination of class igG human antibodies
KR100287382B1 (en) How to produce antibodies of Zirrenone Toxin
JP3745411B2 (en) Monoclonal antibody
CA1302920C (en) Monoclonal antibody to okadaic acids, process for producing the monoclonal antibody, assay reagent for assaying okadaic acids using the monoclonal antibody, and assay method
JPH0543358B2 (en)
JPH0789998A (en) Antimicrocystin monoclonal antibody and hybridoma producing the antibody
US5264556A (en) Monoclonal antibodies for measuring okadaic acid
CA2254151A1 (en) Method for immunological assay
KR890003591B1 (en) Process and reagent for the determination of the luteinising hormone and monoclonal antibodies suitable therefor
CA2355893C (en) Antiuracil monoclonal antibody
JPH10262662A (en) Hapten compound of phoxim, antibody and determination
JPH06153979A (en) Monoclonal antibody against fish iridovirus, hybridoma for producing the antibody and production method
JP4221119B2 (en) Specific antibody against domoic acid and immunological analysis of domoic acid
JP3849001B2 (en) Anti-2'-deoxycytidine antibodies and their production and use
Liu et al. Production and characterization of high affinity monoclonal antibodies to cyclic anti-depressant molecules
KR910002851B1 (en) Process making of anti t-2 toxin monoclonal antibody and method analysis a t-2 toxin
JPH01160494A (en) Monoclonal antibody against human immunodeficiency virus and production of said monoclonal antibody
JPH08242883A (en) Monoclonal antibody against 2-mthylisoborneol, its production and measurement of 2-methylisoborneol with the same
JPH08338841A (en) Sandwich immunoassay
JP2567664B2 (en) Monoclonal antibody against human Mn superoxide dismutase
MARCHAND et al. Production and partial characterization of monoclonal antibodies against 3, 3′, 5-triiodo-l-thyronine