JPH0437339B2 - - Google Patents

Info

Publication number
JPH0437339B2
JPH0437339B2 JP59201895A JP20189584A JPH0437339B2 JP H0437339 B2 JPH0437339 B2 JP H0437339B2 JP 59201895 A JP59201895 A JP 59201895A JP 20189584 A JP20189584 A JP 20189584A JP H0437339 B2 JPH0437339 B2 JP H0437339B2
Authority
JP
Japan
Prior art keywords
air conditioner
current value
compressor
pressure
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59201895A
Other languages
Japanese (ja)
Other versions
JPS6183832A (en
Inventor
Fumya Yada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP59201895A priority Critical patent/JPS6183832A/en
Publication of JPS6183832A publication Critical patent/JPS6183832A/en
Publication of JPH0437339B2 publication Critical patent/JPH0437339B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor

Description

【発明の詳細な説明】 本発明は、空気調和設備置の運転状況の監視か
ら空気調和装置の故障を未然に防止するようにし
た空気調和装置の故障診断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a failure diagnosis method for an air conditioner that prevents failures of the air conditioner by monitoring the operating status of the air conditioner.

ビル管理のうちの空調設備の管理に対しては、
温度、湿度、塵埃、還気、防災、振動、騒音、気
流、腐食、等の各種の管理技術が要求される。従
来、このような空調設備の管理技術は、メインテ
ナンス要員の個人的な経験と能力や知識に依存す
る割合が多く、空調設備の高度化と精密空調制御
に伴つて迅速且つ完全な管理を行うには限界が生
じている。特に電算機室、半導体製造装置、医薬
品製造装置等の精密空調が要求されるところでの
ビル管理では、空調設備管理の重要性は極めて高
く、その管理技術は高度なものが要求され、完全
メインテナンスの維持が重要課題であるが、これ
を個人的能力によつて維持するには問題がある。
For the management of air conditioning equipment in building management,
Various management techniques are required for temperature, humidity, dust, return air, disaster prevention, vibration, noise, airflow, corrosion, etc. Conventionally, management technology for such air conditioning equipment has largely depended on the personal experience, ability, and knowledge of maintenance personnel.As air conditioning equipment becomes more sophisticated and precision air conditioning control becomes more sophisticated, it has become increasingly difficult to manage it quickly and completely. has a limit. Especially in the management of buildings where precision air conditioning is required, such as computer rooms, semiconductor manufacturing equipment, pharmaceutical manufacturing equipment, etc., the importance of air conditioning equipment management is extremely high, and advanced management technology is required. Maintenance is an important issue, but there are problems in maintaining this through individual ability.

一般に、通常のビル管理において、防犯設備、
給排水設備、電気系統設備、防災設備などと共に
空調設備も一括して集中管理する管理室が設けら
れ、空調設備もその一環として集中管理システム
に組み込まれている場合が多い。このようなシス
テムにおいては、各種機器の自動制御に主眼がお
かれ、このシステムをメインテナンスのための不
良箇所の検出や故障予知に利用することは意図さ
れていないのが通常である。また、この集中管理
室に常駐する要員が空調設備の専門家である場合
は少なく、従つて彼等に適格なメインテナンス情
報を期待することもできない。
Generally, in normal building management, security equipment,
A control room is set up to centrally manage air conditioning equipment along with water supply and drainage equipment, electrical system equipment, disaster prevention equipment, etc., and in many cases, air conditioning equipment is also incorporated into the central management system. In such systems, the main focus is on automatic control of various devices, and the system is usually not intended to be used for detecting defective parts or predicting failures for maintenance purposes. Furthermore, it is rare for the personnel stationed in this central control room to be experts in air conditioning equipment, and therefore it is not possible to expect them to provide qualified maintenance information.

このようなことから、不良や故障が許されない
空調設備に対して、その空調設備の故障予知シス
テムの開発が強く望まれている。
For these reasons, there is a strong desire to develop a failure prediction system for air conditioning equipment that cannot tolerate defects or failures.

本発明はこの要求を満足することを目的として
なされたものである。この目的を効果的に達成す
るシステムとして、本発明は、空気調和装置の運
転状況を検出する各種のセンサーから各検出信号
をコンピユータに入力して空気調和装置の運転状
態を監視するさいに、これらの検出信号として、
空気調和装置稼働中の圧縮機電流値と冷媒圧力を
選択し、この圧縮機電流値と冷媒圧力の相関値と
空気調和装置の不良原因項目との間の相関情報を
予め求めておき、圧縮機電流値と冷媒圧力の検出
信号が前記不良原因項目に対応する値に至つたと
きにその不良原因項目をコンピユータが出力し、
空気調和装置が故障する前にその不良箇所を予知
する空気調和装置の故障診断方法を提供するもの
である。
The present invention has been made with the aim of satisfying this requirement. As a system that effectively achieves this objective, the present invention provides a system that monitors the operating status of an air conditioner by inputting each detection signal from various sensors that detect the operating status of the air conditioner into a computer. As the detection signal of
Select the compressor current value and refrigerant pressure when the air conditioner is operating, and calculate the correlation information between the correlation value of the compressor current value and refrigerant pressure and the defect cause item of the air conditioner in advance. When the detection signals of the current value and refrigerant pressure reach values corresponding to the defect cause item, the computer outputs the defect cause item;
An object of the present invention is to provide a failure diagnosis method for an air conditioner that predicts a defective location before the air conditioner malfunctions.

以下に図面に従つて本発明の内容を具体的に説
明する。
The contents of the present invention will be specifically explained below with reference to the drawings.

第1図は、圧縮機電流値と冷媒圧力を入力情報
とした場合の原因特性を示す図である。圧縮機電
流値は電流計より、また冷媒圧力は例えば圧縮機
吐出側の高圧ガス圧と蒸発器出口側の低圧ガス圧
をそれぞれ圧力計で検出し、空気調和装置稼働中
においてこれらの検出信号を入力情報としてモニ
ターした場合に、第1図に示されるように、故障
原因を識別することができる。すなわち、既設の
或る設備において、正常運転の帯域N(ハツチ部
分)が高圧ガス側と低圧ガス側の両者おいて定め
られるが、圧縮機電流値とこれらの冷媒圧力との
相関値がこの帯域から外れる程度に従つて、不良
原因がどこに存在するかを類別する。
FIG. 1 is a diagram showing the causal characteristics when the compressor current value and refrigerant pressure are used as input information. The compressor current value is detected with an ammeter, and the refrigerant pressure is detected with a pressure gauge, for example, the high pressure gas pressure on the compressor discharge side and the low pressure gas pressure on the evaporator outlet side, and these detection signals are detected while the air conditioner is in operation. When monitored as input information, the cause of the failure can be identified as shown in FIG. In other words, in some existing equipment, the normal operation band N (hatch area) is determined for both the high pressure gas side and the low pressure gas side, but the correlation value between the compressor current value and these refrigerant pressures is within this band. The cause of the failure is classified according to the extent to which it deviates from the above.

例えば、冷媒圧力のうちの高圧ガス側圧力と圧
縮機電流値との相関において、圧縮機電流値が正
常値よりも高く検出される場合には、その高くな
る傾向に応じて、 イ 外気温度上昇 ロ 冷媒過充填 ハ 膨脹弁不良 ニ 室内負荷大 ホ コイル通過風量大 ヘ 屋外機能力低下 ニ 圧縮機の軸受異常 チ 圧縮機電動機のレアシヨツト などが判断される。これよりも冷媒圧力も低下し
且つ圧縮機電流値が異常に高くなる場合には、圧
縮機の軸受破損、可溶栓噴出、圧縮機電動機の焼
損、などが判別される。もつとも、このような事
態が生ずるまでには、前記のイ〜チの判断情報が
入手されるので、事故に至る前に対策をたてるこ
とになるし、また緊急用の保護装置を自動作動さ
せることもできる。このような保護装置の作動と
しては、高圧カツト作動、圧縮機サーマル作動、
圧縮機保護サーモ作動などがある。なお、前記の
イ〜チの情報は必ずしもこの順番になるとは限ら
ない。アツパーの原因としてはこのようなものが
あり、これらは分類の手段として利用することが
できる。すなわち、この分類の中から該当しない
ものを除いてゆき、残つたものを原因とすること
ができる。
For example, in the correlation between the high-pressure gas side pressure of the refrigerant pressure and the compressor current value, if the compressor current value is detected to be higher than the normal value, depending on the tendency to increase, (b) Overfilling of refrigerant (c) Faulty expansion valve (b) Large indoor load (c) Large air flow passing through the coil (decreased outdoor performance) Compressor bearing abnormality (c) Compressor motor rare shot, etc. can be determined. If the refrigerant pressure is lower than this and the compressor current value is abnormally high, it is determined that compressor bearing damage, fusible plug blowout, compressor motor burnout, etc. Of course, by the time such a situation occurs, the above judgment information will be obtained, so countermeasures will be taken before an accident occurs, and emergency protection devices will be activated automatically. You can also do that. Activation of such protection devices includes high pressure cut operation, compressor thermal activation,
Includes compressor protection thermostat. Note that the above information 1 to 1 is not necessarily in this order. There are the following causes of hot spots, and these can be used as a means of classification. In other words, it is possible to remove items that do not fall into this category and attribute the remaining items to the cause.

同様に、冷媒圧力のうちの低圧ガス側圧力と圧
縮機電流値との相関において、圧縮機電流値が正
常値よりも低く検出される場合には、その低くな
る傾向に応じて、 リ 外気温度低下 ヌ 冷媒不足 ル 膨脹弁不良 オ 室内負荷減 ワ コイル通過風量減 カ コイル表面結霜 などが判断され、さらに圧縮機電流値が異常に低
下する場合には、コイルの氷結、冷媒液のバツ
ク、弁割れ、電動機焼損、などの事故に至ること
になる。もつとも、このような事故に至る前に、
低圧カツト作動を行い、またこれに至る間に入手
された前記情報から適切な処置を行うことにな
る。
Similarly, in the correlation between the low-pressure gas side pressure of the refrigerant pressure and the compressor current value, if the compressor current value is detected to be lower than the normal value, depending on the tendency to decrease, Insufficient refrigerant Defective expansion valve Indoor load reduction Reduced air flow passing through the coil If it is determined that there is frost on the coil surface, and the compressor current value decreases abnormally, it may be due to freezing of the coil, backing of the refrigerant, or This can lead to accidents such as valve cracks and motor burnouts. However, before such an accident occurs,
A low-pressure cut operation will be performed, and appropriate action will be taken from the information obtained along the way.

このようにして、圧縮機電流値と冷媒圧力の相
関情報から設備の故障原因特性を識別することが
できることになるが、この複数の原因の中から空
気調和装置への吸込空気温度(単に吸込空気温度
と呼ぶ)、さらには送風機電動機の電流値(送風
機電流値と呼ぶ)を検出し、選択判断により原因
特性を判定できる。
In this way, it is possible to identify the cause of equipment failure from the correlation information between compressor current value and refrigerant pressure. By detecting the temperature (referred to as the temperature) and the current value of the blower motor (referred to as the blower current value), it is possible to determine the causal characteristics by selectively determining the current value.

第2図は前記同様の選択判断の例を示しており
吸込空気温度と冷媒圧力による原因特性を示す。
FIG. 2 shows an example of selection judgment similar to the above, and shows the causal characteristics depending on the suction air temperature and refrigerant pressure.

第2図のaは、第1図においてロの冷媒過充填
が判断されたときに、吸込空気温度の情報から膨
脹弁異常を判断する冷媒過充填特性の例を示して
いる。すなわち、吸込空気温度と高圧ガス側圧力
との相関において、正常運転特性N'の領域より
高圧ガス側圧力が低下した場合に膨脹弁異常を判
断する。
FIG. 2a shows an example of the refrigerant overfilling characteristic for determining an expansion valve abnormality from information on the suction air temperature when refrigerant overfilling (b) in FIG. 1 is determined. That is, in the correlation between the intake air temperature and the high-pressure gas side pressure, an expansion valve abnormality is determined when the high-pressure gas side pressure is lower than the region of the normal operating characteristic N'.

第2図のbは、第1図においてヌの冷媒不足が
判断されたときに、吸込空気温度の情報から膨脹
弁異常を判断する冷媒不足特性の例を示してい
る。すなわち、吸込空気温度と低圧ガス側圧力と
の相関において、正常運転特性N'の領域より低
圧ガス側圧力が増加した場合に膨脹弁異常を判断
する。
FIG. 2b shows an example of the refrigerant shortage characteristic in which an expansion valve abnormality is determined from information on the suction air temperature when the refrigerant shortage is determined in FIG. That is, in the correlation between the intake air temperature and the low-pressure gas side pressure, an expansion valve abnormality is determined when the low-pressure gas side pressure increases from the region of the normal operation characteristic N'.

第3図のaは、第1図で判断されたホのコイル
通過風量増大およびワのコイル通過風量減を、空
気調和装置の室内側送風機電流値の入力情報よ
り、この送風機電流値が正常運転域N'よりも低
下した場合には、その低下の程度に応じて ヨ フイルター目詰まり タ ベルトスリツプ レ 結霜発生 ソ 氷結 を判断し、逆に、この送風機電流値が正常運転域
N'よりも増大した場合には、その増大の程度に
応じて、 ツ フイルター欠除 ネ 軸受給油不足 ナ シヤフトバランス不良 を判断する。
Fig. 3a shows that the increase in air flow passing through the coil (E) and the decrease in air flow passing through the coil (W) determined in Fig. 1 are determined based on the input information of the indoor blower current value of the air conditioner, and this blower current value is used for normal operation. If the blower current value falls below the range N', it is determined whether the blower current is in the normal operating range.
If the increase exceeds N', determine whether there is a lack of filter, insufficient bearing lubrication, or poor shaft balance depending on the degree of increase.

第3図のbは、第1図で判断されたヘの屋外機
能力低下を、空気調和装置の屋外側送風機電流値
の入力情報より、この送風機電流値が正常運転域
N'よりも低下した場合には、その低下の程度に
応じて、 ラ フイン目詰まり ム シヤフト空転 を判断し、逆に、この送風機電流値が正常運転域
N'よりも増大した場合には、その増大の程度に
応じて、 ウ 異物による障害 ノ 軸受異常(無給油型) を判断する。
Fig. 3b shows that the outdoor functional capacity decline determined in Fig. 1 is determined from the input information of the outdoor blower current value of the air conditioner when this blower current value is within the normal operating range.
If the blower current value falls below N', it is determined that the rough-in clogging is occurring and the shaft is idling according to the degree of the drop.
If the increase is greater than N', determine whether the bearing is abnormal (non-lubricated type) due to a foreign object, depending on the degree of increase.

このような入力信号による原因特性判断は、全
てコンピユータによつて行うことができる。コン
ピユータは各入力信号により故障原因を判断し、
警報メツセージ、メインテナンスメツセージまた
は異常メツセージを選択してブラウン管、プリン
ター、または警報ブザーに出力する。
All determinations of cause characteristics based on such input signals can be performed by a computer. The computer determines the cause of the failure based on each input signal,
Select and output alarm messages, maintenance messages, or abnormal messages to a cathode ray tube, printer, or alarm buzzer.

第4図のa〜dは、このコンピユータプログラ
ミングの例を示している。また、第4図のeは各
種の保護装置が作動した場合に警報メツセージを
出力するフローを示している。
Figures 4a-d show examples of this computer programming. Further, e in FIG. 4 shows a flow for outputting a warning message when various protection devices are activated.

本発明は、このようにして、圧縮機電流値と冷
媒圧力の相関情報をもとにして空気調和装置の各
所の故障原因を診断するものであり、この相関情
報の細部については吸込空気温度や送風機電流値
の入力を分析することによつて一層正確な故障予
知診断ができる。そしてこのような故障診断結果
はコンピユータにより機器判断され、各種の警報
を出力することができるから、従来の経験的なメ
インテナンス作業をより信頼性のあるものとする
ことができ、故障が許されない建物の空気調和装
置の正常運転を補償することができる。
In this way, the present invention diagnoses the causes of failures in various parts of the air conditioner based on the correlation information between the compressor current value and the refrigerant pressure, and the details of this correlation information are based on the intake air temperature and By analyzing the input of the blower current value, more accurate failure prediction and diagnosis can be performed. The results of such failure diagnosis can be judged by a computer and various warnings can be output, making conventional empirical maintenance work more reliable and improving the reliability of buildings where failures cannot be tolerated. The normal operation of the air conditioner can be guaranteed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧縮機電流値と冷媒圧力による故障原
因特性図、第2図は冷媒圧力と吸込空気温度によ
る故障原因特性図、第3図は送風機電流値による
故障原因特性図、第4図a〜eは本発明法を実施
するのに使用するコンピユータプログラムの一例
を示すフロー図である。
Figure 1 is a failure cause characteristic diagram based on compressor current value and refrigerant pressure, Figure 2 is a failure cause characteristic diagram based on refrigerant pressure and suction air temperature, Figure 3 is a failure cause characteristic diagram based on blower current value, and Figure 4 a. -e are flow diagrams showing an example of a computer program used to implement the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 空気調和装置の運転状況を検出する各種のセ
ンサーから各検出信号をコンピユータに入力して
空気調和装置の運転状態を監視するさいに、該検
出信号として、空気調和装置稼働中の圧縮機電流
値と冷媒圧力を選択し、圧縮機電流値と冷媒圧力
の相関値と空気調和装置の不良原因項目との間の
相関情報を予め求めておき、圧縮機電流値と冷媒
圧力の検出信号が前記不良原因項目に対応する値
に至つたときにその不良原因項目をコンピユータ
が出力し、空気調和装置が故障する前にその不良
箇所を予知する空気調和装置の故障診断方法。
1. When monitoring the operating status of an air conditioner by inputting each detection signal from various sensors that detect the operating status of the air conditioner into a computer, the compressor current value while the air conditioner is in operation is used as the detection signal. and refrigerant pressure, and obtain correlation information in advance between the correlation value of the compressor current value and refrigerant pressure and the defect cause item of the air conditioner, and the detection signal of the compressor current value and refrigerant pressure is A failure diagnosis method for an air conditioner in which a computer outputs the cause of a failure when a value corresponding to the cause item is reached, and the failure location of the air conditioner is predicted before the air conditioner malfunctions.
JP59201895A 1984-09-28 1984-09-28 Failure diagnosing method for air conditioner Granted JPS6183832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201895A JPS6183832A (en) 1984-09-28 1984-09-28 Failure diagnosing method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201895A JPS6183832A (en) 1984-09-28 1984-09-28 Failure diagnosing method for air conditioner

Publications (2)

Publication Number Publication Date
JPS6183832A JPS6183832A (en) 1986-04-28
JPH0437339B2 true JPH0437339B2 (en) 1992-06-19

Family

ID=16448600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201895A Granted JPS6183832A (en) 1984-09-28 1984-09-28 Failure diagnosing method for air conditioner

Country Status (1)

Country Link
JP (1) JPS6183832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550975B2 (en) * 2000-07-25 2010-09-22 旭化成ホームズ株式会社 Equipment remote monitoring diagnosis system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397350U (en) * 1990-01-24 1991-10-07
JP3703346B2 (en) * 1999-09-24 2005-10-05 三菱電機株式会社 Air conditioner
JP2018516834A (en) 2015-04-24 2018-06-28 コーニング インコーポレイテッド Combined zirconia refractory and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627850A (en) * 1979-08-13 1981-03-18 Sharp Corp Filter clogging alarm
JPS58193055A (en) * 1982-05-04 1983-11-10 株式会社東芝 Heat pump type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627850A (en) * 1979-08-13 1981-03-18 Sharp Corp Filter clogging alarm
JPS58193055A (en) * 1982-05-04 1983-11-10 株式会社東芝 Heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550975B2 (en) * 2000-07-25 2010-09-22 旭化成ホームズ株式会社 Equipment remote monitoring diagnosis system

Also Published As

Publication number Publication date
JPS6183832A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US7343750B2 (en) Diagnosing a loss of refrigerant charge in a refrigerant system
US8033125B2 (en) Air conditioner control device
US7494536B2 (en) Method for detecting a fault in an HVAC system
CN102428277A (en) Diagnostic System
CN108317662B (en) Fault detection method and device, air conditioner and computer readable storage medium
JPH0357316B2 (en)
CN107957122B (en) Air conditioning system abnormity judgment method and device
JP2000304388A (en) Air conditioner
CN109612015A (en) Control guard method and air-conditioning for air-conditioning
WO2023005323A1 (en) Fault monitoring method for air conditioning unit
JP4663483B2 (en) Air conditioner
JPH1019427A (en) Air conditioner with diagnosis of trouble
JPH0510572B2 (en)
JPH0437339B2 (en)
JP2009145005A (en) Control method for multiple room type air conditioner
JP3431377B2 (en) Air conditioner
JPS6183831A (en) Failure diagnosing method of air conditioner
US7342756B2 (en) Fault recognition in systems with multiple circuits
KR100677282B1 (en) Out door unit control method and control apparatus for air conditioner
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JPH06221740A (en) Management of freezing and refrigerating equipment
JPH02143056A (en) Starting device for two dimensional freezer
JP7237182B2 (en) air conditioner
JP3113382B2 (en) Fault monitoring device and fault monitoring method by fuzzy inference

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees