JPH04372843A - Sample positioning method - Google Patents

Sample positioning method

Info

Publication number
JPH04372843A
JPH04372843A JP15124091A JP15124091A JPH04372843A JP H04372843 A JPH04372843 A JP H04372843A JP 15124091 A JP15124091 A JP 15124091A JP 15124091 A JP15124091 A JP 15124091A JP H04372843 A JPH04372843 A JP H04372843A
Authority
JP
Japan
Prior art keywords
sample
laser beam
modulated
laser
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15124091A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
公 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15124091A priority Critical patent/JPH04372843A/en
Publication of JPH04372843A publication Critical patent/JPH04372843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain the method for determining the accurate position of a sample in the machining process of a material and at the analysis of the material. CONSTITUTION:The laser light from an illuminating laser 1 is modulated with a specified frequency in a modulator 2, and the light is cast on a sample 6 so as to emit heat wave. The change in refractive index of fluid generated at immediately upper part of the sample by the heat wave is detected with a bisected photodiode 7 as the polarized probe laser light from a probe laser 4. The position of the sample can be accurately determined by measuring the phase delay of the polarizing period from the illuminating period of the modulated laser light.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、試料の位置決め方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for positioning a sample.

【0002】0002

【従来の技術】従来、材料の加工工程や分析時などにお
ける試料を正確に所定の位置に設置する方法としては、
たとえば、試料にレーザ光を照射してその反射光をナイ
フエッジで分割した後に集光し、フォトダイオードで強
度を測定してその強度が所定の値になるような位置に試
料を設置する方法や、二分割フォトダイオードで反射光
を測定してその2つのフォトダイオードの強度比が一定
になるように試料を設置する方法、あるいは入射光と反
射光の間の干渉強度が一定になるように試料を設置する
方法などが知られている。
[Prior Art] Conventionally, methods for accurately placing a sample in a predetermined position during material processing or analysis are as follows:
For example, there is a method in which a sample is irradiated with a laser beam, the reflected light is divided by a knife edge, the beam is focused, the intensity is measured with a photodiode, and the sample is placed at a position where the intensity reaches a predetermined value. , the method of measuring the reflected light with a two-split photodiode and setting the sample so that the intensity ratio of the two photodiodes is constant, or the method of setting the sample so that the interference intensity between the incident light and the reflected light is constant. There are known methods for installing.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記し
た従来の位置決め方法はいずれも反射光の測定を必要と
する方法であるから、反射率の低い試料に対しては適用
することができないという問題があった。また、試料の
表面状態が粗であって乱反射を生じるような場合にも適
用が困難であった。本発明は、上記のような従来技術の
有する課題を解決すべくしてなされたものであって、光
を反射しないまたは反射率の低い試料、あるいは試料表
面状態が粗であるような試料であっても、正確に位置決
めし得る方法を提供することを目的とする。
[Problems to be Solved by the Invention] However, since all of the above-mentioned conventional positioning methods require measurement of reflected light, there is a problem that they cannot be applied to samples with low reflectance. there were. Furthermore, it is difficult to apply this method to cases where the surface of the sample is rough and causes diffused reflection. The present invention has been made in order to solve the problems of the prior art as described above, and is applicable to samples that do not reflect light or have low reflectance, or samples that have rough surface conditions. It is also an object of the present invention to provide a method for accurate positioning.

【0004】0004

【課題を解決するための手段】本発明は、所定の周波数
で変調されたレーザ光を試料に照射し、試料からの熱放
出によって生じる試料直上流体の屈折率変化を試料直上
を通過するプローブレーザ光の偏光として測定し、この
偏光周期の前記変調レーザ光照射周期からの位相遅れを
測定することを特徴とする試料の位置決め方法である。
[Means for Solving the Problems] The present invention irradiates a sample with a laser beam modulated at a predetermined frequency, and uses a probe laser that passes directly above the sample to detect changes in the refractive index of a fluid directly above the sample caused by heat release from the sample. This method of positioning a sample is characterized in that the polarization of light is measured, and the phase delay of this polarization period from the modulated laser beam irradiation period is measured.

【0005】[0005]

【作  用】試料に所定の周波数で変調されたレーザ光
を照射すると、光熱変換により試料から試料直上流体に
熱波が放出される。この熱波の流体中の伝播は熱拡散方
程式の一般解として、下記式(数1)によって表される
。     T(x,t)=T0 exp(−x/μ)・c
os(ωt−x/μ)………(数1)ここで、x;試料
表面からの距離、t;レーザ光照射時からの時間、T(
x,t);  位置x,時間tでの温度、T0 ;試料
表面温度、μ;熱拡散長、ω;角周波数である。
[Operation] When a sample is irradiated with laser light modulated at a predetermined frequency, heat waves are emitted from the sample to the fluid directly above the sample due to photothermal conversion. The propagation of this heat wave in the fluid is expressed by the following equation (Equation 1) as a general solution to the thermal diffusion equation. T(x,t)=T0 exp(-x/μ)・c
os(ωt-x/μ) (Equation 1) where x: distance from the sample surface, t: time from the time of laser beam irradiation, T(
x, t): temperature at position x and time t, T0: sample surface temperature, μ: thermal diffusion length, ω: angular frequency.

【0006】流体の屈折率は流体の温度によって変化す
るので、変調レーザ光とは異なったプローブレーザ光を
試料直上流体中を通過させると、上記した式(数1)に
示す流体の温度変化によって生じる屈折率変化のために
、このプローブレーザ光は周期的に偏光する。この流体
の温度変化は、式(数1)において(x/μ)で表され
る位相遅れを含んでいるので、偏光周期も同様に変調レ
ーザ光照射周期に対して(x/μ)の位相遅れが生じる
。したがって、プローブレーザ光の通過位置を固定すれ
ば、試料位置の変化に応じて位相遅れが変化する。
Since the refractive index of the fluid changes depending on the temperature of the fluid, when a probe laser beam different from the modulated laser beam is passed through the fluid directly above the sample, the refractive index of the fluid changes as shown in the above equation (Equation 1). Due to the resulting refractive index change, this probe laser light becomes periodically polarized. Since the temperature change of this fluid includes a phase delay expressed by (x/μ) in equation (1), the polarization period also has a phase of (x/μ) with respect to the modulated laser beam irradiation period. There will be a delay. Therefore, if the passing position of the probe laser beam is fixed, the phase delay changes according to changes in the sample position.

【0007】すなわち、本発明によれば、上記の事実に
基づいて、偏光周期の変調レーザ光照射周期からの位相
遅れを一定にすることにより、試料の正確な位置決めを
行うことが可能である。
That is, according to the present invention, based on the above facts, it is possible to accurately position the sample by making constant the phase delay of the polarization period from the modulated laser beam irradiation period.

【0008】[0008]

【実施例】以下に、本発明の実施例について図面を参照
して説明する。図1は、本発明方法を実施するための測
定装置の構成例を示す概要図である。図において、1は
照射用レーザ、2は変調器、3は集光レンズ、4はプロ
ーブ用レーザ、5は集光レンズ、6は試料、7は二分割
フォトダイオード、8は変調器電源、9はロックインア
ンプである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an example of the configuration of a measuring device for carrying out the method of the present invention. In the figure, 1 is an irradiation laser, 2 is a modulator, 3 is a condensing lens, 4 is a probe laser, 5 is a condensing lens, 6 is a sample, 7 is a two-split photodiode, 8 is a modulator power supply, 9 is a lock-in amplifier.

【0009】そこで、照射用レーザ1からのレーザ光を
変調器2で所定の周波数で変調した後集光レンズ3を介
して試料6に照射すると、試料6からその直上に熱波が
放出される。一方、プローブ用レーザ4からのプローブ
レーザ光を集光レンズ5を介して試料6の直上に照射す
ると、試料6からの熱波によって試料直上流体の屈折率
が変化し、これによってプローブレーザ光が偏光する。 この偏光を二分割フォトダイオード7で検出してロック
インアンプ9に入力することにより、偏光周期の変調レ
ーザ光照射周期からの位相遅れを測定する。そして、予
め膜厚既知の試料を用いて作成された検量線により試料
とプローブレーザ光間の距離を求めることにより、試料
6の位置決めを行う。
Therefore, when the laser beam from the irradiation laser 1 is modulated at a predetermined frequency by the modulator 2 and then irradiated onto the sample 6 through the condenser lens 3, heat waves are emitted from the sample 6 directly above it. . On the other hand, when the probe laser beam from the probe laser 4 is irradiated directly above the sample 6 through the condensing lens 5, the refractive index of the fluid directly above the sample changes due to the heat wave from the sample 6, which causes the probe laser beam to Polarize. By detecting this polarized light with the two-split photodiode 7 and inputting it to the lock-in amplifier 9, the phase delay of the polarization period from the modulated laser beam irradiation period is measured. The sample 6 is then positioned by determining the distance between the sample and the probe laser beam using a calibration curve prepared in advance using a sample whose film thickness is known.

【0010】いま、試料6としては鋼板表面に黒色塗料
を塗布した被覆鋼板を用い、照射用レーザ1として30
mWAr+ イオンレーザを用い、変調器2の変調周波
数は500 Hzとした。またプローブ用レーザ4とし
ては5mWHe−Ne レーザを用いた。このときの試
料位置と位相遅れとの関係特性を図2に示した。この結
果から、1μm の位置ずれを0.34°の位相遅れと
して検出することができ、サブミクロンオーダの位置決
めができる。
Now, as the sample 6, a coated steel plate with black paint applied to the surface of the steel plate is used, and as the irradiation laser 1, 30
An mWAr+ ion laser was used, and the modulation frequency of modulator 2 was 500 Hz. Further, as the probe laser 4, a 5 mWHe-Ne laser was used. FIG. 2 shows the relationship between the sample position and phase delay at this time. From this result, a positional deviation of 1 μm can be detected as a phase delay of 0.34°, and positioning on the order of submicrons can be performed.

【0011】[0011]

【発明の効果】以上説明したように本発明によれば、試
料にレーザ光を照射したときに試料から発生する熱波に
よる屈折率の変化をプローブレーザ光の偏光として測定
するようにしたので、反射率の低い試料や表面状態が粗
である試料であっても、正確に位置決めすることができ
、試料の位置決め精度の向上に大いに寄与する。
As explained above, according to the present invention, the change in refractive index due to the heat wave generated from the sample when the sample is irradiated with laser light is measured as the polarized light of the probe laser beam. Even samples with low reflectance or rough surfaces can be accurately positioned, greatly contributing to improving sample positioning accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の方法を実施するための測定装置の構成
例を示す概要図である。
FIG. 1 is a schematic diagram showing an example of the configuration of a measuring device for implementing the method of the present invention.

【図2】本発明によって得られた試料位置と位相遅れと
の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between sample position and phase delay obtained by the present invention.

【符号の説明】[Explanation of symbols]

1  照射用レーザ 2  変調器 3  集光レンズ 4  プローブ用レーザ 5  集光レンズ 6  試料 7  二分割フォトダイオード 8  変調器電源 9  ロックインアンプ 1 Laser for irradiation 2 Modulator 3. Condensing lens 4 Laser for probe 5 Condensing lens 6 Sample 7 Two-split photodiode 8 Modulator power supply 9 Lock-in amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】    所定の周波数で変調されたレーザ
光を試料に照射し、試料からの熱放出によって生じる試
料直上流体の屈折率変化を試料直上を通過するプローブ
レーザ光の偏光として測定し、この偏光周期の前記変調
レーザ光照射周期からの位相遅れを測定することを特徴
とする試料の位置決め方法。
Claim 1: A sample is irradiated with a laser beam modulated at a predetermined frequency, and a change in the refractive index of a fluid directly above the sample caused by heat emission from the sample is measured as the polarization of a probe laser beam passing directly above the sample. A method for positioning a sample, comprising measuring a phase delay of a polarization period from the modulated laser beam irradiation period.
JP15124091A 1991-06-24 1991-06-24 Sample positioning method Pending JPH04372843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15124091A JPH04372843A (en) 1991-06-24 1991-06-24 Sample positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15124091A JPH04372843A (en) 1991-06-24 1991-06-24 Sample positioning method

Publications (1)

Publication Number Publication Date
JPH04372843A true JPH04372843A (en) 1992-12-25

Family

ID=15514321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15124091A Pending JPH04372843A (en) 1991-06-24 1991-06-24 Sample positioning method

Country Status (1)

Country Link
JP (1) JPH04372843A (en)

Similar Documents

Publication Publication Date Title
EP0165711B1 (en) Method and apparatus for detecting thermal waves
US3017512A (en) Coating thickness gauge
EP0432963B1 (en) Method and apparatus for evaluating ion implant dosage levels in semiconductors
JP2731590B2 (en) How to measure contact angle
US5408327A (en) Process and arrangement for photothermal spectroscopy
US8622612B2 (en) Method and apparatus for determining the thermal expansion of a material
JPH06505794A (en) surface plasmon resonance device
US5344236A (en) Method for evaluation of quality of the interface between layer and substrate
EP0165722B1 (en) Film thickness measuring apparatus
US4299494A (en) Measurement of heat transfer between a specimen and an ambient medium
JPH04372843A (en) Sample positioning method
JP2005127748A (en) Photothermal converting/measuring apparatus and method
CN212646516U (en) Single-beam photothermal measuring device for absorption defects
JP4119385B2 (en) Photothermal conversion measuring device
Drevillon et al. Design of a new in situ spectroscopic phase modulated ellipsometer
Lunazzi et al. Fabry-Perot laser interferometry to measure refractive index or thickness of transparent materials
JPH06281418A (en) Optical thickness measuring method of plate-shaped transparent body having ruggedness
JP2529851B2 (en) Method and apparatus for measuring thermal diffusivity of high thermal conductive thin plate
JPS63200002A (en) Measurement of film thickness
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
JP2672758B2 (en) Sample thermoelasticity evaluation device
JPS6239729A (en) Method for measuring photo-physical properties
KR100409204B1 (en) Apparatus and method for measuring diffusion coefficient of metal surface
JPH09329424A (en) Method and device for optically measuring film thickness
SU1570476A1 (en) Method of determining thermal diffusivity of metals and semiconductors