JPH0437182B2 - - Google Patents

Info

Publication number
JPH0437182B2
JPH0437182B2 JP61130304A JP13030486A JPH0437182B2 JP H0437182 B2 JPH0437182 B2 JP H0437182B2 JP 61130304 A JP61130304 A JP 61130304A JP 13030486 A JP13030486 A JP 13030486A JP H0437182 B2 JPH0437182 B2 JP H0437182B2
Authority
JP
Japan
Prior art keywords
component
weight
acid
water
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61130304A
Other languages
Japanese (ja)
Other versions
JPS62289611A (en
Inventor
Naosuke Yoshida
Yasuichi Kodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61130304A priority Critical patent/JPS62289611A/en
Publication of JPS62289611A publication Critical patent/JPS62289611A/en
Publication of JPH0437182B2 publication Critical patent/JPH0437182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は複合繊維技術を用いた繊維の製造方法
に関する。さらに詳しくは2成分以上のポリマか
らなる極細繊維発生型複合繊維であつて容易に極
細繊維を得ることと、除去した成分を含む溶液の
排液に際し環境汚染や公害のないように処理しう
る複合繊維技術による繊維の製造法に関するもの
である。 (従来の技術) 従来海島型複合繊維の除去成分としてポリスチ
レン及びその変性物、ポリアミド、ポリエチレ
ン、コポリエステル等が用いられて来た。これら
成分の除去剤として、トリクレン、パークレン、
蟻酸、トルエン、アルカリ等が使用されている。
これらの除去剤は、いずれも有害・有毒物であ
り、その取扱には細心の注意が必要である。この
ため取扱い作業者への安全性、作業性及び環境汚
染の防止を考慮の上耐薬品性を具備した除去設備
に巨額の投資を行なつている。 従来比較的毒性が低いとして多く使用されてい
るポリスチレン系の溶剤であるトリクレン、パー
クレンは近年人体への悪影響が見直され、その使
用に厳しい規制が課せられて来つつある。したが
つてトリクレン、パークレンの使用が将来共に使
える保証はない。 またポリエステルの分解剤である酸やアルカリ
を水溶液として使用した場合分解除去したポリマ
の回収及び溶液の廃棄がきわめて困難である。 一方これらの危険薬品を使用しなくても、1成
分を除去する方法としては、その成分が水溶性で
あれば目的を達成することができる。従来知られ
ている水溶性のポリマとしては、PEG、PEO、
PVAなどがある。これらのポリマは一般に熱流
動性や耐熱性が悪く単独では非常に限られた条件
の範囲でしか繊維化することができない。したが
つて、複合繊維の1成分とするには組合せる他成
分ポリマの特性との関係の上に成り立つものであ
り、融点、相溶性、溶融粘度などの点からも不適
であり、これまでに複合繊維の1成分としては使
われていない。 このほかに水溶性のポリマとしては特公昭55−
1373が知られている。この方法は化学薬品を使用
しないという点ではすぐれている。しかしなが
ら、このポリマは冷水には難溶で1成分の除去に
は熱水中で長時間を費やすこと(実施例2では
100℃熱水中で1時間浸漬している。)から生産性
に乏しく、布帛等を連続して除去処理するのは生
産の点から極めて困難である。またポリマの回収
にも蒸発濃縮→冷却という多工程を必要としなけ
ればならないといつた欠点を有している。 (発明が解決しようとする問題点) 本発明者らは上記欠点のない極細繊維発生型複
合繊維の1成分が容易に除去可能でかつ除去した
溶液が公害や環境面での憂いのない複合繊維の提
供を目的として鋭意検討した結果本発明の方法に
達した。 (問題点を解決するための手段) 本発明は、少なくとも2成分からなる複合繊維
であり、1成分が易溶解性の分子量200〜2000の
ポリエーテルセグメント部分の末端にアミノ基ま
たはカルボキシル基を有するポリオキシエチレン
の(A)成分と脂肪族ジカルボン酸または脂肪族
ジアミンの(B)成分とからなる構成単位を30〜
80重量%含有する共重合ポリアミドであつて、か
つ、他成分は難溶解性のものである複合繊維を用
いて、これを0.1重量%以上のアニオン系の界面
活性剤を添加した熱水に供して前記易溶解性成分
を除去することを特徴とする繊維の製造方法に関
するものである。 本発明でいう複合繊維を構成する少なくとも1
成分を占める共重合ポリアミドとは、分子量200
〜2000のポリエーテルセグメント部分の末端にア
ミノ基またはカルボキシル基を有するポリオキシ
エチレンの(A)成分と、脂肪族ジカルボン酸ま
たは脂肪族ジアミンの(B)成分とからなる構成
単位を30〜80重量%含有する共重合ポリアミドで
ある。 本発明で用いる共重合ポリアミドは、具体的に
は、ポリオキシエチレンジアミンまたはポリオキ
シエチレンジカルボン酸と、シユウ酸、コハク
酸、グルタル酸、アジピン酸、ビメリン酸、スペ
リン酸、アゼライン酸、セハシン酸、ウンテカン
ジオン酸、ドデカンジオン酸、ジグリコール酸な
どの脂肪族ジカルボン酸または、エチレンジアミ
ン、トリメチレンジアミン、テトラメチレンジア
ミン、ヘキサメチレンジアミン、ウンデカメチレ
ンジアミン、ドデカメチレンジアミン、2,2,
4−および2,4,4−トリメチルヘキサメチレ
ンジアミンなどの脂肪族ジアミンとから導かれる
単位を主たる構成単位として含有する共重合ポリ
アミドを意味する。上記ポリオキシエチレンジア
ミンまたはポリオキシエチレンジカルボン酸のポ
リエーテルセグメント部分の数平均分子量は200
〜2000、好ましくは300〜1500の範囲にあること
が必要で数平均分子量が200未満の場合には得ら
れたポリマが比較的もろくなりアニオン系の界面
活性剤を水に添加した液で溶解しにくくなる。ま
た、2000を越えるとポリアミドとしての特徴が失
われてくると共に製糸時の糸切れが多くなる。 また本発明において共重合ポリアミド中に含ま
れる(A)成分ポリオキシエチレンジアミンまた
はポリオキシエチレンジカルボン酸と(B)成分
脂肪族ジカルボン酸または脂肪族ジアミンとから
なる構成単位は、30〜80重量%の範囲にあること
が必要である。30重量%未満の場合にはアニオン
系界面活性剤を使用した液でも溶解しにくく好ま
しくない。一方80重量%越えると水溶性を増す方
向では好ましいが、熱安定性に乏しく製糸時の糸
切れが発生することとポリマが高価となる点から
好ましくない。 ポリオキシエチレンジアミンまたはポリオキシ
エチレンジカルボン酸と脂肪族ジカルボン酸また
は脂肪族ジアミンとからなる単位に対し、共重合
せしめるアミド基形成共重合成分は特に限定せず
通常公知のもの、たとえばε−カプロラクタム、
ω−ラウロラクタム、6−アミノカプロン、11−
アミノウンデカン酸、12−アミノドデカン酸など
のラクタム、アミノ酸および前記した脂肪族ジア
ミン、脂肪族ジカルボン酸、1,3−ビス(アミ
ノメチル)シクロヘキサン、1,4−ビス(アミ
ノメチル)シクロヘキサン、ビス(4,4′−アミ
ノシクロヘキシル)メタン、メタキシレンジアミ
ン、パラキシリレンジアミン、シクロヘキサンジ
カルボン酸、イソフタル酸、テレフタル酸、5−
ナトリウムスルホイソフタル酸などの通常の脂環
族、芳香族ジアミン、ジカルボン酸の組合せから
導かれる塩などから選ばれる成分を用いることが
できる。ポリアミドの重合方法は溶融重合、界面
重合、溶液重合、塊状重合、固相重合およびこれ
らの方法を組み合わせた方法が利用され、一般的
には溶融重合が最も適当である。 極細繊維発生型の複合繊維の製造法としては横
断面が海島型の高分子配列体繊維が好ましく、島
本数は得ようとする極細繊維の太さに合せて選択
すればよい。 島成分の好適例としては公知のあらゆる繊維形
成性で水に不溶のポリマが使用できる。例えばポ
リエチレンテレフタレート、これに5−ナトリウ
ムスルホイソフタル酸を共重合させたコポリエス
テル、ポリブチレンテレフタレートなどのポリエ
ステル及び変性体、ナイロン6、ナイロン66、ナ
イロン610などのポリアミド類、ポリエチレン、
ポリプロピレンなどのポリオレフイン類がある。
これらに静電防止、染色性向上、つや消し、防
汚、難燃などを目的とする改質剤や添加剤を配合
したものでもよい。 島成分と海成分の比は任意に選べる。例えば
島/海=98/2重量%〜2/98重量%、好ましく
は98/2〜20/80重量%がよい。なぜならば海成
分を除去するので量が多いと除去がしにくいこと
と経済的にも不利であるからである。 このアミド共重合物を海成分とした繊維は易脱
海性のほかに次のような特徴をもつている。繊維
を織物とするには通常製織性を向上する点から経
糸にヨリを入れ糊を付与する。これは糸の毛羽を
伏せ糸切れを少なくするためである。しかし該繊
維は水系の油剤を付与することによりフイラメン
ト同志が接着結束し見かけ上1本化する。(水に
は難溶ではあるが膨潤と微量溶けることによる。)
したがつて、ヨリを入れ糊を付与したと同じ効果
があり、無ヨリ、無糊で製織が可能である。製布
後海成分を除去すれば結束は解け極細糸特有の特
徴が出現する。 また従来多く使用されている海成分がポリスチ
レン系の糸は比較的粗硬であり、ケン縮付与時の
座屈や曲げにより糸切れや海割れによる島の露出
が生じ高次加工時のネツクとなつている。しかし
この共重合ポリアミドを海成分とした繊維は柔軟
であり製織編成上にも何ら問題はなく、パンチフ
エルト作成時のフエルト形成効果も高い。 繊維油剤については前記したごとくフイラメン
トの結束が必要な場合には水系のものがよい。そ
のほか結束を目的としない場合には非水系である
鉱物油、シリコン、フツ素あるいは脂肪族エステ
ル等をベースにして糸に要求される特性を満たす
ために必要な他のものを配合したものを使用すれ
ばよい。しかし、アニオン系の界面活性剤はポリ
マへの作用が大きいので原則として使用しない方
が望ましい。 次に該複合繊維中の成分である共重合ポリアミ
ドの除去方法についてのべる。この共重合ポリア
ミドの溶剤としては酸、アルコールが知られてい
る。これらの溶剤を水に溶かして除去液とする場
合完全溶解には、かなりの高濃度を必要とする。
必要な濃度はエチルアルコールで10%以上、硫酸
で5%以上が必要である。このような高濃度液を
用いての除去では従来のトリクレンやアルカリ溶
液での除去と何ら変わりなくメリツトがない。危
険薬品を使用せず水単独で溶解できるのが一番望
ましい。この共重合ポリアミドは水に対し親和性
があるので水単独で溶かす方法をいろいろと試み
たが水温を20〜120℃と変更しても水単独では完
成溶解することができなかつた。鋭意検討の結果
水に界面活性剤を小量添加することにより容易に
該ポリマを溶解する方法を見い出したのである。 すなわちアニオン系の界面活性剤を水に対し、
0.1重量%以上添加することによつて容易に溶解
するのである。このアニオン系界面活性剤は従来
知られているアニオン系のものならば何でもよい
が好ましいものとしては親水基がNa,K塩のも
のが特に好ましい。 この界面活性を助剤とした除去液の特徴は従来
のトリクレン、蟻酸、トルエン、アルカリ等と比
較して (1) 通常のセツケン類であり毒性は低く安全性の
点では格段の進歩である。 (2) 溶解速度が速い。 (3) 作業性が向上する。 (4) 除去設備のために多額の投資を必要としな
い。 (5) 毒性の低いことと合せて後述する回収方法と
含めて系外への排出のないことから環境汚染が
妨げ公害等の問題は皆無である。 複合繊維からの除去の時期はフイラメントやス
テープルの状態でもよいが布帛を形成したあと除
去した方が効率がよい。 除去方法としては (1) 50〜80℃に保つた界面活性剤を含んだ液中に
布帛を通しマングルで絞る。 (2) ウエツブを形成し、WJP(ウオータ・ジエツ
ト・パンチ)により、前記除去液を射出しなが
ら繊維を交絡しつつ布帛を形成することもでき
るし(工程短縮)また布帛としたものをWJP
を通し除去を行なつてもよい。 (3) 布帛としたのち染色機に入れ染色の前工程と
して除去してもよい。 次に除去した共重合ポリアミドを含む液からポ
リマの回収と残液の処理方法について記す。溶解
用除去剤の低毒性と合わせて溶解した液の処分は
環境汚染の防止及び公害の絶無から是非共必要不
可欠な課題である。 本発明者らはこの点について鋭意検討の結果次
の方法を見い出した。すなわち比較的低温(60〜
70℃)で溶解除去したのち、この液を加熱(90℃
〜95℃)することにより溶解度差によつて溶けて
いたポリマが析出し沈澱する。このポリマをろ過
等の方法で補集し残液を再度除去液として使用す
ればよい。これをくり返せば一切系外に液の廃棄
の必要はない。 次に本発明に係る実施例を示すが、本発明の有
効性は、実施例によつて何ら制限されたり、限度
解釈されるものではなく、次の応用展開をもたら
すものである。 (実施例) 試作例 数平均分子量600のポリエチレングリコールの
両末端にアクリロニトリルを付加し、これを水素
還元して得た。α,ω−ジアミノポリオキシエチ
レンとアジピン酸との等モル塩を55重量%、ε−
カプロラクタム25重量%、およびヘキサメチレン
ジアミンとアジピン酸との等モル塩20重量%を溶
融重合して相対粘度3.25のチツプを得た。(ポリ
マ1gを抱水クロラール溶液100ml中に溶解し25
℃で測定) このチツプを海成分とし、島成分に固有粘度
0.80のポリエチレンテレフタレートを用いて高分
子配列体繊維製造の口金2個を使つて次の2品種
の紡糸を行なつた。 複合繊維A。16島×18フイラメント 複合繊維B。145島×6フイラメント 海成分15重量%、島成分85重量%の割合で285
℃の口金から押出し、空気中で冷却しオイリング
しながら1200m/分の速度で引取つた。引取性は
良好で得られた未延伸糸をドローツイスターによ
つて延伸を行なつた。延伸条件及び繊維特性は次
表の通りであつた。
(Industrial Application Field) The present invention relates to a method for producing fibers using composite fiber technology. More specifically, it is an ultrafine fiber-generating composite fiber made of two or more component polymers, which can be easily obtained, and which can be treated to avoid environmental contamination or pollution when draining the solution containing the removed components. It concerns a method for producing fibers using textile technology. (Prior Art) Polystyrene and its modified products, polyamide, polyethylene, copolyester, etc. have conventionally been used as removal components of sea-island composite fibers. As removers for these components, trichlene, percrene,
Formic acid, toluene, alkali, etc. are used.
All of these removers are harmful and toxic substances, and great care must be taken when handling them. For this reason, a huge amount of investment has been made in chemical-resistant removal equipment, taking into consideration the safety of workers, work efficiency, and prevention of environmental pollution. Tricrene and percrene, which are polystyrene-based solvents that have traditionally been widely used due to their relatively low toxicity, have recently been reconsidered for their harmful effects on the human body, and strict regulations are being imposed on their use. Therefore, there is no guarantee that TriClene and PerClene will be able to be used together in the future. Furthermore, when an acid or alkali, which is a decomposing agent for polyester, is used as an aqueous solution, it is extremely difficult to recover the decomposed and removed polymer and to dispose of the solution. On the other hand, as a method for removing one component, the objective can be achieved without using these dangerous chemicals if the component is water-soluble. Conventionally known water-soluble polymers include PEG, PEO,
Examples include PVA. These polymers generally have poor thermal fluidity and heat resistance, and can only be made into fibers under very limited conditions when used alone. Therefore, to use it as one component of a composite fiber depends on the relationship with the characteristics of the other component polymers to be combined, and it is unsuitable from the viewpoint of melting point, compatibility, melt viscosity, etc. It is not used as a component of composite fibers. In addition, as a water-soluble polymer,
1373 are known. This method is advantageous in that it does not use chemicals. However, this polymer is poorly soluble in cold water and requires a long time in hot water to remove one component (in Example 2).
Soaked in 100℃ hot water for 1 hour. ), productivity is poor, and it is extremely difficult from a production point of view to continuously remove fabrics, etc. It also has the disadvantage of requiring multiple steps to recover the polymer, including evaporation concentration and cooling. (Problems to be Solved by the Invention) The present inventors have discovered that one component of an ultrafine fiber-generating composite fiber that does not have the above-mentioned drawbacks can be easily removed, and that the removed solution can be used to create a composite fiber that does not cause pollution or environmental concerns. As a result of intensive studies aimed at providing the following, the method of the present invention was arrived at. (Means for Solving the Problems) The present invention is a composite fiber consisting of at least two components, one of which has an amino group or a carboxyl group at the end of an easily soluble polyether segment having a molecular weight of 200 to 2000. 30 to 30 structural units consisting of component (A) of polyoxyethylene and component (B) of aliphatic dicarboxylic acid or aliphatic diamine.
A composite fiber containing 80% by weight of copolyamide and other components that are hardly soluble is used and subjected to hot water containing 0.1% by weight or more of an anionic surfactant. The present invention relates to a method for producing fibers, characterized in that the easily soluble components are removed by a process. At least one component constituting the composite fiber as referred to in the present invention
The copolymerized polyamide that makes up the component has a molecular weight of 200
30 to 80 weight structural units consisting of component (A) of polyoxyethylene having an amino group or carboxyl group at the end of the polyether segment portion of ~2000 and component (B) of aliphatic dicarboxylic acid or aliphatic diamine. It is a copolymerized polyamide containing %. Specifically, the copolyamide used in the present invention includes polyoxyethylene diamine or polyoxyethylene dicarboxylic acid, oxalic acid, succinic acid, glutaric acid, adipic acid, bimelic acid, speric acid, azelaic acid, sehacic acid, unte Aliphatic dicarboxylic acids such as candioic acid, dodecanedioic acid, diglycolic acid, ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,
4- and aliphatic diamines such as 2,4,4-trimethylhexamethylene diamine as main structural units. The number average molecular weight of the polyether segment of the polyoxyethylene diamine or polyoxyethylene dicarboxylic acid is 200.
~2000, preferably in the range of 300 to 1500; if the number average molecular weight is less than 200, the resulting polymer will be relatively brittle and cannot be dissolved in a solution prepared by adding an anionic surfactant to water. It becomes difficult. Moreover, if it exceeds 2000, the characteristics as polyamide will be lost and thread breakage will increase during spinning. In addition, in the present invention, the structural unit consisting of component (A) polyoxyethylene diamine or polyoxyethylene dicarboxylic acid and component (B) component aliphatic dicarboxylic acid or aliphatic diamine contained in the copolyamide is 30 to 80% by weight. Must be within the range. If it is less than 30% by weight, it is difficult to dissolve even in a solution using an anionic surfactant, which is not preferable. On the other hand, if it exceeds 80% by weight, it is preferable in terms of increasing water solubility, but it is not preferable because the thermal stability is poor, thread breakage occurs during spinning, and the polymer becomes expensive. The amide group-forming copolymerization component to be copolymerized with the unit consisting of polyoxyethylene diamine or polyoxyethylene dicarboxylic acid and aliphatic dicarboxylic acid or aliphatic diamine is not particularly limited and may be a commonly known one, such as ε-caprolactam,
ω-laurolactam, 6-aminocaprone, 11-
Lactams such as aminoundecanoic acid and 12-aminododecanoic acid, amino acids and the above-mentioned aliphatic diamines, aliphatic dicarboxylic acids, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, bis( 4,4'-aminocyclohexyl)methane, meta-xylylene diamine, para-xylylene diamine, cyclohexanedicarboxylic acid, isophthalic acid, terephthalic acid, 5-
Components selected from salts derived from common alicyclic, aromatic diamine, and dicarboxylic acid combinations such as sodium sulfoisophthalic acid can be used. Polyamide polymerization methods include melt polymerization, interfacial polymerization, solution polymerization, bulk polymerization, solid phase polymerization, and combinations of these methods, with melt polymerization being generally the most suitable. As a method for producing ultrafine fiber-generating conjugate fibers, polymer array fibers having a sea-island cross section are preferred, and the number of islands may be selected depending on the thickness of the ultrafine fibers to be obtained. Suitable examples of the island component include any known fiber-forming, water-insoluble polymers. For example, polyethylene terephthalate, copolyester copolymerized with 5-sodium sulfoisophthalate, polyesters and modified products such as polybutylene terephthalate, polyamides such as nylon 6, nylon 66, and nylon 610, polyethylene,
There are polyolefins such as polypropylene.
Modifiers and additives for the purpose of preventing static electricity, improving dyeability, matting, antifouling, flame retardancy, etc. may be blended with these. The ratio of island component to sea component can be chosen arbitrarily. For example, island/sea=98/2 to 2/98% by weight, preferably 98/2 to 20/80% by weight. This is because it removes sea components, and if the amount is large, it is difficult to remove and it is also economically disadvantageous. The fiber containing this amide copolymer as a sea component has the following characteristics in addition to being easy to remove seawater. To make textiles from fibers, warps are usually twisted and glued to improve weavability. This is to reduce the fluff of the thread and reduce thread breakage. However, when the fibers are coated with a water-based oil, the filaments are adhesively bound together and appear to become one. (Although it is sparingly soluble in water, it is caused by swelling and a small amount of solubility.)
Therefore, it has the same effect as applying twist and glue, and it is possible to weave without twist or glue. If the sea component is removed after fabric production, the binding will come undone and the unique characteristics of ultra-fine yarn will appear. In addition, yarns whose sea component is polystyrene, which is commonly used in the past, are relatively coarse and hard, and buckling and bending during shrinkage can cause yarn breakage and sea cracks, exposing islands, which can be a problem during high-order processing. It's summery. However, fibers containing this copolyamide as a sea component are flexible and pose no problems in weaving and knitting, and are also highly effective in forming punched felts. As for the fiber oil, a water-based one is preferable when binding of filaments is required as described above. In addition, if the purpose is not for binding, use a non-aqueous mineral oil, silicone, fluorine, or aliphatic ester, which is blended with other materials necessary to meet the characteristics required of the thread. do it. However, since anionic surfactants have a large effect on the polymer, it is preferable not to use them in principle. Next, a method for removing copolyamide, which is a component in the composite fiber, will be described. Acids and alcohols are known as solvents for this copolyamide. When these solvents are dissolved in water to form a removal solution, a considerably high concentration is required for complete dissolution.
The required concentration is 10% or more for ethyl alcohol and 5% or more for sulfuric acid. Removal using such a highly concentrated solution is no different from conventional removal using trichlene or alkaline solutions and has no merit. It is most desirable to be able to dissolve it in water alone without using dangerous chemicals. Since this copolyamide has an affinity for water, various methods of dissolving it with water alone were tried, but even if the water temperature was changed from 20 to 120°C, complete dissolution could not be achieved with water alone. After extensive research, they discovered a method to easily dissolve the polymer by adding a small amount of surfactant to water. In other words, when anionic surfactant is added to water,
It is easily dissolved by adding 0.1% by weight or more. This anionic surfactant may be any conventionally known anionic surfactant, but those having a hydrophilic group of Na or K salt are particularly preferred. The characteristics of this removal solution using surfactant as an auxiliary agent are that compared to conventional solutions such as trichloride, formic acid, toluene, and alkali, (1) it is a normal soap, has low toxicity, and is a significant advance in terms of safety; (2) Fast dissolution rate. (3) Improved work efficiency. (4) No large investment is required for removal equipment. (5) In addition to its low toxicity, there is no discharge outside the system, including the recovery method described below, so there is no problem with environmental pollution. Although it may be removed from the composite fiber in the filament or staple state, it is more efficient to remove it after forming the fabric. The removal method is as follows: (1) A cloth is passed through a solution containing a surfactant kept at 50 to 80°C and squeezed with a mangle. (2) It is also possible to form a web and use WJP (Water Jet Punch) to inject the removal liquid and entangle the fibers to form a fabric (shortening the process).
Removal may also be performed through (3) After making the fabric, it may be placed in a dyeing machine and removed as a pre-dying process. Next, a method for recovering the polymer from the liquid containing the removed copolyamide and treating the residual liquid will be described. In addition to the low toxicity of the dissolving agent, disposal of the dissolved liquid is an essential issue from the standpoint of preventing environmental pollution and eliminating pollution. The inventors of the present invention have made extensive studies on this point and have found the following method. That is, relatively low temperature (60~
After dissolving and removing the solution at 70°C, heat the solution at 90°C.
~95°C), the dissolved polymer precipitates due to the solubility difference. This polymer may be collected by a method such as filtration, and the remaining liquid may be used again as a removal liquid. If this is repeated, there is no need to dispose of the liquid outside the system. Next, Examples according to the present invention will be shown, but the effectiveness of the present invention is not limited or interpreted as limited by the Examples, but the following application development is brought about. (Example) Prototype Example A sample was obtained by adding acrylonitrile to both ends of polyethylene glycol having a number average molecular weight of 600 and reducing it with hydrogen. 55% by weight of equimolar salt of α,ω-diaminopolyoxyethylene and adipic acid, ε-
A chip having a relative viscosity of 3.25 was obtained by melt polymerizing 25% by weight of caprolactam and 20% by weight of an equimolar salt of hexamethylene diamine and adipic acid. (Dissolve 1 g of polymer in 100 ml of chloral hydrate solution,
(measured at °C) This chip is the sea component, and the island component has an inherent viscosity.
The following two types of yarn were spun using 0.80 polyethylene terephthalate and two spindles for producing polymer array fibers. Composite fiber A. 16 islands x 18 filaments Composite fiber B. 145 islands x 6 filaments 285 with a ratio of 15% sea component and 85% island component by weight
It was extruded from a die at 120°C, cooled in air, and taken off at a speed of 1200 m/min while oiling. The resulting undrawn yarn, which had good drawability, was drawn using a draw twister. The stretching conditions and fiber properties were as shown in the table below.

【表】 実施例 1 試作例で得られた複合繊維Aを合糸して10万デ
ニールのトウとし、これをターボフイーダによつ
てケン縮を付与したのち51mmにカツトしてステー
プルとした。このステープルを開綿しカードを通
してクロスラツパーによつて積層ウエツブを作成
した。次にニードルパンチを1600本/cm2打込みフ
エルト化した。フエルトの目付は580g/m2であ
つた。このフエルトの島成分100部に対し樹脂量
が62部となるようポリウレタン溶液を含浸した。
このシートを25℃の水中に導き10分間凝固させた
のち、水98重量%と界面活性剤(ラウリル硫酸エ
ステルナトリウム塩)2重量%の75℃液中に導き
浴中を連続走行しながらマングル絞りを4回くり
返してポリウレタン溶液の溶剤であるDMFを抽
出すると共に海成分の除去を同時に行なつた。乾
燥後厚みが同じになるよう中央部から2枚にスラ
イスを行ない生機を得た。この生機をバフ装置で
両面起毛を行なつた後、サーキユラ染色機によつ
て染色を行なつたところ表面が極細繊維でおおわ
れたスエード調人工皮革が得られた。極細糸特有
の優美な外観及びタツチを有するものであつた。
また海成分除去前に樹脂を付着したのち海成分を
除去しているので得られた人工皮革の極細繊維と
樹脂とは直接接着していないので非常に柔軟であ
つた。 実施例 2 試作例で得られた複合繊維Bをヨコ糸に用いて
平織組織の高密度織物とした。タテ糸にはポリエ
チレンテレフタレート75デニールを用いた。製織
性は良好であつた。この織物を水98.5重量%界面
活性剤(ドデシルベンゼンスルホン酸ソーダ)を
1.5重量%の溶液中に浸漬し(70℃×1分間)マ
ングルで絞つて海成分の除去を行なつた。この浸
漬と絞りを3回くり返した。除去前の重量と除去
後の重量とから海成分が完全に除去されているこ
とを確認した。(海成分除去前の織物は従来のポ
リスチレン使いのような粗硬性はなく一般織物と
何ら変わりはないが海成分除去によつて0.063デ
ニールという超極細繊維による絹様の光沢を呈し
触感も極めて好ましいものであつた。)次に片面
にカレンダー加工を施し撥水加工を行なつた。得
られた高密度織物は保温性にすぐれ通気性も兼ね
そなえた、ドレープ性の優れたものであつた。 比較例 1 エチレングリコールの両水酸基にアクリロニト
リルを付加し、これを水素還元して得た1,2ビ
ス(γ−アミノプロポキシ)エタンとアジピン酸
との等モル塩78重量%とテレフタル酸塩22重量%
との共重合ポリアミドを得た。メタクレゾール溶
液での固有粘度は1.01であつた。このチツプを海
成分とし実施例1と同じ条件で145島×6フイラ
メントの口金を用いて紡糸を行なつた。引取速度
1200m/分では曳糸性が悪く引取りが出来なかつ
た。やむをえず600m/分に変更した。曳糸性は
良好となつたが糸切れが頻発した。また海成分の
溶融粘度が低く島の合流が生じたので海成分40重
量%、島成分60重量%に変更した。得られた未延
伸糸を3.38倍に延伸して110D×6フイラメント
の延伸糸を得た。この延伸糸の強度は2.6g/d
と低いものであつた。この延伸糸を用いて実施例
2と同じようにヨコ糸に使用し、平織物の高密度
織物とした。この織物から海成分を除去するため
に100℃の熱水中に(浴比1/100)60分間浸漬した
あと乾燥し、前後の重量から海成分の除去量を求
めたところ72%であつた。除去後の織物は極細糸
使いの特徴はなく、ゴワゴワした手触りであつ
た。織物の断面を観察したところ複合繊維の145
島中外周部の島は分散していたが内周部は海成分
が残存していて極細化しておらず、太い繊維で残
つていた。 (発明の効果) 1 海成分除去剤としてトリクレン、パークレ
ン、トルエン、蟻酸、アルカリなどの有害、有
毒薬品を使用せずに、極細糸が得られる。 2 除去した海成分を容易に回収できる。 3 除去に用いた液の再使用が可能である。
[Table] Example 1 Composite fiber A obtained in the prototype example was doubled to form a 100,000 denier tow, which was crimped using a turbo feeder and then cut into 51 mm pieces to form staples. This staple was opened and passed through a card to create a laminated web using a cross wrapper. Next, 1600 needle punches/ cm2 were used to create felt. The weight of the felt was 580 g/m 2 . This felt was impregnated with a polyurethane solution so that the amount of resin was 62 parts per 100 parts of the island component.
The sheet was introduced into water at 25℃ and coagulated for 10 minutes, then introduced into a 75℃ solution containing 98% water and 2% surfactant (sodium lauryl sulfate salt) and squeezed by mangle while continuously running in the bath. This process was repeated four times to extract DMF, which is the solvent for the polyurethane solution, and to remove the sea components at the same time. After drying, the green fabric was sliced into two slices from the center so that they had the same thickness. This gray fabric was raised on both sides using a buffing device, and then dyed using a circular dyeing machine to obtain suede-like artificial leather whose surface was covered with ultrafine fibers. It had an elegant appearance and touch characteristic of ultra-fine threads.
Furthermore, since the resin was attached and the sea component was removed before the sea component was removed, the ultrafine fibers of the resulting artificial leather were not directly bonded to the resin, so it was very flexible. Example 2 Composite fiber B obtained in the prototype example was used as a weft yarn to produce a high-density woven fabric with a plain weave structure. Polyethylene terephthalate 75 denier was used for the warp yarn. The weavability was good. This fabric was mixed with 98.5% water and surfactant (sodium dodecylbenzenesulfonate).
The sea component was removed by immersing it in a 1.5% by weight solution (70°C for 1 minute) and squeezing it with a mangle. This dipping and squeezing process was repeated three times. It was confirmed that the sea component was completely removed from the weight before removal and the weight after removal. (The fabric before removing the sea component does not have the roughness and hardness of conventional polystyrene, and is no different from ordinary fabrics. However, by removing the sea component, the ultra-fine fibers of 0.063 denier give it a silk-like luster and are extremely pleasant to the touch.) ) Next, one side was calendered to make it water repellent. The resulting high-density fabric had excellent heat retention and breathability, and had excellent drapability. Comparative Example 1 Acrylonitrile was added to both hydroxyl groups of ethylene glycol, and this was reduced with hydrogen. 78% by weight of equimolar salt of 1,2-bis(γ-aminopropoxy)ethane and adipic acid and 22% by weight of terephthalate. %
A copolymerized polyamide was obtained. The intrinsic viscosity in metacresol solution was 1.01. This chip was used as a sea component and spinning was carried out under the same conditions as in Example 1 using a spindle of 145 islands x 6 filaments. Collection speed
At 1,200 m/min, the threading properties were poor and it was not possible to take the thread. I had no choice but to change the speed to 600m/min. Threadability was good, but thread breakage occurred frequently. Also, since the melt viscosity of the sea component was low and the merging of the islands occurred, the sea component was changed to 40% by weight and the island component to be 60% by weight. The obtained undrawn yarn was stretched 3.38 times to obtain a drawn yarn of 110D x 6 filaments. The strength of this drawn yarn is 2.6g/d
It was low. This drawn yarn was used as a weft yarn in the same manner as in Example 2 to produce a high-density plain weave fabric. In order to remove sea components from this fabric, it was immersed in hot water at 100℃ (bath ratio 1/100) for 60 minutes, then dried, and the amount of sea components removed was determined from the weight before and after, and it was 72%. . The fabric after removal did not have the characteristic of using ultra-fine threads and had a stiff texture. When observing the cross section of the fabric, it was found that the composite fiber was 145
The islands in the outer periphery of the island were dispersed, but the inner periphery still had sea components and had not become extremely fine, but remained as thick fibers. (Effects of the Invention) 1. Ultrafine threads can be obtained without using harmful or toxic chemicals such as tricrene, perchlorene, toluene, formic acid, or alkali as sea component removers. 2. Removed sea components can be easily recovered. 3. The liquid used for removal can be reused.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも2成分からなる複合繊維であり、
1成分が易溶解性の分子量200〜2000のポリエー
テルセグメント部分の末端にアミノ基またはカル
ボキシル基を有するポリオキシエチレンの(A)
成分と脂肪族ジカルボン酸または脂肪族ジアミン
の(B)成分とからなる構成単位を30〜80重量%
含有する共重合ポリアミドであつて、かつ、他成
分は難溶解性のものである複合繊維を用いて、こ
れを0.1重量%以上のアニオン系の界面活性剤を
添加した熱水処理に供して前記易溶解性成分を除
去することを特徴とする繊維の製造方法。
1 A composite fiber consisting of at least two components,
(A) polyoxyethylene in which one component has an amino group or carboxyl group at the end of an easily soluble polyether segment portion with a molecular weight of 200 to 2000
30 to 80% by weight of structural units consisting of component (B) and aliphatic dicarboxylic acid or aliphatic diamine
Using a composite fiber containing a copolymerized polyamide in which other components are hardly soluble, it is subjected to hot water treatment with the addition of 0.1% by weight or more of an anionic surfactant. A method for producing fibers, characterized by removing easily soluble components.
JP61130304A 1986-06-06 1986-06-06 Composite fiber Granted JPS62289611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130304A JPS62289611A (en) 1986-06-06 1986-06-06 Composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130304A JPS62289611A (en) 1986-06-06 1986-06-06 Composite fiber

Publications (2)

Publication Number Publication Date
JPS62289611A JPS62289611A (en) 1987-12-16
JPH0437182B2 true JPH0437182B2 (en) 1992-06-18

Family

ID=15031115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130304A Granted JPS62289611A (en) 1986-06-06 1986-06-06 Composite fiber

Country Status (1)

Country Link
JP (1) JPS62289611A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578080B2 (en) * 1994-09-16 1997-02-05 第一工業製薬株式会社 Production method of ultrafine fiber
JP2578081B2 (en) * 1994-09-16 1997-02-05 第一工業製薬株式会社 Production method of ultrafine fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551374A (en) * 1978-11-21 1980-01-08 Gunze Kk Constant length lettinggoff and removing method of long fabric
JPS5620615A (en) * 1979-07-25 1981-02-26 Toray Ind Inc Split-type antistatic conjugate fiber
JPS58104220A (en) * 1981-12-17 1983-06-21 Teijin Ltd Polyamide composite fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551374A (en) * 1978-11-21 1980-01-08 Gunze Kk Constant length lettinggoff and removing method of long fabric
JPS5620615A (en) * 1979-07-25 1981-02-26 Toray Ind Inc Split-type antistatic conjugate fiber
JPS58104220A (en) * 1981-12-17 1983-06-21 Teijin Ltd Polyamide composite fiber

Also Published As

Publication number Publication date
JPS62289611A (en) 1987-12-16

Similar Documents

Publication Publication Date Title
TWI460325B (en) Splitting conjugate fiber, textile using thereof and wiping cloth and method of producing textile and wiping cloth
US4233355A (en) Separable composite fiber and process for producing same
JP5356771B2 (en) Glove fabrics and textile products
JPH0437182B2 (en)
KR101376498B1 (en) Splittable Conjugate Fiber
JP3157644B2 (en) Humidity-controlling fiber and method for producing the same
JP6094096B2 (en) Composite fiber and substrate for artificial leather using the same
JPH05222668A (en) Production of woven or knitted fabric of ultrafine fiber
JP3470514B2 (en) Method for producing high density bulky fabric
JP2010233865A (en) Cleaning tool
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
JP2007119948A (en) Split type conjugate fiber
JPH06341018A (en) Conjugate fiber and nonwoven fabric made thereof
JPH0711566A (en) Production of silk-like fabric
JP3013505B2 (en) Method for removing one component from composite fiber
JP7201395B2 (en) Glove fabrics and textiles
JPH0681245A (en) Production of fabric comprising splittable conjugate fiber and fabric with excellent touch feel
WO2024024571A1 (en) Method for recycling high-molecular-weight material, and fiber product
JP6923354B2 (en) Glove fabrics and textiles
JP2590662B2 (en) Manufacturing method of ultra-fine fibers
JPS6241375A (en) Production of extremely fine fiber sheet
JP2804784B2 (en) Manufacturing method of breathable waterproof cloth
JPS62257459A (en) Production of split type composite fiber structure
JP2000178864A (en) Production of nonwoven fabric structural form and nonwoven fabric structural form thus produced
JPH06330461A (en) Fibrous structure excellent in water absorbing and quick-drying property