JPH0437148B2 - - Google Patents

Info

Publication number
JPH0437148B2
JPH0437148B2 JP63229826A JP22982688A JPH0437148B2 JP H0437148 B2 JPH0437148 B2 JP H0437148B2 JP 63229826 A JP63229826 A JP 63229826A JP 22982688 A JP22982688 A JP 22982688A JP H0437148 B2 JPH0437148 B2 JP H0437148B2
Authority
JP
Japan
Prior art keywords
strength
alloy
weight
less
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63229826A
Other languages
Japanese (ja)
Other versions
JPH0280537A (en
Inventor
Makoto Senda
Akira Sakamoto
Hideto Hasegawa
Tsutomu Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22982688A priority Critical patent/JPH0280537A/en
Publication of JPH0280537A publication Critical patent/JPH0280537A/en
Publication of JPH0437148B2 publication Critical patent/JPH0437148B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミツクス繊維で強化された高強
度のAl合金複合材の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a high strength Al alloy composite material reinforced with ceramic fibers.

〔従来の技術〕[Conventional technology]

従来の高強度Al合金複合材料は強化繊維とし
て炭化珪素、窒化珪素、アルミナ短繊維などを用
い、Al合金マトリツクスとしては一搬に市販さ
れているAl合金(JIS規格、A6061,A7075等)
を用いて、高圧溶湯含浸法あるいは粉末法などに
より製造されていた。
Conventional high-strength Al alloy composite materials use silicon carbide, silicon nitride, alumina short fibers, etc. as reinforcing fibers, and Al alloy matrices are made of commercially available Al alloys (JIS standards, A6061, A7075, etc.).
It was manufactured using high-pressure molten metal impregnation method or powder method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高強度Al合金複合材料において、その強度は
強化材(セラミツクス繊維等)の強度にも依存す
るが、Alマトリツクス自体の強度でも大きく左
右される。超々ジユラルミン(75S,7075)とも
云う、JIS規格の高力合金第6種はZn約6.0%、
Mg約2.0%のときで引張強さが約60Kgf/mm2とAl
合金中で最も高い強度を呈しており、これを高強
度Al合金複合材料のマトリツクスとして用いた
場合、引張強さ、弾性率、耐熱性等の性能が更に
向上し、高強度構造部材としても十分使用できる
可能性を得ている。
The strength of high-strength Al alloy composite materials depends not only on the strength of the reinforcing material (ceramic fibers, etc.), but also on the strength of the Al matrix itself. JIS standard high-strength alloy type 6, also called extra super duralumin (75S, 7075), has approximately 6.0% Zn.
When Mg is about 2.0%, the tensile strength is about 60Kgf/mm 2 and Al
It exhibits the highest strength among alloys, and when used as a matrix for high-strength Al alloy composite materials, it further improves properties such as tensile strength, elastic modulus, and heat resistance, making it sufficient as a high-strength structural member. It has the potential to be used.

しかしながら、一層の軽量化あるいは耐熱性向
上を計るために、更に高強度、高弾性率の優れた
高強度Al合金複合材料の出現が望まれている。
However, in order to further reduce weight or improve heat resistance, there is a desire for the emergence of high-strength Al alloy composite materials with even higher strength and higher modulus of elasticity.

本発明は上記技術水準に鑑み、上記要望に応じ
得る高強度Al合金複合材の得ることのできる製
法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a manufacturing method capable of obtaining a high-strength Al alloy composite material that can meet the above-mentioned demands.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、重量%でSi:0.40以下、Fe:0.50以
下、Cu:1.2〜2.0、Mn:0.30以下、Mg:2.1〜
2.9、Cr:0.18〜0.28、Zn:5.1〜6.1、Ti+Zr:
0.25以下、Ti:0.20以下、残部Alからなる
JIS7075アルミニウム合金100重量部に対し、Zn
を更に1〜3重量部添加させたものを加熱して溶
湯とし、該溶湯をセラミツクス繊維からなる強化
材に高い圧力で含浸させてインゴツトとなし、該
インゴツトに対し押出成形を行つた上焼入れ焼戻
しを行うことを特徴とする高強度Al合金複合材
料の製法である。
In the present invention, Si: 0.40 or less, Fe: 0.50 or less, Cu: 1.2 to 2.0, Mn: 0.30 or less, Mg: 2.1 to
2.9, Cr: 0.18~0.28, Zn: 5.1~6.1, Ti+Zr:
0.25 or less, Ti: 0.20 or less, the balance consists of Al
Zn per 100 parts by weight of JIS7075 aluminum alloy
A further 1 to 3 parts by weight of is added to form a molten metal, the molten metal is impregnated with a reinforcing material made of ceramic fibers under high pressure to form an ingot, and the ingot is extruded and then top-quenched and tempered. This is a method for producing high-strength Al alloy composite materials.

本発明において、複合材料のマトリクスの基礎
をAl合金中でも高強度の7075合金とし、組成範
囲は7075合金のJIS規定によつた。
In the present invention, the basis of the matrix of the composite material was 7075 alloy, which has high strength among Al alloys, and the composition range was in accordance with the JIS regulations for 7075 alloy.

本発明においては上記Al合金に強度向上に極
めて有効なZnを1〜3重量%添加したものをマ
トリツクスとするものであるが、Znをこの範囲
に限定したのは、添加量が1重量%未満では強度
向上が不十分であり、3重量%を越えると強度が
飽和すると共に耐食性が低下するからである。
In the present invention, the matrix is made by adding 1 to 3% by weight of Zn, which is extremely effective in improving strength, to the above Al alloy, but the reason why Zn is limited to this range is that the amount added is less than 1% by weight. This is because the strength improvement is insufficient if the content exceeds 3% by weight, and the strength becomes saturated and the corrosion resistance decreases.

また、本発明において強化材として使用するセ
ラミツクス繊維の材質は酸化物系、炭化物系、窒
化物系など任意のセラミツクスが使用でき、特に
セラミツクス繊維としては短繊維、長繊維のもの
は勿論、ウイスカ状のものも使用することができ
る。
Furthermore, the material of the ceramic fiber used as the reinforcing material in the present invention can be any ceramic such as oxide, carbide, or nitride. can also be used.

上記構成を採る本発明の高強度Al合金複合材
料は、マトリツクスとしてAl合金にZnを添加し
ていない従来のAl合金複合材料よりも静強度及
び300℃までの高温強度などが約1.1〜1.2倍向上
する。
The high-strength Al alloy composite material of the present invention having the above structure has about 1.1 to 1.2 times higher static strength and high temperature strength up to 300°C than a conventional Al alloy composite material that does not add Zn to the Al alloy as a matrix. improves.

〔実施例〕〔Example〕

炭化珪素ウイスカのプリフオーム(ウイスカ含
有体積率vf=25%)を700℃に加熱した後、プラ
ンジヤー加圧方式機構を備えた金型(ウイスカコ
ンテナ)中に挿入する。尚、ここで炭化珪素ウイ
スカは、直径0.05〜1.5μm、長さが5〜200μmの
β型SiCウイスカが用いられた。Al合金(7075)
100重量部を750℃で溶解した中へ金属Zn2重量部
を添加し、重量%でSi:0.21,Fe:0.07,Cu:
1.62,Mn:0.01、Mg:2.29,Cr:0.18,Zn:
7.56,Ti:0.03、残部Alよりなる溶湯を金型(溶
湯コンテナ)へ注入する。直ちに両コンテナを真
空引き(1.33×104Pa)したのち、プランジヤー
を介し溶湯を高圧(800Kgf/cm2)に加圧し、ウ
イスカ群中へ含浸させてAl合金複合材料のイン
ゴツトを製造する。製造された金属複合材料は、
繊維/マトリクスの比が体積比で25/75であつ
た。
A silicon carbide whisker preform (whisker content volume fraction vf = 25%) is heated to 700°C and then inserted into a mold (whisker container) equipped with a plunger pressure mechanism. Here, as the silicon carbide whiskers, β-type SiC whiskers having a diameter of 0.05 to 1.5 μm and a length of 5 to 200 μm were used. Al alloy (7075)
2 parts by weight of metal Zn was added to 100 parts by weight melted at 750℃, and the weight percentage was Si: 0.21, Fe: 0.07, Cu:
1.62, Mn: 0.01, Mg: 2.29, Cr: 0.18, Zn:
Pour the molten metal consisting of 7.56, Ti: 0.03, and the balance Al into the mold (molten metal container). Immediately after both containers are evacuated (1.33×10 4 Pa), the molten metal is pressurized to high pressure (800 Kgf/cm 2 ) via a plunger and impregnated into the whiskers to produce an ingot of Al alloy composite material. The manufactured metal composite material is
The fiber/matrix ratio was 25/75 by volume.

次いでインゴツトを410℃に加熱し、押出速度
13mm/min、押出比10:1の熱間押出成形を行
い、ランダムに分散していたウイスカをマトリツ
クス材の塑性流動に伴ない加工方向に配向させ
た。この状態のAl合金複合材料の断面の顕微鏡
写真(倍率5000倍)を第1図に示す。
The ingot was then heated to 410°C and the extrusion rate
Hot extrusion molding was performed at 13 mm/min and an extrusion ratio of 10:1, and randomly dispersed whiskers were oriented in the processing direction due to plastic flow of the matrix material. Figure 1 shows a micrograph (5000x magnification) of the cross section of the Al alloy composite material in this state.

この押出成形丸棒を焼入、焼もどし(時効)の
熱処理(T6)したものの静強度試験及び高温強
度試験結果を第2図のに示す。第2図にはマト
リツクスとしてZnを添加しなかつたAl合金複合
材料、Al合金(7075)+2重量%Zn素材′及
びAl合金(7075)素材のデータを併せて示した。
The results of the static strength test and the high temperature strength test of this extruded round bar were heat treated (T 6 ) by quenching and tempering (aging) and are shown in FIG. Figure 2 also shows data for an Al alloy composite material without Zn added as a matrix, an Al alloy (7075) + 2% by weight Zn material', and an Al alloy (7075) material.

また、この実施例におけるAl合金(7075)と
Znよりなる素材の引張り強さは72Kgf/mm2、耐
力は67Kgf/mm2、伸びは12.0%であつたが、この
実施例で得られた高強力Al合金複合材料の引張
り強さは110Kgf/mm2、耐力は83Kgf/mm2、伸び
0.8%、縦弾性率は15000Kgf/mm2であつた。
In addition, the Al alloy (7075) in this example
The tensile strength of the material made of Zn was 72 Kgf/mm 2 , the yield strength was 67 Kgf/mm 2 , and the elongation was 12.0%, but the tensile strength of the high-strength Al alloy composite material obtained in this example was 110 Kgf/mm 2 . mm 2 , yield strength is 83Kgf/mm 2 , elongation
0.8%, and the longitudinal elastic modulus was 15000 Kgf/mm 2 .

以上、本発明の高強度Al合金複合材料の一実
施例をあげたが、一般的にこのマトリツクスとな
るAl合金(7075)100重量部にZn1〜3重量部添
加してなるAl合金素材の引張り強さは69.4〜72.5
Kgf/mm2、耐力は65.1〜67.6Kgf/mm2、伸びは
11.6〜12.0%であり、これにセラミツクス繊維を
組合せてなる高強度Al合金複合材料の引張り強
さは97.0〜110Kg/mm2、耐力は75.7〜83.2Kg/mm2
伸びは0.58〜0.82%、縦弾性率は14000〜16200Kg
f/mm2となる。
An example of the high-strength Al alloy composite material of the present invention has been described above, but the tensile strength of the Al alloy material is generally made by adding 1 to 3 parts by weight of Zn to 100 parts by weight of Al alloy (7075), which is the matrix. Strength is 69.4-72.5
Kgf/ mm2 , yield strength is 65.1~67.6Kgf/ mm2 , elongation is
11.6~12.0%, and the tensile strength of the high-strength Al alloy composite material made by combining this with ceramic fiber is 97.0~110Kg/ mm2 , yield strength is 75.7~83.2Kg/ mm2 ,
Elongation is 0.58~0.82%, longitudinal elastic modulus is 14000~16200Kg
f/ mm2 .

〔発明の効果〕〔Effect of the invention〕

本発明の製法による高強度Al合金複合材料は、
従来のものに比し、引張り強さ、高温強度及び弾
性率などにおいて優れ、軽量化、耐熱性などを目
的とする材料特性が向上し、高強度構造部材とし
ても十分使用し得る効果を奏する。
The high-strength Al alloy composite material manufactured by the method of the present invention is
Compared to conventional products, it is superior in tensile strength, high-temperature strength, and elastic modulus, and has improved material properties such as weight reduction and heat resistance, and is effective enough to be used as a high-strength structural member.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の高強力Al合金複
合材料の押出成形体の押出方向の断面の金属組織
の顕微鏡写真(5000倍)であり、第2図は本発明
の一実施例の高強度Al合金複合材料と温度の関
係を示す図表である。
FIG. 1 is a micrograph (5000x) of the metal structure of a cross section in the extrusion direction of an extruded product of a high-strength Al alloy composite material according to an embodiment of the present invention, and FIG. It is a chart showing the relationship between high strength Al alloy composite material and temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でSi:0.40以下、Fe:0.50以下、Cu:
1.2〜2.0、Mn:0.30以下、Mg:2.1〜2.9、Cr:
0.18〜0.28、Zn:5.1〜6.1、Ti+Zr:0.25以下、
Ti:0.20以下、残部AlからなるJIS7075アルミニ
ウム合金100重量部に対し、Znを更に1〜3重量
部添加させたものを加熱して溶湯とし、該溶湯を
セラミツクス繊維からなる強化材に高い圧力で含
浸させてインゴツトとなし、該インゴツトに対し
押出成形を行つた上、焼入れ焼戻しを行うことを
特徴とする高強度Al合金複合材料の製法。
1% by weight: Si: 0.40 or less, Fe: 0.50 or less, Cu:
1.2-2.0, Mn: 0.30 or less, Mg: 2.1-2.9, Cr:
0.18-0.28, Zn: 5.1-6.1, Ti+Zr: 0.25 or less,
100 parts by weight of a JIS7075 aluminum alloy consisting of Ti: 0.20 or less and the balance Al is heated to form a molten metal with the addition of 1 to 3 parts by weight of Zn, and the molten metal is applied to a reinforcing material made of ceramic fibers under high pressure. A method for producing a high-strength Al alloy composite material, which comprises impregnating it into an ingot, extruding the ingot, and then quenching and tempering it.
JP22982688A 1988-09-16 1988-09-16 High strength al alloy composite material Granted JPH0280537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22982688A JPH0280537A (en) 1988-09-16 1988-09-16 High strength al alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22982688A JPH0280537A (en) 1988-09-16 1988-09-16 High strength al alloy composite material

Publications (2)

Publication Number Publication Date
JPH0280537A JPH0280537A (en) 1990-03-20
JPH0437148B2 true JPH0437148B2 (en) 1992-06-18

Family

ID=16898277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22982688A Granted JPH0280537A (en) 1988-09-16 1988-09-16 High strength al alloy composite material

Country Status (1)

Country Link
JP (1) JPH0280537A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342341A (en) * 1986-08-06 1988-02-23 Toyo Alum Kk Aluminum alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342341A (en) * 1986-08-06 1988-02-23 Toyo Alum Kk Aluminum alloy material

Also Published As

Publication number Publication date
JPH0280537A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
JPH0317884B2 (en)
US6082436A (en) Method of centrifugally casting reinforced composite articles
JPH01252741A (en) Fiber-reinforced composite material
WO1986003997A1 (en) A metal matrix composite and method for its production
US5295528A (en) Centrifugal casting of reinforced articles
CA2002686A1 (en) Process for producing composite materials with a metal matrix, with a controlled content of reinforcer agent
JPH0437148B2 (en)
JPH01205041A (en) Fiber reinforced aluminum alloy composite material
JP5176192B2 (en) Ceramic fiber used for fiber-reinforced metal composite material with fiber diameter of 30 μm or less and carbon component on fiber surface removed, and method for producing the same
Muthukumarasamy et al. The performance of zinc alloy based metal matrix composites produced through squeeze casting
JPS61266530A (en) Composite material
JPH0790420A (en) Fiber reinforced al alloy
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
WO1992005293A1 (en) Extrusion of reinforced composite material
JPH0524211B2 (en)
JPS62182235A (en) Aluminum alloy reinforced with silicon nitride whisker
CA2054018A1 (en) Metal matrix composite composition and method
KR100252277B1 (en) The manufacturing method for composite material
JPS62235439A (en) Fiber reinforced composite al alloy material
JPH0526855B2 (en)
JPH0472891B2 (en)
JPH02173225A (en) Fiber reinforced composite material
JPH02194135A (en) Aluminum composite excellent in high-temperature wear property
JPH04263030A (en) Fiber reinforced metal and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term