JPH04371376A - Electron beam welding method for cast material - Google Patents

Electron beam welding method for cast material

Info

Publication number
JPH04371376A
JPH04371376A JP14865491A JP14865491A JPH04371376A JP H04371376 A JPH04371376 A JP H04371376A JP 14865491 A JP14865491 A JP 14865491A JP 14865491 A JP14865491 A JP 14865491A JP H04371376 A JPH04371376 A JP H04371376A
Authority
JP
Japan
Prior art keywords
welding
electron beam
mold
cast material
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14865491A
Other languages
Japanese (ja)
Other versions
JP2792755B2 (en
Inventor
Shuji Fukuba
福場 修二
Katsutoshi Hokimoto
保木本 勝利
Katsuhiro Furukawa
古川 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3148654A priority Critical patent/JP2792755B2/en
Publication of JPH04371376A publication Critical patent/JPH04371376A/en
Application granted granted Critical
Publication of JP2792755B2 publication Critical patent/JP2792755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To obtain a good welded zone having low residual stress without occurrence of a microcrack on the welded zone in joining cast material. CONSTITUTION:In welding where at least one member is cast material, a chill crystal 4 is formed on the weld zone of the cast material and joining is performed by electron beam welding. Since the chill crystal 4 is formed on the weld zone of the cast material, the crystal. grain diameter of the welded zone becomes finer and inclusion of contained gas components such as impurities, hydrogen, oxygen and nitrogen is extremely limited on the grain boundary of this fine crystal grain. Accordingly, the passage of an electron beam is improved. Consequently, electron beam welding with low welding heat input can be applied to this and sound welding of the cast material can be performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、少なくとも一方の部材
が鋳物材である溶接継手の、電子ビーム溶接方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electron beam welding of welded joints in which at least one member is a cast material.

【0002】0002

【従来の技術】一般的に、大物、厚肉の鋳物材は、凝固
速度が遅くそのため鋳造後の結晶粒径が粗い。また、小
物の鋳物材であっても例えば、オーステナイトステンレ
ス鋼のように化学成分によってその傾向が顕著に現れる
ことも知られている。この粗い結晶粒の粒界には、不純
物や水素、酸素、窒素等の含有ガス成分が多く介在して
いる。従ってこのような鋳物材の接合に、電子ビーム溶
接を実施すると、結晶粒界に介在するこれらの不純物や
、水素、酸素、窒素等の含有ガス成分がガス化、膨脹し
、溶接部に偏析してブローホールが発生する。このため
ビームの通りが悪く溶接部が不健全となる。従って結晶
粒径の粗い鋳物材には、電子ビーム溶接は不向きであり
、現状は、MIG溶接やTIG溶接で施工している。 また、鉄系の材料においてこの電子ビーム溶接の適用は
、例えば結晶粒径の小さい圧延材、鍛造材に限られてい
た。
2. Description of the Related Art In general, large and thick casting materials have a slow solidification rate and therefore have coarse crystal grains after casting. It is also known that even small casting materials, such as austenitic stainless steel, exhibit this tendency markedly depending on their chemical composition. Many impurities and gas components containing hydrogen, oxygen, nitrogen, etc. are present in the grain boundaries of these coarse grains. Therefore, when electron beam welding is performed to join such casting materials, these impurities present in the grain boundaries and gas components containing hydrogen, oxygen, nitrogen, etc. gasify and expand, causing them to segregate in the welded area. Blowholes occur. As a result, the beam passes poorly and the welded part becomes unsound. Therefore, electron beam welding is not suitable for casting materials with coarse grain size, and currently MIG welding or TIG welding is used. Furthermore, the application of electron beam welding to iron-based materials has been limited to, for example, rolled materials and forged materials with small crystal grain sizes.

【0003】結晶粒径の粗い鋳物材のMIG溶接の適用
例として、鋼板を熱処理する各種の加熱炉、均熱炉、予
熱炉等に使用されているハースロールがある。従来この
種のハースロールの製造方法としては、次に示すものが
知られている。まず、ハースロールを構成する部品は、
軸、アクスル、バレルからなり、その材質は、使用時の
雰囲気の耐えられるように、いずれも耐熱、耐酸化性を
有する耐熱鋳物等が使用されている。これらの代表的な
製造法及び材質は、軸は鍛造によりSUS310材等が
、アクスルは砂型鋳造または金型鋳造によりSCH19
材等が、バレルは予熱炉、徐冷炉等の比較的に耐熱、耐
酸化性の要求が低い設備用には板巻きの溶接構造のYU
S材が、また加熱炉、均熱炉等の耐熱、耐酸化性の要求
が高い設備用には遠心鋳造により、高合金部材としてS
CH22材等がそれぞれ使用されている。
[0003] As an application example of MIG welding of casting materials with coarse grain size, there are hearth rolls used in various heating furnaces, soaking furnaces, preheating furnaces, etc. for heat treating steel plates. Conventionally, the following methods are known as methods for manufacturing hearth rolls of this type. First, the parts that make up the hearth roll are:
It consists of a shaft, axle, and barrel, all of which are made of heat-resistant castings that are heat-resistant and oxidation-resistant so that they can withstand the atmosphere during use. Typical manufacturing methods and materials for these are: the shaft is made of SUS310 material by forging, and the axle is made of SCH19 material by sand casting or die casting.
For equipment with relatively low requirements for heat resistance and oxidation resistance, such as preheating furnaces and slow cooling furnaces, the barrel is YU, which has a plate-wound welded structure.
S material is also used as a high alloy material by centrifugal casting for equipment such as heating furnaces and soaking furnaces that require high heat resistance and oxidation resistance.
CH22 material etc. are used respectively.

【0004】また、前記の各部品は、次のような、溶接
を行い、組み立てられている。まず、軸とアクスルとの
溶接について記述する。軸は、鍛造材、アクスルは砂型
鋳造または、金型鋳造により製造され、両部材とも継手
部をV開先加工した後、MIG溶接及びTIG溶接を施
工する。
[0004] Furthermore, the above-mentioned parts are assembled by welding as described below. First, welding between the shaft and axle will be described. The shaft is made of a forged material, and the axle is made by sand casting or die casting, and after V-grooving the joints of both members, MIG welding and TIG welding are performed.

【0005】次に、アクスルとバレルとの溶接について
記述する。バレルは、前記の通り遠心鋳造により製造さ
れる。この際、遠心鋳造の鋳型として金型が使用され、
鋳造時の溶湯と金型との焼き付きを防止する目的で、金
型の内面には塗型を実施している。塗型の材料としては
一般的に、遠心鋳造ロールにおいて幅広く使用されてい
る水溶性の塗型材が用いられている。
Next, welding between the axle and the barrel will be described. The barrel is manufactured by centrifugal casting as described above. At this time, a metal mold is used as a mold for centrifugal casting,
In order to prevent the molten metal from sticking to the mold during casting, the inner surface of the mold is coated. As a material for the coating mold, a water-soluble coating material that is widely used in centrifugal casting rolls is generally used.

【0006】ここで、金型の内面に、塗型するこの水溶
性の塗型材の塗布の要領は、次の通り、行われている。 まず、金型を加熱し、次に加熱された金型の内面に、水
溶性の塗型材を塗布する。こうして、金型の内面には、
塗型材が塗布、乾燥された後、溶湯が金型に鋳込まれバ
レルが製造される。前記、金型の内面に、塗型材が塗布
、乾燥された後、金型へ溶湯が鋳込み始まるまでの間に
は、前記金型の遠心鋳造設備への組み込み、溶湯の成分
調整待ち等により時間を要し、事前に塗型、乾燥された
塗型材が吸湿する。この吸湿されるガス成分とその量と
して、例えば、窒素300〜500PPM 、水素3〜
4PPM 、酸素300PPM 等がある。従って、前
記金型に塗布する塗型材の塗布厚みを余り薄くして溶湯
を金型に鋳込むと、塗型材に吸湿された前記のガスが溶
湯中に進入してしまい、製品中に気泡等の欠陥が発生す
る。そこで、この水溶性の塗型材の塗布の厚みとしては
塗型材に吸湿されたガスが、逃げ場を失うことなくまた
施工の容易性も考慮して、3mm程度で施工している。 また、余り薄くしすぎると、均一の塗型が難しく金型か
ら塗型材が部分的に剥離することがあり、好ましくない
[0006] Here, the procedure for applying the water-soluble mold coating material to the inner surface of the mold is as follows. First, a mold is heated, and then a water-soluble mold coating material is applied to the inner surface of the heated mold. In this way, on the inside of the mold,
After the mold coating material is applied and dried, molten metal is poured into a mold to manufacture the barrel. After the coating material is applied to the inner surface of the mold and dried, until the molten metal begins to be poured into the mold, it takes time due to installation of the mold into the centrifugal casting equipment, waiting for the composition of the molten metal to be adjusted, etc. The coating material that has been coated and dried in advance absorbs moisture. The gas components to be absorbed and their amounts are, for example, 300 to 500 PPM of nitrogen, 3 to 500 PPM of hydrogen,
4PPM, oxygen 300PPM, etc. Therefore, if the thickness of the coating material applied to the mold is too thin and the molten metal is poured into the mold, the gas absorbed by the coating material will enter the molten metal, causing air bubbles to form in the product. defects occur. Therefore, the water-soluble coating material is applied to a thickness of approximately 3 mm in order to ensure that the gas absorbed by the coating material does not lose a place to escape and to facilitate ease of application. On the other hand, if the coating is made too thin, it is difficult to coat the mold uniformly and the coating material may partially peel off from the mold, which is not preferable.

【0007】このように、3mm程度で塗布された金型
に溶湯を鋳込むと、鋳込まれた溶湯は塗型材により断熱
作用が働くため徐冷され、冷却後の組織は結晶粒径の粗
いオーステナイト組織となる。従って、アクスルと鋳造
後の結晶粒径の粗いオーステナイト組織を有するバレル
との溶接に電子ビーム溶接を実施すると、ビームの通り
が悪く溶接部が不健全となるため結晶粒径の粗い鋳物材
の溶接方法として一般的に適用されているMIG溶接や
TIG溶接で施工している。
[0007] As described above, when molten metal is poured into a mold coated with a coating material of about 3 mm, the cast molten metal is gradually cooled due to the heat insulating effect of the coating material, and the structure after cooling has a coarse crystal grain size. It becomes an austenite structure. Therefore, if electron beam welding is used to weld the axle and the cast barrel, which has an austenitic structure with a coarse grain size, the beam will not pass through and the welded part will become unhealthy, so welding of cast materials with a coarse grain size. Construction is carried out using commonly used MIG welding and TIG welding.

【0008】[0008]

【発明が解決しようとする課題】前記のように結晶粒径
の粗い鋳物材の溶接方法として使用されている、MIG
溶接やTIG溶接には、下記の課題があった。
[Problems to be Solved by the Invention] As mentioned above, MIG is used as a welding method for casting materials with coarse grain size.
Welding and TIG welding had the following problems.

【0009】MIG溶接やTIG溶接は、溶接時の溶接
入熱が高く、そのため母材に含有している比較的融点の
低い成分例えばNbO2 等が溶融析出し、溶接線の境
界部にミクロクラックとして生ずる。これを防止するた
めに、溶接時の溶接入熱を低くすると、母材と溶着金属
とが融着不良をおこし、健全な溶接部が得られないと共
に溶接時間が多くかかる。また、溶接施工上、V開先等
の溶接開先が必要であり、このため多量の溶加材を必要
とする。従って、溶接後の残留応力が高く溶接後に熱処
理が必要であった。
In MIG welding and TIG welding, the welding heat input during welding is high, so components with relatively low melting points such as NbO2 contained in the base metal melt and precipitate, causing microcracks at the weld line boundary. arise. In order to prevent this, if the welding heat input during welding is lowered, poor fusion will occur between the base metal and the weld metal, making it impossible to obtain a sound weld and also requiring a long welding time. Furthermore, welding requires a welding groove such as a V-groove, which requires a large amount of filler metal. Therefore, residual stress after welding was high and heat treatment was required after welding.

【0010】0010

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の溶接方法は、少なくとも一方の部材が鋳
物材の溶接において、該鋳物材の溶接部にチル晶を形成
し電子ビーム溶接にて接合を行うことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the welding method of the present invention is such that when at least one member is a cast material, chill crystals are formed in the welded part of the cast material and an electron beam is applied to the welding method. It is characterized by joining by welding.

【0011】[0011]

【作用及び実施例】少なくとも一方の部材が鋳物材の溶
接において、鋳物材の溶接部にチル晶を形成させるため
、溶接部の結晶粒径が微細になり、この微細な結晶粒の
粒界には、不純物や水素、酸素、窒素等の含有ガス成分
の介在が極端に少なくなった。従って電子ビーム溶接を
適用しても、粒界に介在する不純物や水素、酸素、窒素
等の含有ガス成分がガス化、膨脹し、溶接部に偏析しビ
ームの通りが悪くなることはなく、健全な溶接が行える
。また、鋳物材の溶接に、電子ビーム溶接を適用するこ
とにより、溶接時の溶接入熱が低く、溶接部でのミクロ
クラックの発生がない。さらに、継手部の溶融金属の体
積が著しく小さいため溶接後の残留応力が低く、熱処理
が不要である。
[Operation and Examples] When at least one member is a cast material, chill crystals are formed in the welded part of the cast material, so the crystal grain size of the welded part becomes fine, and the grain boundaries of these fine grains The presence of impurities and gas components such as hydrogen, oxygen, and nitrogen is extremely reduced. Therefore, even when electron beam welding is applied, impurities present in the grain boundaries and gas components such as hydrogen, oxygen, and nitrogen will not gasify and expand, segregate in the welded area, and impair the beam passage, resulting in a healthy welding process. Welding is possible. Furthermore, by applying electron beam welding to welding cast materials, the welding heat input during welding is low and no microcracks occur in the welded part. Furthermore, since the volume of molten metal in the joint is extremely small, residual stress after welding is low, and heat treatment is not required.

【0012】本発明の1実施例として、図1に示すバレ
ルの胴径が800mmのハースロールを溶接・製造した
。 図1において、ハースロールは、軸1、アクスル2、バ
レル3から構成される。軸1は、SUS310材で鍛造
により、アクスル2はSCH19で金型鋳造により、バ
レル3は金型への塗型材を溶射塗型とし、塗型厚みを約
1mmとした金型を用いSCH22で遠心鋳造により製
作した。
As an example of the present invention, a hearth roll having a barrel diameter of 800 mm as shown in FIG. 1 was welded and manufactured. In FIG. 1, the hearth roll is composed of a shaft 1, an axle 2, and a barrel 3. The shaft 1 is forged from SUS310 material, the axle 2 is made by die casting with SCH19, and the barrel 3 is centrifuged with SCH22 using a thermal spray coating material with a coating thickness of about 1 mm. Manufactured by casting.

【0013】金型への溶射塗型の方法は、次の通りに施
工した。即ち、金型の予熱後CO2 −アセチレンガス
バーナー中に塗型の粉末原料を装入し、吹き付けにより
塗布した。このため塗型中へは、水分を全く含まない。 前記の金型を使用し、遠心鋳造法にてバレル3を鋳造し
た。この場合のバレル3のチル晶4の生成状況を図2に
示す。図から明らかなように、金型および薄肉溶射塗型
による冷却促進効果によりバレル3の継手溶接部の肉厚
断面全域にわたって約28mm深さのチル晶4が生成し
た。
[0013] The method of spraying the mold onto the mold was as follows. That is, after preheating the mold, powder raw materials for the coating mold were charged into a CO2-acetylene gas burner and applied by spraying. Therefore, no moisture is contained in the coating mold. Barrel 3 was cast using the above mold by centrifugal casting. FIG. 2 shows how chill crystals 4 are generated in the barrel 3 in this case. As is clear from the figure, chill crystals 4 with a depth of about 28 mm were formed over the entire thick section of the joint weld of the barrel 3 due to the cooling acceleration effect of the mold and the thin spray coating mold.

【0014】前記の通り製作したアクスル2とバレル3
とを本発明の方法である電子ビーム溶接で真空中で溶接
・施工した。図3は、溶接部断面の溶着の状況を示すも
のであり、図から明らかなように溶接部は、極めて狭い
領域に限られミクロクラックやブローホール等の溶接欠
陥もなく健全な組織が得られた。
Axle 2 and barrel 3 manufactured as described above
were welded and constructed in vacuum by electron beam welding, which is the method of the present invention. Figure 3 shows the state of welding in the cross section of the weld. As is clear from the figure, the weld is limited to an extremely narrow area and a healthy structure is obtained, with no welding defects such as microcracks or blowholes. Ta.

【0015】以上のように、本発明方法によれば結晶粒
径の粗い鋳物材の電子ビーム溶接が可能となり、高品質
な継手が安価に製造できる。また、溶射塗型を使用する
ことにより、従来の水溶性塗型を用いた場合に比べ、次
の効果が判明した。溶射後の金型との付着力が強いため
塗型後の剥離が生じなく、塗型厚みを薄くすることがで
きる。また、塗型後の吸湿が全くなく、鋳造時のブロー
ホール欠陥を抑制できると共に、従来の水溶性塗型材に
比べ熱伝導率が高いため鋳造後の溶湯の冷却が促進され
た。
As described above, according to the method of the present invention, it is possible to perform electron beam welding of casting materials with coarse grain sizes, and high-quality joints can be manufactured at low cost. In addition, the following effects were found by using a thermal spray coating mold compared to the case of using a conventional water-soluble coating mold. Since the adhesion to the mold after thermal spraying is strong, peeling does not occur after coating, and the thickness of the coating can be reduced. In addition, there was no moisture absorption after the mold coating, suppressing blowhole defects during casting, and the cooling of the molten metal after casting was facilitated because it had higher thermal conductivity than conventional water-soluble mold coating materials.

【0016】次に本発明の作用・効果を確認するため、
比較例として、バレル3用金型への塗型を従来の水溶性
塗型を用い、塗型厚みを約3mmとしてバレル3を鋳造
し、アクスル2とバレル3とを従来のMIG溶接で施工
した。この比較例の、バレル3のチル晶4の生成状況を
図4に示す。図から明らかなように、外表面のチル晶の
深さは約5mmと浅い。
Next, in order to confirm the action and effect of the present invention,
As a comparative example, barrel 3 was cast using a conventional water-soluble coating mold with a coating thickness of approximately 3 mm, and axle 2 and barrel 3 were welded using conventional MIG welding. . FIG. 4 shows the state of formation of chill crystals 4 in the barrel 3 in this comparative example. As is clear from the figure, the depth of the chill crystals on the outer surface is as shallow as about 5 mm.

【0017】図5は、比較例の溶接部断面の溶着の状況
を示すものである。本比較例は、溶接時のミクロクラッ
クを防止するため、溶接入熱を低く施工した例であり、
その結果母材へのとけ込み不良7や溶接ビーム内に融着
不良8が発生している。
FIG. 5 shows the state of welding in a cross section of a welded part in a comparative example. This comparative example is an example in which the welding heat input was low in order to prevent microcracks during welding.
As a result, poor integration 7 into the base metal and poor fusion 8 occur within the welding beam.

【0018】図6は、本発明実施例と比較例における、
溶接部の熱処理前後の残留応力の測定結果を示す。図か
ら明らかなように本発明実施例の残留応力は、熱処理の
前後において、円周方向、軸長方向のいずれも10〜1
5kgf/mm2 と低く使用上全く問題ない。従って
、電子ビーム溶接後の熱処理を省略することが可能であ
る。比較例において、熱処理前の残留応力は円周方向約
30kgf/mm2 、軸長方向約50kgf/mm2
 と高く熱処理が必要であり、熱処理後においても軸長
方向には約30kgf/mm2 程度が残留している。
FIG. 6 shows the examples of the present invention and comparative examples.
The measurement results of residual stress before and after heat treatment of the weld are shown. As is clear from the figure, the residual stress of the example of the present invention was 10 to 1 in both the circumferential direction and the axial direction before and after heat treatment.
It is as low as 5kgf/mm2 and poses no problem in use. Therefore, it is possible to omit heat treatment after electron beam welding. In the comparative example, the residual stress before heat treatment was approximately 30 kgf/mm2 in the circumferential direction and approximately 50 kgf/mm2 in the axial direction.
This requires high heat treatment, and even after heat treatment, about 30 kgf/mm2 remains in the axial direction.

【0019】図7は、本発明実施例と比較例における、
溶接部の硬さ試験結果を示す。図から明らかなように、
本発明実施例の溶接熱影響部の硬さは、両部材の硬さよ
り若干高い程度でありまた、その範囲は狭い範囲に限ら
れている。また、溶接部の硬さは、両部材の硬さである
。比較例において、溶接熱影響部の硬さは、両部材の硬
さに比べてかなり高く、その範囲も広い。また、溶接部
の硬さは、両部材に比べて低い。
FIG. 7 shows the examples of the present invention and comparative examples.
The hardness test results of welded parts are shown. As is clear from the figure,
The hardness of the weld heat affected zone in the embodiment of the present invention is slightly higher than the hardness of both members, and its range is limited to a narrow range. Further, the hardness of the welded portion is the hardness of both members. In the comparative example, the hardness of the weld heat affected zone is considerably higher than the hardness of both members, and its range is wide. Further, the hardness of the welded portion is lower than that of both members.

【0020】次にバレル3の胴径が650,800,1
200mmのハースロールを前記実施例と同様な方法で
、溶接部にチル晶を形成させた後、電子ビーム溶接にて
溶接・製造し実際に、鋼板の熱処理炉用ハースロールと
して、実炉に供した。その結果、いずれの場合も製造後
の溶接部の欠陥は皆無で、健全なものでありまた、使用
時の耐久性も優れたものであった。
Next, the diameter of the barrel 3 is 650, 800, 1
A 200 mm hearth roll was welded and manufactured by electron beam welding after forming chill crystals on the welded part in the same manner as in the above example, and was actually used in an actual furnace as a hearth roll for a steel sheet heat treatment furnace. did. As a result, in all cases, the welded parts after manufacture had no defects, were sound, and had excellent durability during use.

【0021】なお、本実施例においては、バレル3の溶
接部のチル晶4形成にあたっては、鋳造後の溶湯の冷却
速度を制御する手段として、塗型材、塗型厚みを選定、
つまり金型の内面に1mm厚みの溶射塗型を実施したが
、チル晶4形成の方法として、これに限られるものでは
ない。例えば、従来方式の水溶性塗型で鋳造後、バレル
3全体または、継手溶接部分のみを加熱急冷させチル晶
4の形成を図ってもよい。
[0021] In this embodiment, when forming the chill crystal 4 at the welded part of the barrel 3, the coating material and coating thickness are selected as means for controlling the cooling rate of the molten metal after casting.
That is, although the inner surface of the mold was thermally sprayed to a thickness of 1 mm, the method for forming the chill crystal 4 is not limited to this. For example, after casting with a conventional water-soluble coating mold, the entire barrel 3 or only the joint welded portion may be heated and rapidly cooled to form the chilled crystal 4.

【0022】以上は、バレル3について述べたが、他の
部材のチル晶4の形成については、その他砂型の鋳造材
においては、冷やし金や砂型の骨材に冷却効果の大きい
材料を使用しチル晶4を形成してもよい。なお、チル晶
4形成の範囲としては、本実施例のように鋳物材全体を
チル化してもよくまた、部分的にチル化を図ってもよい
The above description has been about the barrel 3, but regarding the formation of chilled crystals 4 in other parts, for other sand casting materials, chilling is performed by using chilled metal or a material with a large cooling effect for the aggregate of the sand mold. Crystal 4 may also be formed. As for the range of chill crystal 4 formation, the entire casting material may be chilled as in this embodiment, or it may be partially chilled.

【0023】[0023]

【発明の効果】従来、大物、厚肉の鋳物材は、鋳造後の
結晶粒径が大きいため電子ビーム溶接の適用ができなか
ったが、溶接部にチル晶を形成させることにより電子ビ
ーム溶接の適用が可能となった。その結果、次の効果が
ある。
[Effects of the Invention] Conventionally, electron beam welding could not be applied to large or thick casting materials due to the large crystal grain size after casting. It is now possible to apply. As a result, the following effects are achieved.

【0024】■電子ビーム溶接の適用により溶接入熱が
低く、溶接部のミクロクラックの発生がなく、高品質な
鋳物材の継手の製造が可能となった。 ■溶接残留応力が低く、溶接後の残留応力除去のため熱
処理が不要となり製造コストが安価となった。
[0024] By applying electron beam welding, welding heat input is low, microcracks do not occur in the welded part, and it has become possible to manufacture high quality joints of cast materials. ■Welding residual stress is low, and no heat treatment is required to remove residual stress after welding, resulting in lower manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明実施例のハースロールの断面を示す。FIG. 1 shows a cross section of a hearth roll according to an embodiment of the present invention.

【図2】本発明実施例のバレルのチル晶の生成状況を示
す。
FIG. 2 shows the state of formation of chill crystals in the barrel of the example of the present invention.

【図3】本発明実施例の溶接部断面の溶着の状況を示す
FIG. 3 shows the state of welding in a cross section of a welded part in an example of the present invention.

【図4】従来方法である比較例のバレルのチル晶の生成
状況を示す。
FIG. 4 shows the generation of chill crystals in a barrel in a comparative example, which is a conventional method.

【図5】従来方法である比較例の溶接部断面の溶着の状
況を示す。
FIG. 5 shows the state of welding in a cross section of a welded part in a comparative example, which is a conventional method.

【図6】本発明実施例と従来方法である比較例との熱処
理前後の残留応力の測定結果を示す。
FIG. 6 shows measurement results of residual stress before and after heat treatment in an example of the present invention and a comparative example using a conventional method.

【図7】本発明実施例と従来方法である比較例との溶接
部の硬さ試験結果を示す。
FIG. 7 shows the hardness test results of welded parts of an example of the present invention and a comparative example using a conventional method.

【符号の説明】[Explanation of symbols]

1  軸 2  アクスル 3  バレル 4  チル晶 5  粒状晶 6  偏析層 7  母材への溶け込み不良部 8  溶接ビード内の融着不良部 1 axis 2 Axle 3 Barrel 4 Chill crystal 5. Granular crystals 6 Segregation layer 7. Poor penetration into the base material 8. Poor fusion within the weld bead

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも一方の部材が鋳物材の溶接
において、該鋳物材の溶接部にチル晶を形成し電子ビー
ム溶接にて接合を行うことを特徴とする鋳物材の電子ビ
ーム溶接方法。
1. A method for electron beam welding of cast materials, characterized in that at least one of the members is a cast material, and the welding is performed by forming chill crystals in the welded portion of the casting material and performing the joining by electron beam welding.
JP3148654A 1991-06-20 1991-06-20 Hearth roll manufacturing method Expired - Fee Related JP2792755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3148654A JP2792755B2 (en) 1991-06-20 1991-06-20 Hearth roll manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3148654A JP2792755B2 (en) 1991-06-20 1991-06-20 Hearth roll manufacturing method

Publications (2)

Publication Number Publication Date
JPH04371376A true JPH04371376A (en) 1992-12-24
JP2792755B2 JP2792755B2 (en) 1998-09-03

Family

ID=15457641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3148654A Expired - Fee Related JP2792755B2 (en) 1991-06-20 1991-06-20 Hearth roll manufacturing method

Country Status (1)

Country Link
JP (1) JP2792755B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255680A (en) * 1988-08-17 1990-02-26 Mitsubishi Heavy Ind Ltd Electron beam welding method for cast material
JPH02107749U (en) * 1989-02-15 1990-08-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255680A (en) * 1988-08-17 1990-02-26 Mitsubishi Heavy Ind Ltd Electron beam welding method for cast material
JPH02107749U (en) * 1989-02-15 1990-08-28

Also Published As

Publication number Publication date
JP2792755B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US4117302A (en) Method for fusibly bonding a coating material to a metal article
JPH02258949A (en) Wear-resistant composite roll
US5678753A (en) Welding for spheroidal graphic cast iron material
KR950006649B1 (en) Composite roll for use in rolling and manufacture thereof
US5167733A (en) Method for manufacturing iron-manganese-aluminum alloy castings
US3204917A (en) Layered mold
US4102033A (en) Method of producing layer-like clad metal materials
JP2006289438A (en) Method for producing steel material
JPWO2021240696A5 (en)
JPH04371376A (en) Electron beam welding method for cast material
JP5146268B2 (en) Arc welding method for steel sheet coated with antioxidant
JPH09216047A (en) Manufacture of complex plate material
CN109136782B (en) Control method for casting blank longitudinal crack of 1000 MPa-grade cold-rolled strip steel
JPH03238107A (en) Production of roll for coiler of hot rolling equipment
JPH11320073A (en) Production of two-layered nickel-base alloy clad steel sheet by casting method
JPS58153731A (en) Method of reducing residual weld stress
Dubrovskii et al. Electric resistance surfacing with a wire and with melting of the metals to be joined
JP3534321B2 (en) Welding repair method for high Cr cast iron products
JP2571377B2 (en) Roll for continuous casting of an arb leave type
JPH06269926A (en) Manufacture of bit for excavation
JPS6358215B2 (en)
JP2006142331A (en) Roll production method
JPS60148689A (en) Production of composite seamless guide shoe
JPS63248572A (en) Build-up welding method for surface of copper member
JPH0853731A (en) Aluminum alloy material for noncorrosive flux brazing and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980602

LAPS Cancellation because of no payment of annual fees