JPH0437125B2 - - Google Patents
Info
- Publication number
- JPH0437125B2 JPH0437125B2 JP20712787A JP20712787A JPH0437125B2 JP H0437125 B2 JPH0437125 B2 JP H0437125B2 JP 20712787 A JP20712787 A JP 20712787A JP 20712787 A JP20712787 A JP 20712787A JP H0437125 B2 JPH0437125 B2 JP H0437125B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- primary slag
- amount
- hot water
- electric furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002893 slag Substances 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 18
- 229910000604 Ferrochrome Inorganic materials 0.000 claims description 16
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 239000011651 chromium Substances 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 238000010079 rubber tapping Methods 0.000 claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- 150000003377 silicon compounds Chemical class 0.000 claims description 9
- 235000012255 calcium oxide Nutrition 0.000 claims description 7
- 239000000292 calcium oxide Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- -1 silicochrome Chemical class 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Description
〔産業上の利用分野〕
この発明はペラン法による低炭素フエロクロム
の製造方法に関するものである。
〔従来の技術〕
低炭素フエロクロムは通常Cr60%以上、CO.10
%以下のFe−Cr合金で特殊鋼、特にステンレス
鋼のCr添加材等に用いられている。この低炭素
フエロクロムの製造方法としては、古くからペラ
ン法が広く用いられている。ペラン法はクロム鉱
石、焼石灰を傾動型電気炉で溶融して一次スラグ
を形成し、その一次スラグを炉の傾動によつて出
湯し、取鍋内でシリコ・クロム等を加えてペラン
反応により、低炭素フエロクロムを製造するもの
である。
ペラン法において一次スラグを形成する電気炉
は、この一次スラグの出湯温度が約1800℃の高温
であることから全量溶融して傾動しながら出湯す
る傾動型電気炉が用いられている。
この場合一次スラグの出湯時に、炉内一次スラ
グの湯面が裸状態になり、一次スラグのCr3,
Fe2が大気中のO2を吸収して安定なCr6,Fe3の高
次酸化物となるため、一次スラグ中の酸素含有量
が増加し、従つて次工程で加えられるシリコ・ク
ロム等のケイ素化合物を当初の理論量より過剰に
することが必要である。このケイ素化合物は低炭
素フエロクロム製造用原料としては最も高価であ
ることから、この使用原単位を低減する一つの対
策として特公昭51−14968号に示される方法があ
る。
即ち、クロム鉱石、生石灰の予熱したものに粉
コークス等の炭素含有還元剤を混合して電気炉で
溶融したのち傾動して溶湯を取鍋に移し、ケイ素
化合物溶湯と反応させて低炭素フエロクロムを製
造する方法である。
〔発明が解決しようとする問題点〕
しかしながらペラン法による低炭素フエロクロ
ムの製造方法において、傾動型電気炉を用いて一
次スラグを形成する場合に、クロム鉱石、焼石灰
の原料に炭素含有還元剤を混合して、ケイ素化合
物の原単位の低減を図つたとしても、傾動して出
湯するさいに、原料がほぼ全量溶融して湯面が裸
状態になつている。そのため炉内湯面からの熱放
散が大で、熱効率が悪く、また傾動で邪魔になる
電極を引き抜くために通電を停止しなければなら
ず、通電率の低下と、停炉にともなう熱損失等の
問題がある。
本発明は以上のような問題点の解決を図つたも
ので、電気炉での一次スラグの出湯にさいして、
炉内での一次スラグの湯面を裸状態にすることな
く、出湯を円滑に行わしめる熱量を与え、しかも
停炉することなく出湯の出来るペラン法による低
炭素フエロクロムの製造方法を提供することを目
的とする。
〔問題点を解決するための手段および作用〕
本発明は、クロム鉱石と焼石灰を原料とし、そ
れらを電気炉で溶融した一次スラグを出湯し、そ
の溶融した一次スラグにシリコクロム等のケイ素
化合物を加えてペラン反応により低炭素フエロク
ロムを製造する方法において、前記電気炉は炉底
より高い位置に出湯口を設けて湯溜りを形成した
固定型電気炉とし、一次スラグの出湯量と湯溜り
の残湯量との比(残湯量/出湯量)が0.5〜4.0の
範囲で、かつ炉内湯面を装入する原料を絶えず覆
つて通電しながら一次スラグを出湯する低炭素フ
エロクロムの製造方法である。
本発明においては、溶融した一次スラグを形成
する電気炉は、炉底より高い位置に出湯口を設け
て湯溜りを形成した固定型電気炉であることが必
要である。ここにおいて炉底より高い位置に出湯
口を設けて湯溜りを形成したのは、一次スラグは
出湯にあたつて、湯溜りの残湯によつて、安定し
た熱量を保持させることによる。固定型電気炉を
用いるのは、電極の引抜きをやめ、停炉すること
なく出湯を可能とすることによる。
本発明においては、一次スラグの出湯量と湯溜
りの残湯量との比(残湯量/出湯量)が0.5〜4.0
の範囲で一次スラグを出湯することが必要であ
る。0.5未満では残湯量が少なくて、一次スラグ
の出湯量が安定な熱量を保有出来ない。そのため
出湯後にシリコクロム等のケイ素化合物との反応
における熱不足を生じ鍋付発生等の原因となる。
4.0を超えた場合は、電気炉の諸元によるが、炉
の高さが必要以上に高くなり、実用的でない。電
気炉は使用電力(KVA)に応じた炉内容積を持
つことが必要であり、炉床面積、炉の深さ、電極
表面間距離等が一般には過去の経験から求められ
た式によつて算出されている。
又、本発明では一次スラグの出湯にさいして、
炉内の一次スラグの湯面は、連続的に装入する原
料で覆つていることが必要である。これによつて
一次スラグの湯面からの大気中への熱放散は防止
され、熱効率を高めることが出来る。そして一次
スラグを出湯している間も通電して、原料の溶融
を行う。炉内の一次スラグの湯面は、出湯によつ
て次第に下つてくるが、出湯口の高さの位置近く
で止まる。これは一次スラグの出湯温度は約1800
℃であり、原料と接している湯面は熱を原料にう
ばわれることによつて温度が下つており、粘度が
高いために出湯の流れが自然に止まる。出湯した
一次スラグは取鍋に受けられ、そこでシリコクロ
ム等のケイ素化合物を加えて下記のようなペラン
反応によつて低炭素フエロクロムを製造する。低
炭素フエロクロムはスラグと分離して製品とな
る。
2Cr2O3+3Si=4Cr+3SiO2
2FeO+Si=2Fe+SiO2
SiO2+2CaO=Ca2SiO3
〔実施例〕
以下に本発明の方法を図によつて説明する。第
1図は本発明の方法に使用する3相エルー式固定
型電気炉の一実施例を示す模式図である。図にお
いて3相エルー式固定型電気炉1は炉底2より高
い位置に出湯口3を設けて湯溜り4を形成してい
る。3本の電極13が炉内に装入され、その先端
は原料シユート5より装入されたクロム鉱石と焼
石灰の原料6に埋まつている。通電によつて原料
は溶融して一次スラグ7を形成する。電極13は
一次スラグの湯面よりも高い先端位置になるよう
に操業され、所定の一次スラグが形成した時に、
出湯口3を開いて一次スラグの出湯が行われる。
出された一次スラグは取鍋8に受けられ、ここで
他の電気炉で製造された溶融しているか又は固体
のシリコクロム等のケイ素化合物を加えてペラン
反応により低炭素フエロクロムを製造する。この
場合出湯量は湯溜り4の残湯量との比(残湯量/
出湯量)が0.5〜4.0の範囲で出湯される。出湯時
には炉内の一次スラグの湯面が連続的に装入する
原料6で覆われており、通電した状態で行われ
る。この場合電極13はゼーターベルグ電極が用
いられる。11はホルダーである。炉殻9にはラ
イニング層10が設けられている。12は炉蓋で
発生ガスの集塵を行うためのカバーである。
次に第1図に示すような固定型電気炉を用いて
一次スラグを形成し、低炭素フエロクロムを製造
した場合の本発明の具体的な実施例を示す。
(実施例 1)
6000KVA3相エルー式固定型電気炉を用い、湯
溜りには残湯量が25000Kgになるように炉底から
の高さ位置に出湯口を設けている。
残湯比(残湯量/出湯量)=25000/12000≒2.1
出湯(タツプ)は3時間毎に行つた。
従来法の傾動型電気炉による方法を比較として
行つた。調合内容を第1表、操業結果を第2表に
示す。
[Industrial Application Field] This invention relates to a method for producing low carbon ferrochrome by the Perrin process. [Conventional technology] Low carbon ferrochrome usually contains 60% or more of Cr, CO.10
% or less, and is used as a Cr-added material in special steels, especially stainless steels. As a method for producing this low carbon ferrochrome, the Perrin method has been widely used for a long time. In the Perrin process, chromium ore and burnt lime are melted in a tilting electric furnace to form primary slag, the primary slag is tapped by tilting the furnace, silico, chromium, etc. are added in a ladle, and the Perrin reaction is carried out. , which produces low carbon ferrochrome. The electric furnace used to form the primary slag in the Perrin process is a tilting type electric furnace, which melts the entire amount and taps the molten metal while tilting, since the temperature at which the primary slag is tapped is as high as about 1800°C. In this case, when the primary slag is tapped, the surface of the primary slag in the furnace becomes bare, and the Cr 3 ,
Since Fe 2 absorbs O 2 from the atmosphere and becomes stable higher-order oxides of Cr 6 and Fe 3 , the oxygen content in the primary slag increases, and therefore the silico, chromium, etc. added in the next process increases. It is necessary to use an excess of the silicon compound over the original theoretical amount. Since this silicon compound is the most expensive raw material for the production of low carbon ferrochrome, one measure for reducing the unit consumption is the method disclosed in Japanese Patent Publication No. 14968/1983. That is, preheated chromium ore and quicklime are mixed with a carbon-containing reducing agent such as powdered coke and melted in an electric furnace.The molten metal is then tilted and transferred to a ladle, where it reacts with molten silicon compound to produce low-carbon ferrochrome. This is a method of manufacturing. [Problems to be solved by the invention] However, in the Perrin process for producing low-carbon ferrochrome, when forming primary slag using a tilting electric furnace, a carbon-containing reducing agent is added to the raw materials of chromium ore and burnt lime. Even if an attempt is made to reduce the unit consumption of silicon compounds by mixing, almost all of the raw materials are melted and the surface of the hot water becomes bare when the hot water is tipped and tapped. As a result, heat dissipates from the surface of the furnace in a large amount, resulting in poor thermal efficiency.In addition, electricity must be stopped in order to pull out electrodes that get in the way due to tilting, resulting in a decrease in energization rate and heat loss due to furnace shutdown. There's a problem. The present invention aims to solve the above-mentioned problems, and when tapping primary slag in an electric furnace,
To provide a method for producing low-carbon ferrochrome by the Perrin method, which provides heat for smooth tapping without leaving the surface of the primary slag in a furnace bare, and also allows tapping without shutting down the furnace. purpose. [Means and effects for solving the problems] The present invention uses chromium ore and burnt lime as raw materials, melts them in an electric furnace, taps the primary slag, and adds silicon compounds such as silicochrome to the molten primary slag. In addition, in the method for producing low-carbon ferrochrome by the Perrin reaction, the electric furnace is a fixed type electric furnace with a tap hole located at a position higher than the bottom of the furnace to form a pool, and the amount of primary slag discharged and the remaining amount in the pool are adjusted. This is a method for producing low carbon ferrochrome in which the ratio of the amount of hot water (residual amount of hot water/molten metal discharged amount) is in the range of 0.5 to 4.0, and the primary slag is tapped while continuously covering the raw material to be charged to the surface of the hot water in the furnace while being energized. In the present invention, the electric furnace for forming the molten primary slag needs to be a fixed type electric furnace having a tap hole located at a position higher than the bottom of the furnace to form a pool. The reason why the tap hole is provided at a position higher than the bottom of the furnace to form a pool is that when the primary slag is tapped, a stable amount of heat is maintained by the remaining hot water in the pool. The reason for using a stationary electric furnace is to stop pulling out the electrodes and make it possible to tap the hot water without having to shut down the furnace. In the present invention, the ratio between the amount of hot water discharged from the primary slag and the amount of remaining hot water in the pool (residual hot water amount/feeding amount) is 0.5 to 4.0.
It is necessary to tap the primary slag within the range of . If it is less than 0.5, the amount of remaining hot water will be small and the amount of hot water produced by the primary slag will not have a stable amount of heat. Therefore, after tapping the hot water, there is a lack of heat in the reaction with silicon compounds such as silicochrome, which causes boiling and other problems.
If it exceeds 4.0, it depends on the specifications of the electric furnace, but the height of the furnace will be higher than necessary, which is not practical. An electric furnace must have an internal volume that corresponds to the power used (KVA), and the hearth area, furnace depth, distance between electrode surfaces, etc. are generally determined by formulas determined from past experience. It has been calculated. In addition, in the present invention, when tapping the primary slag,
The surface of the primary slag in the furnace must be covered with the raw material that is continuously charged. This prevents heat dissipation from the surface of the primary slag into the atmosphere, increasing thermal efficiency. Electricity is then applied even while the primary slag is being tapped to melt the raw material. The level of the primary slag in the furnace gradually falls as the hot water is tapped, but it stops near the level of the tap. This means that the temperature at which the primary slag comes out is approximately 1800.
℃, the temperature of the surface of the hot water in contact with the raw material drops as the heat is absorbed by the raw material, and the flow of hot water stops naturally due to its high viscosity. The tapped primary slag is received in a ladle, where a silicon compound such as silicochrome is added to produce low carbon ferrochrome through the Perrin reaction as described below. Low carbon ferrochrome is separated from slag and becomes a product. 2Cr 2 O 3 +3Si=4Cr+3SiO 2 2FeO+Si=2Fe+SiO 2 SiO 2 +2CaO=Ca 2 SiO 3 [Example] The method of the present invention will be explained below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of a three-phase Errou type fixed electric furnace used in the method of the present invention. As shown in the figure, a three-phase electric furnace 1 has an outlet 3 located higher than the bottom 2 of the furnace to form a sump 4. Three electrodes 13 are charged into the furnace, and their tips are buried in the raw materials 6 of chromium ore and burnt lime charged from the raw material chute 5. By applying electricity, the raw material is melted to form primary slag 7. The electrode 13 is operated so that the tip position is higher than the level of the primary slag, and when a predetermined primary slag is formed,
The tapping port 3 is opened to tap the primary slag.
The discharged primary slag is received in a ladle 8, where a molten or solid silicon compound such as silicochrome produced in another electric furnace is added to produce low carbon ferrochrome by Perrin reaction. In this case, the amount of hot water dispensed is the ratio of the amount of hot water remaining in the pool 4 (amount of remaining hot water/
Hot water is discharged in the range of 0.5 to 4.0. At the time of tapping, the surface of the primary slag in the furnace is covered with the raw material 6 that is continuously charged, and the tapping is performed with electricity being applied. In this case, the electrode 13 is a Zeterberg electrode. 11 is a holder. The furnace shell 9 is provided with a lining layer 10 . Reference numeral 12 denotes a cover for collecting dust from generated gas at the furnace lid. Next, a specific example of the present invention will be described in which a fixed electric furnace as shown in FIG. 1 is used to form a primary slag to produce low carbon ferrochrome. (Example 1) A 6000 KVA 3-phase Elu type fixed electric furnace is used, and a tap outlet is provided at a height from the bottom of the furnace so that the remaining amount of molten metal in the molten pool is 25000 kg. Remaining hot water ratio (remaining hot water amount/output hot water amount) = 25000/12000≒2.1
The hot springs (tap) were provided every three hours. A conventional method using a tilting electric furnace was used for comparison. The formulation contents are shown in Table 1, and the operational results are shown in Table 2.
【表】【table】
【表】【table】
【表】
表2より明らかなように本発明方法によれば、
従来法に比して一次スラグ屯当りの電力量
(KWh)が小さく、電力原単位、Si効率、通電率
が良い結果を示している。
(実施例 2)
4000KVA3相エルー式固定型電気炉を用い、湯
溜りには残湯量が8000Kgになるように炉底からの
高さ位置に出湯口を設けている。
残湯比(残湯量/出湯量)=8000/8103≒1.0出
湯(タツプ)は3時間毎に行つた。
比較として4000KVA3相エルー式固定型電気炉
で出湯口が炉底に位置して設けたものを使用し
た。この場合は出湯を安定にするためにバツチ型
にせざるを得なかつた。
調合内容を第3表、操業結果を第4表に示す。[Table] As is clear from Table 2, according to the method of the present invention,
Compared to the conventional method, the amount of electricity (KWh) per tonne of primary slag is smaller, and results are better in terms of power consumption, Si efficiency, and current conductivity. (Example 2) A 4000KVA 3-phase fixed type electric furnace is used, and a tap outlet is provided at a height from the bottom of the furnace so that the remaining amount of molten metal in the pool is 8000Kg. Remaining hot water ratio (amount of remaining hot water/amount of hot water dispensed) = 8000/8103≒1.0 Hot water was dispensed every 3 hours. For comparison, we used a 4000KVA three-phase Elu type fixed electric furnace with a tap hole located at the bottom of the furnace. In this case, we had no choice but to use a batch type to stabilize the hot water flow. The formulation contents are shown in Table 3, and the operational results are shown in Table 4.
【表】【table】
【表】【table】
本発明の方法によれば、クロム鉱石と焼石灰と
による溶融した一次スラグが停炉することなく電
気炉で連続的に形成され、しかも充分な熱量を保
有して出湯できるとともに、炉内一次スラグの湯
面を絶えず原料で覆つているので熱放散が少なく
大気中のO2による酸化も少ない。
そのためシリコクロムの原単位が低く、熱効
率、通電率の高い低炭素フエロクロムの製造が可
能であり、産業上価値の高い発明である。
According to the method of the present invention, molten primary slag made of chromium ore and burnt lime is continuously formed in an electric furnace without stopping the furnace, and moreover, it retains a sufficient amount of heat and can be tapped, and the primary slag in the furnace Since the surface of the hot water is constantly covered with raw materials, there is little heat dissipation and there is little oxidation due to O 2 in the atmosphere. Therefore, it is possible to produce low-carbon ferrochrome with a low unit consumption of silicochrome, high thermal efficiency, and high current conductivity, and is an invention of high industrial value.
第1図は本発明の方法に使用する固定型電気炉
の一実施例を示す模式図である。
1……固定型電気炉、2……炉底、3……出湯
口、4……湯溜、5……原料シユート、6……原
料、7……一次スラグ、8……取鍋、9……炉
殻、10……ライニング層、11……ホルダー、
12……炉蓋、13……電極。
FIG. 1 is a schematic diagram showing an embodiment of a fixed electric furnace used in the method of the present invention. 1... Fixed electric furnace, 2... Hearth bottom, 3... Tap, 4... Reservoir, 5... Raw material chute, 6... Raw material, 7... Primary slag, 8... Ladle, 9 ... Furnace shell, 10 ... Lining layer, 11 ... Holder,
12...furnace cover, 13...electrode.
Claims (1)
気炉で溶融した一次スラグを出湯し、その溶融し
た一次スラグにシリコ・クロム等のケイ素化合物
を加えてペラン反応により低炭素フエロクロムを
製造する方法において、前記電気炉は炉底より高
い位置に出湯口を設けて湯溜りを形成した固定型
電気炉とし、一次スラグの出湯量と湯溜りの残湯
量との比(残湯量/出湯量)が0.5〜4.0の範囲
で、かつ炉内湯面を装入する原料で絶えず覆つて
通電しながら一次スラグを出湯することを特徴と
した低炭素フエロクロムの製造方法。1. In a method of producing low-carbon ferrochrome by using chromium ore and burnt lime as raw materials, melting them in an electric furnace, tapping the primary slag, adding silicon compounds such as silico-chromium to the molten primary slag, and performing the Perrin reaction. , the electric furnace is a fixed electric furnace with a tap hole located at a position higher than the bottom of the furnace to form a pool, and the ratio of the amount of primary slag discharged to the amount of remaining hot water in the pool (remaining amount/feeding amount) is 0.5. 4.0 and is characterized by continuously covering the molten metal surface in the furnace with the charged raw material and tapping the primary slag while energizing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20712787A JPS6452013A (en) | 1987-08-20 | 1987-08-20 | Production of low carbon ferro-chromium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20712787A JPS6452013A (en) | 1987-08-20 | 1987-08-20 | Production of low carbon ferro-chromium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6452013A JPS6452013A (en) | 1989-02-28 |
JPH0437125B2 true JPH0437125B2 (en) | 1992-06-18 |
Family
ID=16534644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20712787A Granted JPS6452013A (en) | 1987-08-20 | 1987-08-20 | Production of low carbon ferro-chromium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6452013A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6341707B2 (en) * | 2014-03-17 | 2018-06-13 | Jfeマテリアル株式会社 | Method for producing silicochrome and method for producing ferrochrome |
BR112022003085A2 (en) * | 2019-09-06 | 2022-05-17 | Jfe Mat Co Ltd | Self-baking electrode and electrode paste |
WO2021045174A1 (en) * | 2019-09-06 | 2021-03-11 | Jfeマテリアル株式会社 | Method for producing low-carbon ferrochromium |
WO2021241538A1 (en) * | 2020-05-29 | 2021-12-02 | Jfeマテリアル株式会社 | Operation method of stationary electric furnace |
-
1987
- 1987-08-20 JP JP20712787A patent/JPS6452013A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6452013A (en) | 1989-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW518366B (en) | Method of producing molten iron in duplex furnaces and molten iron product manufactured thereby | |
US4362556A (en) | Arc furnace steelmaking involving oxygen blowing | |
CN1167837A (en) | Method for direct use of chromite ore in production of stainless steel | |
WO1997048824A1 (en) | Method of producing hot metal | |
CN106435310A (en) | Technology for using rocking furnace silicon-thermal method for refining manganese silicon aluminum alloy | |
JP5589688B2 (en) | Hot metal production method | |
JPH0437125B2 (en) | ||
JPS60152611A (en) | Method for modifying slag | |
CN1194106C (en) | Arburetant integrating metal with arbon and its preparing process | |
JPH0447004B2 (en) | ||
US4913732A (en) | Method for smelting reduction in electric furnace | |
US2704247A (en) | Method of making low carbon steel | |
US4190435A (en) | Process for the production of ferro alloys | |
US2845342A (en) | Method of recovering ferrochromium | |
JP3158912B2 (en) | Stainless steel refining method | |
US3522356A (en) | Electric furnace corona melting process | |
CN114854939B (en) | Ladle titanium removing slag for ferrochrome molten iron and ladle titanium removing method for ferrochrome molten iron | |
JP3462659B2 (en) | Method for desulfurizing hot metal of electric arc furnace for stainless steel | |
JPH0159327B2 (en) | ||
JPS62167809A (en) | Production of molten chromium iron | |
US954185A (en) | Method of making manganese steel. | |
KR100887859B1 (en) | The method of manufacturing stainless steel through reduction of chromium ore | |
El‐Faramawy et al. | Ferrosilicon magnesium production | |
JPH07252518A (en) | Method for raising temperature of molten steel and temperature raising agent | |
SU1331899A1 (en) | Charge for producing processed ferrosilicochrome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |