JPH04370983A - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPH04370983A
JPH04370983A JP3147724A JP14772491A JPH04370983A JP H04370983 A JPH04370983 A JP H04370983A JP 3147724 A JP3147724 A JP 3147724A JP 14772491 A JP14772491 A JP 14772491A JP H04370983 A JPH04370983 A JP H04370983A
Authority
JP
Japan
Prior art keywords
container
superconducting magnet
magnet device
refrigerant
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3147724A
Other languages
Japanese (ja)
Other versions
JP2977168B2 (en
Inventor
Yoshinao Sanada
眞田 芳直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3147724A priority Critical patent/JP2977168B2/en
Publication of JPH04370983A publication Critical patent/JPH04370983A/en
Application granted granted Critical
Publication of JP2977168B2 publication Critical patent/JP2977168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce evaporation of a very low temp. cooling medium at the time of servicing and break down of a small refrigerating machine by shortening the time of an initial pre-cooling of a superconducting magnet device. CONSTITUTION:As for a superconducting magnet device provided with a cooling medium container 13 where a superconducting coil 2 is housed in a vacuum container 4 and a heat shields 5a and 5b which cover the container 13 and are cooled by a small refrigerating machine 7, a heat exchanging parts 1a and 11b provided to the heat shields 5a and 5b are connected to pipings 10a and 10b for supplying and restoring a low temperature cooling medium from an outside of the vacuum container, and gas pipings 14 is connected to the low temperature cooling medium supplying pipings 10a and 10b by way of a valve 13 from the upper part of a cooling medium container 3, thus constituting the device. The valve 13 is an automatically controlled valve which performs a releasing operation when it receives a stop signal for the small refrigerator 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、単結晶引上装置やMR
I装置等で使用される低熱侵入型の超電導マグネット装
置に関する。
[Industrial Application Field] The present invention is applicable to single crystal pulling equipment, MR
This invention relates to a low heat intrusion type superconducting magnet device used in I devices and the like.

【0002】0002

【従来の技術】従来、単結晶引上装置、MRI装置等で
使用される超電導マグネット装置は、極低温冷媒の蒸発
を極力少なくするために、図3に示すような構成になっ
ている。すなわち、極低温冷媒1と、超電導コイル(2
)を収納する冷媒容器(3)と、この冷媒容器(3)を
覆うとともに、冷媒容器(3)との間に真空断熱層を形
成する真空容器(4)と、断熱層内に設けられた熱シー
ルド(5a,5b)と、一端が冷媒容器(3)に通じる
とともに、他端が前記真空断熱層、熱シールド(5)お
よび真空容器(4)の壁を貫通して常温部に位置するよ
うに設けられたポート(6)とで構成される。
2. Description of the Related Art Conventionally, a superconducting magnet device used in a single crystal pulling device, an MRI device, etc. has a configuration as shown in FIG. 3 in order to minimize evaporation of cryogenic refrigerant. That is, the cryogenic refrigerant 1 and the superconducting coil (2
), a vacuum container (4) that covers the refrigerant container (3) and forms a vacuum insulation layer between the refrigerant container (3), and a vacuum container (4) that is provided within the insulation layer. One end of the heat shield (5a, 5b) communicates with the refrigerant container (3), and the other end penetrates the walls of the vacuum insulation layer, the heat shield (5), and the vacuum container (4) and is located in the normal temperature part. It consists of a port (6) provided as shown in FIG.

【0003】熱シールド(5a,5b)は、真空容器(
4)に設けられた小型冷凍機(7)の冷却ステージ(8
a,8b)により約80K,20Kまで冷却され、冷媒
容器(3)への侵入熱は数十mW程度まで抑えられてい
る。また、熱シールド(5a,5b)には多層断熱(ス
ーパーインシュレーション)が施こされており、極力入
力熱量を押えている。このため、小型冷凍機(7)の冷
凍能力は第2段ステージ(8a)で数W、第1段ステー
ジ(8b )で数十W程度の小型のもので十分である。
[0003] The heat shield (5a, 5b) is a vacuum container (
The cooling stage (8) of the small refrigerator (7) installed in
a, 8b) to about 80K and 20K, and the heat entering the refrigerant container (3) is suppressed to about several tens of mW. Further, the heat shields (5a, 5b) are provided with multilayer insulation (super insulation) to suppress the amount of input heat as much as possible. For this reason, a small refrigerator (7) with a cooling capacity of several watts for the second stage (8a) and several tens of watts for the first stage (8b) is sufficient.

【0004】このような構成の超電導マグネット装置は
、常温で各構成要素が組立られ、小型冷凍機(7)で熱
シールドを冷却し、極低温冷媒(1)で超電導コイル(
2)及びこれを収納する冷媒容器(3)を冷却し、定常
状態まで初期予冷を行った後、使用に供される。
[0004] In a superconducting magnet device having such a configuration, each component is assembled at room temperature, the heat shield is cooled with a small refrigerator (7), and the superconducting coil (
2) and the refrigerant container (3) that houses it, and after performing initial precooling to a steady state, it is ready for use.

【0005】[0005]

【発明が解決しようとする課題】上記の極低温冷媒で冷
却された状態で使用される超電導マグネット装置におい
ては、熱シールドを冷却する小型冷凍機は、定常時の侵
入熱に相当する冷却能力のものが採用されている場合が
多く、重量が数百kgの熱シールドを常温(300k)
から80又は20kに冷却する初期予冷時間が2〜3時
間を要する。また、図示していない圧縮機は、小型冷凍
機が定常になった場合に最大の能力が出るように製作さ
れている場合が多く、高い温度(例えば、200Kの程
度)では、十分な能力が出ない。さらに、小型冷凍機は
一定の期間使用した後に部品交換等の保守が必要であり
、保守期間は、熱シールドの冷却が不可能となり、熱シ
ールドの温度上昇による冷媒容器への侵入熱の増加をま
ねく。小型冷凍機が故障した場合も同様の不具合が発生
する。
[Problems to be Solved by the Invention] In the superconducting magnet device that is used while being cooled with the cryogenic refrigerant described above, the small refrigerator that cools the heat shield has a cooling capacity that is equivalent to the intrusion heat during steady state. A heat shield weighing several hundred kg is often used at room temperature (300K).
It takes 2 to 3 hours for initial precooling to cool from 80K to 20K. In addition, compressors (not shown) are often manufactured in such a way that maximum capacity is produced when the small refrigerator becomes steady, and at high temperatures (e.g. around 200K), sufficient capacity is not achieved. Does not appear. Furthermore, small refrigerators require maintenance such as replacing parts after being used for a certain period of time, and during the maintenance period, cooling of the heat shield becomes impossible, and an increase in heat entering the refrigerant container due to the rise in the temperature of the heat shield. Maneku. A similar problem occurs when a small refrigerator breaks down.

【0006】そこで本発明は、初期予冷時間を短縮する
とともに、小型冷凍機の保守、故障時にも高価な極低温
冷媒の蒸発を抑制できる超電導マグネット装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting magnet device that can shorten the initial precooling time and suppress evaporation of expensive cryogenic refrigerant even during maintenance or failure of a small refrigerator.

【0007】[0007]

【課題を解決するための手段】本発明の超電導マグネッ
ト装置は、熱シールドに真空容器の外部より低温冷媒を
供給する配管と、冷媒容器の上部からバルブを介して、
前記配管に接続したガス配管を有する構成とする。
[Means for Solving the Problems] The superconducting magnet device of the present invention includes piping for supplying low-temperature refrigerant to the heat shield from outside the vacuum container, and a valve from the top of the refrigerant container.
The structure includes a gas pipe connected to the pipe.

【0008】[0008]

【作用】このような構成にすると、熱シールドに供給す
る冷媒と小型冷凍機とで初期予冷することが可能になり
、初期予冷時を大幅に短縮することが出来る。さらに定
常状態で超電導マグネット装置を使用している場合の小
型冷凍機を停止する保守期間は、冷媒容器上部からのガ
ス配管のバルブを開にして、熱シールドを冷却すること
が可能なため、冷媒容器への侵入熱の増加を防止するこ
とが出来る。
[Operation] With such a configuration, it becomes possible to perform initial precooling using the refrigerant supplied to the heat shield and a small refrigerator, and the time required for initial precooling can be significantly shortened. Furthermore, during the maintenance period when the small refrigerator is stopped when a superconducting magnet device is used in a steady state, it is possible to cool the heat shield by opening the valve of the gas piping from the top of the refrigerant container. It is possible to prevent an increase in heat entering the container.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は、本発明の一実施例に係わる超電導マ
グネット装置を示すものである。また、図2は、冷却系
のフローを示すものである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a superconducting magnet device according to an embodiment of the present invention. Moreover, FIG. 2 shows the flow of the cooling system.

【0010】図1において、超電導マグネット装置は、
超電導コイル(2)と液体ヘリウムを収納する冷媒容器
(3)と、直空容器(4)の間に設けられる熱シールド
(5a,5b)へ、真空容器(4)の外部より液体窒素
を供給する配管(10)を設ける。さらに、熱シールド
(5a,5b)にパイプを取付けた構成の熱交換器(1
1a,11b)を設け、極低温冷媒を供給及び回収する
バルブ(12)の設けられた供給配管(10a)、回収
配管(10b)に接続する。一方、冷媒容器(3)より
バルブ(13)を介して蒸発ガスを供給するヒーターを
取付けたガス配管(14)を、前記の極低温冷媒の供給
配管10aに接続する。
In FIG. 1, the superconducting magnet device is
Liquid nitrogen is supplied from outside the vacuum container (4) to the heat shields (5a, 5b) provided between the superconducting coil (2), the refrigerant container (3) containing liquid helium, and the direct air container (4). A piping (10) is provided. Furthermore, a heat exchanger (1) with a pipe attached to the heat shield (5a, 5b)
1a, 11b) and are connected to a supply pipe (10a) and a recovery pipe (10b) provided with a valve (12) for supplying and recovering cryogenic refrigerant. On the other hand, a gas pipe (14) equipped with a heater that supplies evaporated gas from the refrigerant container (3) via the valve (13) is connected to the cryogenic refrigerant supply pipe 10a.

【0011】この様に構成した本実施例の冷却系のフロ
ーは、図2に示すようになる。初期予冷時は、実線矢印
15の様な冷媒の流れになり、バルブ(13)は閉の状
態にしておく。小型冷凍機(7)が保守等で停止してい
る場合は、切換バルブ(13)を開にして、蒸発ガスが
破線の矢印(16)の様に流れる。
The flow of the cooling system of this embodiment constructed in this manner is shown in FIG. During initial precooling, the refrigerant flows as shown by the solid arrow 15, and the valve (13) is kept closed. When the small refrigerator (7) is stopped for maintenance or the like, the switching valve (13) is opened and the evaporated gas flows as shown by the broken arrow (16).

【0012】この様にして、超電導マグネット装置を初
期予冷する場合、小型冷凍機に加えて、外部からの極低
温冷媒を熱シールドに供給することにより、予冷時間を
大幅に短縮できる。このため、性能試験に必要な日数が
減少し、試験工程が短縮される。特に、量産化された場
合、試験工程、試験員の大幅な低減が可能となる。
[0012] When initially precooling the superconducting magnet device in this manner, the precooling time can be significantly shortened by supplying cryogenic refrigerant from the outside to the heat shield in addition to the small refrigerator. This reduces the number of days required for performance testing and shortens the testing process. In particular, if it is mass-produced, it will be possible to significantly reduce the testing process and the number of testers.

【0013】また、バルブ(13)を閉にすることによ
り、小型冷凍機が保守等で停止した状態でも、極低温冷
媒の蒸発ガスで熱シールドが冷却され、冷媒容器への侵
入熱の増加を防ぐために、高価な極低温冷媒の消費量を
低減する。
Furthermore, by closing the valve (13), even when the small refrigerator is stopped for maintenance or the like, the heat shield is cooled by the evaporated gas of the cryogenic refrigerant, thereby preventing an increase in heat entering the refrigerant container. To prevent, reduce the consumption of expensive cryogenic refrigerants.

【0014】バルブ(13)は、窒素ガスが固化されつ
まってしまう可能性があるが、ガス配管(14)に取付
けたヒーターに通電することにより、固化したものをガ
ス体にして、つまりを防止する。
There is a possibility that the valve (13) may become clogged due to solidification of nitrogen gas, but by energizing the heater attached to the gas pipe (14), the solidified gas is turned into a gas, thereby preventing clogging. do.

【0015】また、他の実施例として、バルブ(13)
を自動バルブ構成にして、小型冷凍機が停止した場合の
信号により自動的に開にする方式がある。この場合は、
夜間又は休日のように保守員のいない場合に小型冷凍機
が停止した場合でも有効である。
[0015] Also, as another embodiment, a valve (13)
There is a method in which the valve is configured as an automatic valve, and it is automatically opened by a signal when the small refrigerator stops. in this case,
This is effective even if the small refrigerator stops when maintenance personnel are not available, such as at night or on holidays.

【0016】[0016]

【発明の効果】以上述べたように、本発明の超電導マグ
ネット装置によれば、初期予冷時間が大幅に短縮される
ため、性能試験における試験工数の減少が可能となる。 この効果は、量産化され製作台数が増加するほど、大き
くなる。また、熱シールドを冷却している小型冷凍機停
止時においても、高価な極低温冷媒の消費量の増加を防
止することが可能な運転コストの少ない超電導マグネッ
ト装置を提供できる。
As described above, according to the superconducting magnet device of the present invention, the initial precooling time is significantly shortened, making it possible to reduce the number of testing steps in performance testing. This effect becomes larger as mass production increases and the number of manufactured units increases. Furthermore, it is possible to provide a superconducting magnet device with low operating costs that can prevent an increase in consumption of expensive cryogenic refrigerant even when the small refrigerator cooling the heat shield is stopped.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の超電導マグネット装置の図
FIG. 1 is a diagram of a superconducting magnet device according to an embodiment of the present invention.

【図2】上記実施例の冷却系を示すフロー図。FIG. 2 is a flow diagram showing the cooling system of the above embodiment.

【図3】従来の超電導マグネット装置を示す図。FIG. 3 is a diagram showing a conventional superconducting magnet device.

【符号の説明】[Explanation of symbols]

1,極低温冷媒                  
2,超電導コイル3,冷媒容器           
         4,真空容器5a,5b,熱シール
ド          6,ポート7,小型冷凍機  
                8a,8b,冷却ス
テージ 10a,10b,冷媒配管        11a,1
1b,熱交換部 12,13,バルブ              14
,ガス配管15,16,冷媒の流れの方向
1, Cryogenic refrigerant
2, Superconducting coil 3, Refrigerant container
4, Vacuum containers 5a, 5b, heat shield 6, Port 7, Small refrigerator
8a, 8b, cooling stages 10a, 10b, refrigerant piping 11a, 1
1b, heat exchange parts 12, 13, valve 14
, gas piping 15, 16, direction of refrigerant flow

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  真空容器内に超電導コイルを収納する
冷媒容器とそれを覆い小型冷凍機で冷却される熱シール
ドを有する超電導マグネット装置において、熱シールド
に設けられた熱交換部に真空容器の外部から低温冷媒を
供給、回収する配管を接続し、冷媒容器上部からバルブ
を介して前記の低温冷媒供給配管に接続されたガス配管
を有することを特徴とする超電導マグネット装置。
Claim 1: In a superconducting magnet device having a refrigerant container housing a superconducting coil in a vacuum container and a heat shield covering the refrigerant container and cooling the refrigerant coil with a small refrigerator, a heat exchange section provided in the heat shield has a 1. A superconducting magnet device characterized by having a gas pipe connected to a pipe for supplying and recovering a low-temperature refrigerant from the refrigerant container and connected to the low-temperature refrigerant supply pipe from the upper part of the refrigerant container via a valve.
【請求項2】  バルブは、小型冷凍機の停止の信号に
より開放動作をするようにした自動制御弁であることを
特徴とする請求項1記載の超電導マグネット装置。
2. The superconducting magnet device according to claim 1, wherein the valve is an automatic control valve that opens in response to a signal to stop the small refrigerator.
JP3147724A 1991-06-20 1991-06-20 Superconducting magnet device Expired - Lifetime JP2977168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147724A JP2977168B2 (en) 1991-06-20 1991-06-20 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147724A JP2977168B2 (en) 1991-06-20 1991-06-20 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPH04370983A true JPH04370983A (en) 1992-12-24
JP2977168B2 JP2977168B2 (en) 1999-11-10

Family

ID=15436743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147724A Expired - Lifetime JP2977168B2 (en) 1991-06-20 1991-06-20 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP2977168B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031226A1 (en) * 1996-02-22 1997-08-28 Kabushiki Kaisha Toshiba Cryogenic refrigerant and refrigerator using the same
JP2004233047A (en) * 2004-02-09 2004-08-19 Mitsubishi Electric Corp Superconductive magnet
JP2007194258A (en) * 2006-01-17 2007-08-02 Hitachi Ltd Superconductive magnet apparatus
JP2010503984A (en) * 2006-09-15 2010-02-04 シーメンス マグネット テクノロジー リミテッド Turret subassembly for use as part of a cryostat and method of assembling a cryostat
CN102262952A (en) * 2010-05-25 2011-11-30 三菱电机株式会社 Conduction cooling superconducting magnet device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101921542B1 (en) * 2016-01-12 2018-11-27 한국과학기술원 Cryostat using multiple number of heat exchangers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031226A1 (en) * 1996-02-22 1997-08-28 Kabushiki Kaisha Toshiba Cryogenic refrigerant and refrigerator using the same
JP2004233047A (en) * 2004-02-09 2004-08-19 Mitsubishi Electric Corp Superconductive magnet
JP2007194258A (en) * 2006-01-17 2007-08-02 Hitachi Ltd Superconductive magnet apparatus
JP2010503984A (en) * 2006-09-15 2010-02-04 シーメンス マグネット テクノロジー リミテッド Turret subassembly for use as part of a cryostat and method of assembling a cryostat
US8650889B2 (en) 2006-09-15 2014-02-18 Siemens Plc Turret subassembly for use as part of a cryostat and method of assembling a cryostat
CN102262952A (en) * 2010-05-25 2011-11-30 三菱电机株式会社 Conduction cooling superconducting magnet device
US8269587B2 (en) 2010-05-25 2012-09-18 Mitsubishi Electric Corporation Conduction cooling superconducting magnet device

Also Published As

Publication number Publication date
JP2977168B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
JP4031121B2 (en) Cryostat equipment
US5485730A (en) Remote cooling system for a superconducting magnet
US20060266054A1 (en) Cryogenic cooling system and method with backup cold storage device
JPH0334404A (en) Cryogenic refrigerator
JP2002335024A (en) Cryogenic cooling system
WO1991001471A1 (en) Method and apparatus for controlling a cryogenic refrigeration system
JP2017227432A (en) System and method for improving liquefaction rate at refrigerant gas liquefaction device of low temperature refrigeration machine
US6679066B1 (en) Cryogenic cooling system for superconductive electric machines
JPH04370983A (en) Superconducting magnet device
US5979176A (en) Refrigerator
JP2001027464A (en) Superconductive electromagnet device
JP2007078310A (en) Cryogenic cooling device
JPH0445740B2 (en)
CN212433377U (en) Cold head exhaust structure of magnetic resonance imaging equipment and magnetic resonance imaging equipment
JPH09113052A (en) Freezer
JPH05335636A (en) Superconducting magnet device
JP3147630B2 (en) Superconducting coil device
JP2000146333A (en) Device and method of overhaul of cryogenic refrigerating machine
JP3113992B2 (en) Helium liquefaction refrigeration equipment
JPH07104059B2 (en) Dual freezer
JPS60245285A (en) Superconductive magnet apparatus
Ligi et al. DAΦNE Cryogenic Cooling System: Status and Perspectives
JPS63286670A (en) Small-sized he liquefying refrigerator
JPH11125474A (en) Cryogenic refrigeration system
JPH0498052A (en) Cryogenic cooling device