JPH04370740A - Device and method for testing tensile strength of tubular metal material - Google Patents

Device and method for testing tensile strength of tubular metal material

Info

Publication number
JPH04370740A
JPH04370740A JP17337491A JP17337491A JPH04370740A JP H04370740 A JPH04370740 A JP H04370740A JP 17337491 A JP17337491 A JP 17337491A JP 17337491 A JP17337491 A JP 17337491A JP H04370740 A JPH04370740 A JP H04370740A
Authority
JP
Japan
Prior art keywords
increase rate
crosshead
test piece
strain increase
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17337491A
Other languages
Japanese (ja)
Inventor
Megumi Tanaka
恵 田中
Tetsuo Nakano
中野 哲男
Susumu Nakazawa
中沢 晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17337491A priority Critical patent/JPH04370740A/en
Publication of JPH04370740A publication Critical patent/JPH04370740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable a tensile test to be performed by controlling a tensile speed of a test piece without any parallel portion highly accurately. CONSTITUTION:When performing a tensile test with a specified distortion increase rate, a test piece is pulled with an initial value Vc of a cross head traveling speed which is preset and the distortion increase rate is calculated from an amount of elongation between gauges which are measured at that time. A compensation value Vco of the cross head traveling speed corresponding to a target value of the distortion increase rate is calculated from the calculated distortion increase rate, an initial value Vco of the cross head traveling speed which is preset, and a target value V of the distortion increase rate. The cross head is moved according to the compensation value of the cross head traveling speed which is calculated and the tensile test is performed with a specified distortion increase rate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は管状金属材料の引張試
験方法、特に試験片に荷重を加える速度の均一化に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a tensile testing method for tubular metal materials, and more particularly to a method for uniformizing the rate at which a load is applied to a test piece.

【0002】0002

【従来の技術】機械や構造物に力が働いている場合、そ
の材料が適切に使用されているかどうかは、その材料の
機械的性質を知ることにより判断できる。この機械的性
質を試験する方法の代表的な機械試験に引張試験がある
。引張試験は試験片に徐々に引張力を加えて、機械的諸
性質を測定するものであり、材料の降伏点,耐力,引張
強さ,降伏伸び,破断伸び,絞りの測定を行う。また、
このほかに比例限界,弾性限界,弾性係数,荷重−伸び
線図なども求めることができる。これらの諸性質は構造
物等の設計の基準として用いられるばかりでなく、材料
の製造管理上の代表的品質特性として用いられる。 この引張試験においては試験片に荷重を加える速度はで
きるだけ均一であることが望ましい。そこで上降伏点,
下降伏点又は耐力の測定を行う場合には、材料に応じて
定められた応力増加率で試験片に荷重を加えて上降伏点
,下降伏点又は耐力の測定を行う。また上降伏点,下降
伏点又は耐力の測定を行わない場合又は上降伏点,下降
伏点又は耐力の測定を行った後引き続き引張り強さを求
める場合は、引張り強さの規定値に相当する荷重の1/
2荷重を超えた後の試験片平行部の歪増加率を材料に応
じて定められた範囲内、例えば鋼の場合は20〜80%
/minの範囲内の一定値になるような速度で引っ張る
2. Description of the Related Art When a force is applied to a machine or structure, whether or not the material is being used appropriately can be determined by knowing the mechanical properties of the material. A tensile test is a typical mechanical test for testing mechanical properties. A tensile test measures various mechanical properties by gradually applying tensile force to a test piece, and measures the material's yield point, yield strength, tensile strength, yield elongation, elongation at break, and area of area. Also,
In addition, proportional limits, elastic limits, elastic modulus, load-elongation diagrams, etc. can also be determined. These properties are used not only as standards for designing structures, etc., but also as representative quality characteristics for material manufacturing control. In this tensile test, it is desirable that the speed of applying the load to the test piece be as uniform as possible. Therefore, the upper yield point,
When measuring the lower yield point or proof stress, apply a load to the test piece at a stress increase rate determined depending on the material and measure the upper yield point, lower yield point, or proof stress. In addition, if the upper yield point, lower yield point, or proof stress is not measured, or if the tensile strength is determined after measuring the upper yield point, lower yield point, or proof stress, the value corresponds to the specified value of tensile strength. 1/ of load
The strain increase rate of the parallel part of the specimen after exceeding 2 loads is within the range determined depending on the material, for example 20 to 80% in the case of steel.
Pull at a speed that maintains a constant value within the range of /min.

【0003】この歪増加率を一定に制御する方法として
標点距離制御(以下、GL制御という)やクロスヘッド
制御が行われている。GL制御は伸び計の標点距離を一
定時間毎にサンプリングし、その伸び速度が一定値にな
るようにクロスヘッドの移動速度を制御する方法である
。クロスヘッド制御はクロスヘッドの移動速度を一定値
になるように制御する方法である。
Gauge length control (hereinafter referred to as GL control) and crosshead control are used as methods for controlling this strain increase rate to a constant value. GL control is a method in which the gage length of an extensometer is sampled at regular intervals, and the moving speed of the crosshead is controlled so that the elongation speed becomes a constant value. Crosshead control is a method of controlling the moving speed of the crosshead to a constant value.

【0004】0004

【発明が解決しようとする課題】このGL制御,クロス
ヘッド制御により板等の試験片のように中央に平行部が
ある場合には歪増加率を一定に制御することができる。 しかしながら、管や平行部が加工されていない短冊の試
験片の場合には平行部の長さはクロスヘッドに取り付け
たチャック間の距離になる。このように平行部のない試
験片においては必ずしも標点間で破断せず標点の外側で
破断する場合も多い。標点外で局所伸びが発生すると、
伸びを測定している標点間における伸び速度が減少する
。GL制御によりこの伸び速度が一定値になるように制
御すると、クロスヘッドの移動速度が増大し、破断時に
おけるクロスヘッドの移動速度は非常に大きくなる。
[Problems to be Solved by the Invention] By using the GL control and the crosshead control, it is possible to control the strain increase rate to a constant value when there is a parallel portion in the center, such as in a test piece such as a plate. However, in the case of a tube or a strip test piece without processed parallel parts, the length of the parallel part is the distance between the chucks attached to the crosshead. In this way, test pieces without parallel parts do not necessarily break between the gauge marks, but often break outside of the gauge marks. When local elongation occurs outside the gauge point,
The rate of elongation between the gauges where elongation is being measured decreases. If this elongation speed is controlled to a constant value by GL control, the moving speed of the crosshead increases, and the moving speed of the crosshead at the time of breakage becomes extremely large.

【0005】また、クロスヘッド制御ではクロスヘッド
移動速度を正しく設定するためには平行部であるチャッ
ク間距離を正確に把握する必要がある。しかしクロスヘ
ッドの位置決めは一般に伸び計に対して精度が低く、か
つVチャックを使用した場合は試験片の寸法により変化
してしまう。このためチャック間距離を正確に求めるこ
とは困難である。
Furthermore, in crosshead control, in order to correctly set the crosshead movement speed, it is necessary to accurately grasp the distance between the chucks, which are parallel parts. However, the crosshead positioning is generally less accurate than an extensometer, and when a V-chuck is used, it changes depending on the dimensions of the test piece. Therefore, it is difficult to accurately determine the distance between chucks.

【0006】このため、管状試験片のように平行部のな
い試験片にGL制御やクロスヘッド制御を適用すると、
歪増加率を一定に制御することができなくなり引張速度
を精度良く制御することができないという短所があった
For this reason, when applying GL control or crosshead control to a test piece without parallel parts, such as a tubular test piece,
There were disadvantages in that the strain increase rate could not be controlled to a constant level and the tensile rate could not be controlled accurately.

【0007】この発明はかかる短所を解決するためにな
されたものであり、平行部のない試験片の引張速度を高
精度に制御することができる引張試験方法を得ることを
目的とするものである。
[0007] The present invention has been made in order to solve these disadvantages, and the object thereof is to obtain a tensile test method that can control the tensile speed of a test piece without parallel parts with high precision. .

【0008】[0008]

【課題を解決するための手段】この発明に係る管状金属
材料の引張試験装置は、あらかじめ設定されたクロスヘ
ッド移動速度で試験片の引張りを行ったとき測定した標
点間の伸び量から歪増加率を演算する歪増加率演算手段
と、演算した歪増加率とあらかじめ設定されたクロスヘ
ッド移動速度及び歪増加率の目標値とからクロスヘッド
移動速度の補正値を演算する補正値演算手段とを備えた
ことを特徴とする。
[Means for Solving the Problems] A tensile test device for tubular metal materials according to the present invention is capable of increasing strain from the amount of elongation between gauges measured when a test piece is pulled at a preset crosshead movement speed. and a correction value calculating means that calculates a correction value for the crosshead movement speed from the calculated strain increase rate and a preset target value for the crosshead movement speed and strain increase rate. It is characterized by having

【0009】また、この発明に係る管状金属材料の引張
試験方法は、あらかじめ設定されたクロスヘッド移動速
度で試験片の引張りを行い、そのときの標点間の伸び量
を測定して歪増加率を算出し、算出した歪増加率とあら
かじめ設定されたクロスヘッド移動速度及び歪増加率の
目標値とからクロスヘッド移動速度の補正値を算出し、
算出したクロスヘッド移動速度の補正値で試験片の引張
りを行うことを特徴とする。
[0009] Furthermore, in the tensile test method for tubular metal materials according to the present invention, a test piece is pulled at a preset crosshead movement speed, and the amount of elongation between the gauges at that time is measured to determine the strain increase rate. Calculate a correction value for the crosshead moving speed from the calculated strain increase rate and a preset target value for the crosshead moving speed and strain increase rate,
The method is characterized in that the test piece is pulled using the calculated crosshead movement speed correction value.

【0010】0010

【作用】この発明においては、所定の歪増加率で引張試
験を行うときに、あらかじめ設定されたクロスヘッド移
動速度の初期値で試験片の引張りを行い、そのとき測定
した標点間の伸び量から歪増加率を算出し、算出した歪
増加率とあらかじめ設定されたクロスヘッド移動速度の
初期値及び歪増加率の目標値とから歪増加率の目標値に
応じたクロスヘッド移動速度の補正値を算出する。この
算出したクロスヘッド移動速度の補正値によりクロスヘ
ッドを移動させて試験片の引張りを行う。
[Operation] In this invention, when performing a tensile test at a predetermined strain increase rate, the test piece is pulled at a preset initial value of the crosshead movement speed, and the elongation between gauge points measured at that time is The strain increase rate is calculated from the calculated strain increase rate, the initial value of the crosshead movement speed set in advance, and the target value of the strain increase rate, and a correction value of the crosshead movement speed according to the target value of the strain increase rate is calculated. Calculate. The crosshead is moved based on the calculated correction value of the crosshead movement speed, and the test piece is pulled.

【0011】[0011]

【実施例】図1はこの発明の一実施例のクロスヘッド移
動制御部を示すブロック図である。図に示すように、ク
ロスヘッド移動制御部は条件設定手段1と伸び計2,歪
増加率演算手段3,補正値演算手段4及びクロスヘッド
移動手段5を有する。条件設定手段1には引張速度の応
力増加率と歪増加率の目標値Vや所定の歪増加率で試験
片の引張りを行うときのクロスヘッド移動速度の初期値
VCO等が設定されている。伸び計2は、図2に示すよ
うに、つかみ部22に心金23を挿入して試験機の上部
クロスヘッド24と下部クロスヘッド25のチャック2
6にセットした管状試験片21の標点27,28間の伸
びを計測する。歪増加率演算手段3は伸び計2で計測し
た伸び量ΔLと元の標点距離及び時間信号発生手段6か
ら送られる単位時間Tにより標点27,28間の歪増加
率VGLを演算する。補正値演算手段4は歪増加率演算
手段3で算出した歪増加率VGLと条件設定手段1に設
定された歪増加率の目標値Vとクロスヘッド移動速度の
初期値VCOを入力してクロスヘッド移動速度の補正値
VCを算出しクロスヘッド移動手段5に送る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a crosshead movement control section according to an embodiment of the present invention. As shown in the figure, the crosshead movement control section includes a condition setting means 1, an extensometer 2, a strain increase rate calculating means 3, a correction value calculating means 4, and a crosshead moving means 5. In the condition setting means 1, a target value V of the stress increase rate and strain increase rate of the tensile rate, an initial value VCO of the crosshead moving speed when the test piece is stretched at a predetermined strain increase rate, etc. are set. As shown in FIG. 2, the extensometer 2 has a mandrel 23 inserted into the grip part 22 and the chuck 2 of the upper crosshead 24 and lower crosshead 25 of the testing machine.
The elongation between the gauge points 27 and 28 of the tubular test piece 21 set at 6 is measured. The strain increase rate calculation means 3 calculates the strain increase rate VGL between the gauge points 27 and 28 based on the elongation amount ΔL measured by the extensometer 2, the original gauge length, and the unit time T sent from the time signal generation means 6. The correction value calculation means 4 inputs the strain increase rate VGL calculated by the strain increase rate calculation means 3, the target value V of the strain increase rate set in the condition setting means 1, and the initial value VCO of the crosshead moving speed, and operates the crosshead. A correction value VC of the moving speed is calculated and sent to the crosshead moving means 5.

【0012】上記のように構成された実施例の動作を説
明するにあたり、まずこの実施例の動作原理を説明する
。クロスヘッド移動速度の初期値VCOで試験片21を
引張っているとき、歪増加率VGLは標点27,28間
の伸びεの単位時間T当りの量で与えられる。この伸び
εは試験片21に引張荷重を徐々に増加して加えた状態
における標点27,28間の長さLと元の標点距離L0
との差ΔLを標点距離L0に対する比ΔL/L0で表さ
れる。したがって歪増加率VGLはVGL=ΔL/L0
・Tになる。このときチャック間距離LCKが全て平行
部になっている管状試験片21のチャック間における全
伸び量をΔLCKとすると、クロスヘッド移動速度VC
OはVCO=ΔLCK/Tで表せる。また、局部収縮が
生じていないときはΔLCK/LCK=ΔL/L0であ
るから、VCO=VGL・LCKとなり、このときのチ
ャック間距離LCKはLCK=VCO/VGLで得られ
る。このチャック間距離LCK=VCO/VGLとあら
かじめ設定されている歪増加率Vを使用するとクロスヘ
ッド移動速度の補正値VCはVC=(VCO・V)/V
GLで得られる。この補正値VCでクロスヘッド移動速
度の初期値VCOを補正することにより、所定の歪増加
率Vで試験片21を引張ることができる。
In explaining the operation of the embodiment configured as described above, the principle of operation of this embodiment will first be explained. When the test piece 21 is stretched at the initial value VCO of the crosshead movement speed, the strain increase rate VGL is given by the amount of elongation ε between the gauge points 27 and 28 per unit time T. This elongation ε is the length L between the gauge points 27 and 28 when a tensile load is gradually increased and applied to the test piece 21, and the original gauge length L0.
The difference ΔL is expressed as the ratio ΔL/L0 to the gauge length L0. Therefore, the strain increase rate VGL is VGL=ΔL/L0
・Become T. At this time, if the total elongation between the chucks of the tubular test piece 21 whose distance LCK between the chucks is all parallel is ΔLCK, then the crosshead moving speed VC
O can be expressed as VCO=ΔLCK/T. Furthermore, when no local contraction occurs, ΔLCK/LCK=ΔL/L0, so VCO=VGL·LCK, and the inter-chuck distance LCK at this time is obtained by LCK=VCO/VGL. Using this inter-chuck distance LCK=VCO/VGL and the preset strain increase rate V, the correction value VC for the crosshead movement speed is VC=(VCO・V)/V
Obtained from GL. By correcting the initial value VCO of the crosshead movement speed with this correction value VC, the test piece 21 can be pulled at a predetermined strain increase rate V.

【0013】次に上記原理によるこの発明の実施例の動
作を説明する。まず、管状試験片21を上部クロスヘッ
ド24と下部クロスヘッド25のチャック26にセット
する。次に条件設定手段1に引張速度の応力増加率と歪
増加率V及びクロスヘッド移動速度の初期値VCO等を
設定した後、設定した応力増加率で荷重を加える速度を
制御しながら試験片21の上降伏点,下降伏点又は耐力
の測定を行う。この測定を行った後、クロスヘッド移動
速度の初期値VCOを例えば油圧装置からなるクロスヘ
ッド移動手段5に送り、この移動速度VCOで上部クロ
スヘッド24を上昇させて試験片21を引っ張る。この
試験片21を引張っているときに、伸び計2は引張り開
始時の試験片21の標点27,28間の距離と伸び量を
測定して歪増加率演算手段3に送る。
Next, the operation of the embodiment of the present invention based on the above principle will be explained. First, the tubular test piece 21 is set in the chucks 26 of the upper crosshead 24 and lower crosshead 25. Next, after setting the stress increase rate and strain increase rate V of the tensile speed and the initial value VCO of the crosshead movement speed in the condition setting means 1, the test piece 21 is Measure the upper yield point, lower yield point, or yield strength. After performing this measurement, the initial value VCO of the crosshead moving speed is sent to the crosshead moving means 5, which is a hydraulic device, for example, and the upper crosshead 24 is raised at this moving speed VCO to pull the test piece 21. While the test piece 21 is being stretched, the extensometer 2 measures the distance between the gauge points 27 and 28 of the test piece 21 at the start of the tension and the amount of elongation, and sends the measured values to the strain increase rate calculating means 3.

【0014】歪増加率演算手段3は送られた標点27,
28間の距離と伸び量及び時間信号発生手段6から送ら
れる引っ張り開始時から伸び測定したときまでの時間T
より移動速度VCOで上部クロスヘッド24を移動した
ときの歪増加率VGLを演算して補正値演算手段4に送
る。 補正値演算手段4は送られた歪増加率VGLと、条件設
定手段1に設定されているクロスヘッド移動速度の初期
値VCO及び歪増加率の目標値Vとからクロスヘッド移
動速度の補正値VCを式VC=(VCO・V)/VGL
で演算してクロスヘッド移動手段5に送る。クロスヘッ
ド移動手段5は送られたクロスヘッド移動速度の補正値
VCにより上部クロスヘッド24を上昇させて試験片2
1を引っ張る。
The strain increase rate calculating means 3 uses the sent gauge points 27,
28, the amount of elongation, and the time T from the start of pulling to the time when elongation is measured, which is sent from the time signal generating means 6.
The strain increase rate VGL when the upper crosshead 24 is moved at the moving speed VCO is calculated and sent to the correction value calculation means 4. The correction value calculating means 4 calculates a correction value VC of the crosshead moving speed from the sent distortion increase rate VGL, the initial value VCO of the crosshead moving speed set in the condition setting means 1, and the target value V of the strain increase rate. The formula VC=(VCO・V)/VGL
is calculated and sent to the crosshead moving means 5. The crosshead moving means 5 raises the upper crosshead 24 according to the sent crosshead moving speed correction value VC, and moves the test piece 2.
Pull 1.

【0015】例えばクロスヘッド移動速度の初期値VC
Oを50mm/minとし、この初期値で1分間試験片
21を引張ったとき標点27,28間の距離50mmが
17.2mm伸びたとすると、このときの歪増加率VG
Lは34.4%/minになる。ここで歪増加率の目標
値Vを50%/minとすると、この目標値V=50%
/minに対応するクロスヘッド移動速度の補正値Vは
72.7mm/minになる。この補正値Vにより上部
クロスヘッド24を上昇させて試験片21を引っ張るこ
とにより、所定の歪増加率で試験片21に荷重を加える
ことができる。
For example, the initial value VC of the crosshead moving speed
If O is 50 mm/min and the test piece 21 is pulled for 1 minute at this initial value, the distance 50 mm between the gauges 27 and 28 increases by 17.2 mm, then the strain increase rate VG
L becomes 34.4%/min. Here, if the target value V of the strain increase rate is 50%/min, this target value V=50%
The correction value V of the crosshead moving speed corresponding to /min becomes 72.7 mm/min. By raising the upper crosshead 24 using this correction value V and pulling the test piece 21, a load can be applied to the test piece 21 at a predetermined strain increase rate.

【0016】なお、上記実施例は管状試験片21の引張
試験を行う場合について説明したが、中央に平行部のな
い短冊型の2号試験片等の引張試験にも上記実施例と同
様に適用することができる。
[0016] Although the above embodiment describes the case of performing a tensile test on the tubular test piece 21, it can also be applied to a tensile test on a strip-shaped No. 2 test piece without a parallel part in the center in the same manner as in the above embodiment. can do.

【0017】[0017]

【発明の効果】この発明は以上説明したように、所定の
歪増加率で引張試験を行うときに、あらかじめ設定され
たクロスヘッド移動速度の初期値で試験片を引張り、そ
のとき測定した標点間の伸び量からそのときの歪増加率
を算出し、算出した歪増加率とあらかじめ設定されたク
ロスヘッド移動速度の初期値及び歪増加率の目標値とか
ら歪増加率の目標値に応じたクロスヘッド移動速度の補
正値を算出してクロスヘッド移動速度を補正するように
したから、所定の歪増加率で引張試験を行うことができ
る。
Effects of the Invention As explained above, when carrying out a tensile test at a predetermined strain increase rate, the test piece is pulled at the initial value of the crosshead movement speed set in advance, and the gauge point measured at that time is The strain increase rate at that time is calculated from the amount of elongation between, and the strain increase rate is calculated from the calculated strain increase rate, the initial value of the crosshead moving speed set in advance, and the target value of the strain increase rate. Since the crosshead movement speed is corrected by calculating the correction value for the crosshead movement speed, a tensile test can be performed at a predetermined strain increase rate.

【0018】また、事前に管状試験片等中央に平行部が
ない試験片のチャック間距離を測定しなくても所定の歪
増加率に応じてクロスヘッドを移動させることができ、
引張試験を精度良く行うことができる。
[0018] Furthermore, the crosshead can be moved in accordance with a predetermined strain increase rate without having to previously measure the distance between the chucks of a test piece that does not have a parallel part in the center, such as a tubular test piece.
Tensile tests can be performed with high accuracy.

【0019】さらに、引張速度を所定の歪増加率に応じ
て一定に保つことができるからGL制御のように不安定
な制御に陥ることもなく、安定して引張試験を行うこと
ができる。
Furthermore, since the tensile speed can be kept constant according to a predetermined strain increase rate, the tensile test can be carried out stably without falling into unstable control unlike GL control.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例のクロスヘッド移動制御部を
示すブロック図である。
FIG. 1 is a block diagram showing a crosshead movement control section according to an embodiment of the invention.

【図2】管状試験片の取付け状態を示す説明図である。 1    条件設定手段 2    伸び計 3    歪増加率演算手段 4    補正値演算手段 21  管状試験片 24  上部クロスヘッド 25  下部クロスヘッド 26  チャックFIG. 2 is an explanatory diagram showing how a tubular test piece is attached. 1 Condition setting means 2 Extensometer 3. Distortion increase rate calculation means 4 Correction value calculation means 21 Tubular test piece 24 Upper cross head 25 Lower cross head 26 Chuck

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  あらかじめ設定されたクロスヘッド移
動速度で試験片の引張りを行ったとき測定した標点間の
伸び量から歪増加率を演算する歪増加率演算手段と、演
算した歪増加率とあらかじめ設定されたクロスヘッド移
動速度及び歪増加率の目標値とからクロスヘッド移動速
度の補正値を演算する補正値演算手段とを備えたことを
特徴とする管状金属材料の引張試験装置。
Claim 1: Strain increase rate calculation means for calculating a strain increase rate from the amount of elongation between gauges measured when a test piece is pulled at a preset crosshead moving speed; 1. A tensile testing device for tubular metal materials, comprising correction value calculation means for calculating a correction value for crosshead movement speed from preset target values for crosshead movement speed and strain increase rate.
【請求項2】  あらかじめ設定されたクロスヘッド移
動速度で試験片の引張りを行い、そのときの標点間の伸
び量を測定して歪増加率を算出し、算出した歪増加率と
あらかじめ設定されたクロスヘッド移動速度及び歪増加
率の目標値とからクロスヘッド移動速度の補正値を算出
し、算出したクロスヘッド移動速度の補正値で試験片の
引張りを行うことを特徴とする管状金属材料の引張試験
方法。
[Claim 2] The test piece is pulled at a preset crosshead movement speed, the amount of elongation between the gauge points at that time is measured, and the strain increase rate is calculated, and the strain increase rate and the strain increase rate set in advance are calculated. A correction value of the crosshead movement speed is calculated from the target value of the crosshead movement speed and the strain increase rate, and the test piece is stretched using the calculated correction value of the crosshead movement speed. Tensile test method.
JP17337491A 1991-06-19 1991-06-19 Device and method for testing tensile strength of tubular metal material Pending JPH04370740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17337491A JPH04370740A (en) 1991-06-19 1991-06-19 Device and method for testing tensile strength of tubular metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17337491A JPH04370740A (en) 1991-06-19 1991-06-19 Device and method for testing tensile strength of tubular metal material

Publications (1)

Publication Number Publication Date
JPH04370740A true JPH04370740A (en) 1992-12-24

Family

ID=15959210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17337491A Pending JPH04370740A (en) 1991-06-19 1991-06-19 Device and method for testing tensile strength of tubular metal material

Country Status (1)

Country Link
JP (1) JPH04370740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792142A (en) * 2014-01-26 2014-05-14 宁波唯质服装检测有限公司 Method for testing elasticity of elastic band

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792142A (en) * 2014-01-26 2014-05-14 宁波唯质服装检测有限公司 Method for testing elasticity of elastic band

Similar Documents

Publication Publication Date Title
US7360442B2 (en) Method for measuring and calculating tensile elongation of ductile metals
Motra et al. Assessment of strain measurement techniques to characterise mechanical properties of structural steel
CN109870354B (en) Automatic measurement method for elongation after uniaxial tension fracture of metal round bar sample
CN110387820B (en) Suspender measurement and control integrated construction method based on intelligent tensioning system
JPH04370740A (en) Device and method for testing tensile strength of tubular metal material
JPH0676958B2 (en) Method and apparatus for controlling plastic strain rate
CN109297814A (en) A kind of test method measuring angle steel test specimen tensile mechanical properties
JP3071925B2 (en) Non-contact type elongation measurement method
EP1748278A1 (en) Method for compensating temperature effects on a measuring process or heat expansion of a workpiece and coordinate measuring machine for performing this method
JP3858833B2 (en) Material testing machine
JPH0348132A (en) Automatic rankford tester
JPH04250336A (en) Device and method for tension test of metallic material
KR100354837B1 (en) Cracklength measuring device and method of metallic materials
JPH0552724A (en) Proof-stress measuring apparatus
CN216645671U (en) Adjustable line ruler tensiometer
JPH05249011A (en) Apparatus and method for tension test of metallic material
CN111678452B (en) Laser extensometer device for split Hopkinson bar
CN111678453B (en) Test method of laser extensometer device for split Hopkinson bar
JPH0324979B2 (en)
JPH063238A (en) Method for calculating tensile elastic modules in extensiometer
JPH04250335A (en) Device and method for tension test of tubular metallic material
JP3266947B2 (en) Tensile testing machine
JP3819616B2 (en) Tensile compression test method
JP2001324430A (en) Deformation testing device and method
JPH03225253A (en) Micro-indentation type method and device for testing physical property of material