JPH04250336A - Device and method for tension test of metallic material - Google Patents

Device and method for tension test of metallic material

Info

Publication number
JPH04250336A
JPH04250336A JP2520891A JP2520891A JPH04250336A JP H04250336 A JPH04250336 A JP H04250336A JP 2520891 A JP2520891 A JP 2520891A JP 2520891 A JP2520891 A JP 2520891A JP H04250336 A JPH04250336 A JP H04250336A
Authority
JP
Japan
Prior art keywords
temperature
test piece
test
catch
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2520891A
Other languages
Japanese (ja)
Inventor
Megumi Tanaka
恵 田中
Hachiro Kaneko
金子 八郎
Tadaaki Kimura
木村 忠昭
Tetsuo Matsugu
真次 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2520891A priority Critical patent/JPH04250336A/en
Publication of JPH04250336A publication Critical patent/JPH04250336A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable rupture of a test piece at the center portion of gauge length thereof by cooling a mandrel in catch portions provided at both ends of the test piece, while controlling to a specified temperature the surface of the parallel portion of the test piece which is provided between the catch portions, so as to provide the test piece with such a temperature gradient as lowering toward each catch portion. CONSTITUTION:A cooling coil 8 and a temperature sensor 9 are mounted on respective portions of the surface of each of catch portions 3 provided at both ends of a tubular test piece 1 and a heating coil 11 and a temperature sensor 12 are mounted on respective portions of the boundary between each catch portion 3 and a parallel portion 2. While the catch portions 3 are cooled, the temperature of a portion near the boundary between each catch portion 3 and the parallel portion 2 is detected by the sensor 12 and sent to a temperature controller 10. In order to prevent the temperature detected by the sensor 12 from dropping below a preset specific test temperature, the temperature controller 10 controls current transmitted through the coil 11. When the temperature of the end portion of each catch portion 3 being detected by the sensor 9 drops below a predetermined temperature corresponding to the size of the test piece, a cooling device 7 is repeatedly stopped and driven for a fixed time so that the temperature distribution of the test piece 1 is stabilized. Therefore, the rupture position of the test piece due to a tension test can be concentrated at the center portion of the test piece.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は棒状あるいは管状金属
材料の引張試験装置及び試験方法、特に試験片の破断位
置の適正化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tensile testing apparatus and testing method for rod-shaped or tubular metal materials, and in particular to optimization of the fracture position of a test piece.

【0002】0002

【従来の技術】機械や構造物に力が働いている場合、そ
の材料が適切に使用されているかどうかは、その材料の
機械的性質を知ることにより判断できる。この機械的性
質を試験する方法の代表的な機械試験に引張試験がある
。引張試験は試験片に徐々に引張力を加えて、機械的諸
性質を測定するものであり、材料の降伏点,耐力,引張
強さ,降伏伸び,破断伸び,絞りの測定を行う。また、
このほかに比例限界,弾性限界,弾性係数,荷重−伸び
線図なども求めることができる。これらの諸性質は構造
物等の設計の基準として用いられるばかりでなく、材料
の製造管理上の代表的品質特性として用いられる。
2. Description of the Related Art When a force is applied to a machine or structure, whether or not the material is being used appropriately can be determined by knowing the mechanical properties of the material. A tensile test is a typical mechanical test for testing mechanical properties. A tensile test measures various mechanical properties by gradually applying tensile force to a test piece, and measures the material's yield point, yield strength, tensile strength, yield elongation, elongation at break, and area of area. Also,
In addition, proportional limits, elastic limits, elastic modulus, load-elongation diagrams, etc. can also be determined. These properties are used not only as standards for designing structures, etc., but also as representative quality characteristics for material manufacturing control.

【0003】鋼の引張試験における引張応力σとひずみ
εの関係を線図にすると、図5に示す応力−ひずみ線図
のようになる。試験片に荷重を加えて行くと、伸びは図
中P点まで荷重に比例して直線的に増加する。この伸び
はP点からE点までは荷重に対する増加の割合がいくら
か大きくなって直線をやや離れて、いくぶん曲がるが弾
性は保たれ、荷重を取り去ればのびもなくなり原形に戻
る。E点以上に荷重を増加すると、その荷重を取り除い
ても伸びが残留し永久伸びが生じる。E点後さらに荷重
を増加すると、塑性変形の領域に入り永久伸びがしだい
に大きくなり、S点に達すると荷重のわずかな低下を生
じ、低下したほぼ一定の荷重の下で伸びが急激に増加す
る降伏伸びが生じる。この降伏が終わると材料に加工硬
化が生じ、再び荷重が増加して行く。この荷重の増加に
したがつて伸びも増加し、M点で最大荷重に達し、試験
片のある箇所に局部的な断面減少と共に局部伸びが現れ
る。この断面減少がさらに大きくなるにしたがって荷重
が減少し、Z点に至って材料が破断する。
[0003] When the relationship between tensile stress σ and strain ε in a steel tensile test is drawn as a diagram, the stress-strain diagram shown in FIG. 5 is obtained. As a load is applied to the test piece, the elongation increases linearly in proportion to the load up to point P in the figure. From point P to point E, this elongation increases somewhat with respect to the load, deviating from the straight line and bending somewhat, but the elasticity is maintained, and when the load is removed, the elongation ceases and it returns to its original shape. When the load is increased above point E, elongation remains even after the load is removed, resulting in permanent elongation. If the load is further increased after point E, it enters the region of plastic deformation and the permanent elongation gradually increases, and when it reaches point S, there is a slight decrease in load, and the elongation increases rapidly under the reduced almost constant load. A yield elongation occurs. When this yielding ends, work hardening occurs in the material, and the load increases again. As the load increases, the elongation also increases, reaching the maximum load at point M, and local elongation appears along with a local reduction in cross section at a certain location of the test piece. As this reduction in cross section becomes even greater, the load decreases until the point Z is reached and the material breaks.

【0004】この応力−ひずみ線図に示す機械的諸性質
を測定する引張試験の結果を他の公表されている結果と
比較したり、試験結果を権威づけるため、材料の種類に
応じて試験片の形状,寸法がJISZ2201に規定さ
れている。鋼板,平鋼等の試験片21は、図6に示すよ
うに、試験片21の中央部における同一断面を有する平
行部22と、平行部22の両端部に設けられ試験機のチ
ャックにつかまれるつかみ部23と、平行部22に応力
を均一に分散させるために、平行部22とつかみ部23
との間に設けた円弧からなる肩部24とから形成されて
いる。 また、棒状あるいは管状の金属材料の引張試験に用いる
2号,3号,11号等の試験片1は、図7に示すように
、その断面はもとの材料から切り取ったままとし、管状
試験片の場合はつかみ部3に心金4を入れるか又はつち
打ちして平板にしている。
[0004] In order to compare the results of the tensile test that measures the various mechanical properties shown in this stress-strain diagram with other published results, and to give authority to the test results, test pieces are used depending on the type of material. The shape and dimensions are specified in JISZ2201. As shown in FIG. 6, a test piece 21 such as a steel plate or flat steel is provided with a parallel part 22 having the same cross section at the center of the test piece 21 and at both ends of the parallel part 22, and is gripped by a chuck of a testing machine. In order to uniformly distribute stress to the gripping portion 23 and the parallel portion 22, the parallel portion 22 and the gripping portion 23 are
and a shoulder portion 24 formed of a circular arc provided between. In addition, as shown in Fig. 7, the cross section of test piece 1 such as No. 2, No. 3, No. 11, etc. used in the tensile test of rod-shaped or tubular metal materials was cut from the original material, and In the case of a piece, a mandrel 4 is inserted into the gripping part 3 or it is hammered into a flat plate.

【0005】これらの試験片を使用して引張試験を行う
ときは、試験片の平行部22,2に伸び測定の基準とす
る標点5,6を所定の標点距離Lだけ隔てて記し、平行
部22,2の原断面積を測定した後、試験片を試験機に
装着し、規定範囲の速度で試験片が破断するまで荷重を
加える。そして、この管に現れる荷重の変化から降伏点
や引張強さ等の各特性値に相当する荷重を読み取り、そ
の応力値を算出する。さらに破断した試験片の破断部を
突合せて伸び量や破断部の最小面積を測定し、破断伸び
や絞りを算出する。また、耐力や降伏伸びなど伸びと荷
重の相互変化により得られる特性値を測定するときには
伸び計を装着して試験を行う。
When performing a tensile test using these test pieces, gauge points 5 and 6 are marked on the parallel parts 22 and 2 of the test piece, separated by a predetermined gauge distance L, to serve as a reference for elongation measurement. After measuring the original cross-sectional area of the parallel parts 22, 2, the test piece is mounted on a testing machine, and a load is applied at a speed within a specified range until the test piece breaks. Then, the load corresponding to each characteristic value such as yield point and tensile strength is read from changes in the load appearing on the tube, and the stress value thereof is calculated. Furthermore, the fractured parts of the fractured test pieces are compared to measure the amount of elongation and the minimum area of the fractured part, and the elongation at break and the area of area are calculated. In addition, when measuring characteristic values such as yield strength and yield elongation that are obtained by mutual changes in elongation and load, an extensometer is attached to the test.

【0006】鋼材を引張試験すると、図8(a)に示す
ように局部収縮が起り、その部分から破断する。各部の
伸びを調べるために、標点5,6間をあらかじめ適当な
長さに等分して目盛を付け、各目盛間の伸びを線図にす
ると図8(b)に示すように局部収縮をした部分とその
付近で大きく伸びている。この局部収縮を起こし破断す
る位置が標点5,6の中央部にあるときに伸びの真値が
得られ、伸びを正確に測定することができる。このため
図9に示すように試験片の破断位置が標点5,6間の中
心から標点距離Lの1/4以内にあるときはA破断、標
点5,6間の中心から標点距離Lの1/4を超え、標点
5,6以内にあるときはB破断、標点5,6の外部で破
断したときはC破断と区別している。そして、A破断以
外の場合で、破断伸びが規定値を満足しなかったときに
は、そのときの試験を無効として再試験を行うことがで
きると規定されている(JISG0303鋼材の検査通
則)。
When a steel material is subjected to a tensile test, local shrinkage occurs as shown in FIG. 8(a), and the steel material breaks at that location. In order to check the elongation of each part, we divide the space between gauge points 5 and 6 into equal lengths and mark them in advance, and when we plot the elongation between each scale as a line, we can see that the local shrinkage is shown in Figure 8(b). It has grown significantly in and around the area. The true value of elongation is obtained when the position where this local shrinkage occurs and the breakage occurs is in the center of the gauge points 5 and 6, and the elongation can be measured accurately. Therefore, as shown in Figure 9, if the fracture position of the test piece is within 1/4 of the gauge distance L from the center between gauge marks 5 and 6, it is an A fracture, and the fracture position is from the center between gauge marks 5 and 6 to the gauge distance L. When the break exceeds 1/4 of the distance L and is within the gauge points 5 and 6, it is distinguished as a B fracture, and when it breaks outside the gauge points 5 and 6, it is distinguished as a C fracture. In cases other than A fracture, if the elongation at break does not satisfy the specified value, it is stipulated that the test at that time can be invalidated and a retest can be conducted (JIS G0303 General Rules for Inspection of Steel Materials).

【0007】[0007]

【発明が解決しようとする課題】上記のようにA破断の
ときに伸びの真値が得られるため、鋼板,平鋼等の試験
片21は、中央部に断面積を小さくした平行部22を設
け、平行部22に応力を均一に分散させるようにしてA
破断が起り易いようにしている。しかしながら、棒状あ
るいは管状の試験片1はもとの材料から切り取ったまま
であり、鋼板等の試験片21のように断面積を小さくし
た平行部22を有していない。このため試験機のチャッ
ク間の任意の位置で破断する。そこで図10に示すよう
に試験片1のつかみ部3間の平行部2に複数組の標点5
a,6a〜5n,6nを重複して設け、破断位置がA破
断になり易いようにしている。
[Problem to be Solved by the Invention] As mentioned above, since the true value of elongation is obtained at the A fracture, the test piece 21 of steel plate, flat steel, etc. has a parallel part 22 with a small cross-sectional area in the center. A
This makes it easy for breakage to occur. However, the rod-shaped or tubular test piece 1 is still cut from the original material, and does not have a parallel portion 22 with a reduced cross-sectional area, unlike a test piece 21 such as a steel plate. Therefore, it breaks at any position between the chucks of the testing machine. Therefore, as shown in FIG.
a, 6a to 5n, 6n are provided overlappingly so that the breakage position is likely to be A breakage.

【0008】しかしながら、この試験片1は任意の位置
で破断するため、試験機のチャックの近くで破断しB破
断になったり、あるいは自動試験機においては試験片1
の中央部にセットされている伸び計の標点距離外で破断
する場合も多い。破断位置がB破断になった場合、その
ときの破断伸びからA破断した場合の破断伸びを推定す
る方法もあるが、その変換は正確にできず、伸びを正確
に測定することができないという短所があった。
However, since this test piece 1 breaks at an arbitrary position, it may break near the chuck of the testing machine resulting in a B break, or the test piece 1 may break in an automatic testing machine.
In many cases, the fracture occurs outside the gauge distance of the extensometer set in the center of the pipe. When the fracture position becomes B fracture, there is a method of estimating the elongation at break at break A from the elongation at break at that time, but this conversion cannot be performed accurately and the elongation cannot be measured accurately. was there.

【0009】また、伸び計の標点距離外で破断したとき
には、そのときの伸びを伸び計の標点距離内で破断した
場合に変換する方法も検討されているが不十分であり、
破断伸びを自動検知することができず、人手による突合
せ伸び測定を行わざるを得ないという短所があった。
[0009]Also, when a fracture occurs outside the gauge length of the extensometer, a method of converting the elongation at that time to that when the fracture occurs within the gauge length of the extensometer has been studied, but this is insufficient.
There was a disadvantage that the elongation at break could not be automatically detected and the butt elongation had to be measured manually.

【0010】また、試験片1の材質が硬くなるとチャッ
ク内で破断し易くなり、この場合は伸びを測定できない
のみならず、破断後の試験片を回収することができない
という短所があった。
[0010] Furthermore, when the material of the test piece 1 becomes hard, it becomes easy to break within the chuck, and in this case, there are disadvantages in that not only the elongation cannot be measured but also the test piece cannot be recovered after being broken.

【0011】この発明はかかる短所を解決するためにな
されたものであり、棒状あるいは管状試験片の破断を標
点距離の中央部で行わせることができる金属材料の引張
試験装置及び試験方法を得ることを目的とするものであ
る。
The present invention has been made in order to solve these shortcomings, and provides a tensile testing device and testing method for metallic materials that can cause a bar or tubular test piece to break at the center of the gauge length. The purpose is to

【0012】0012

【課題を解決するための手段】この発明に係る金属材料
の引張試験装置は、棒状あるいは管状試験片の両端つか
み部表面をあらかじめ定められた室温以下の温度に冷却
する冷却手段と、上記試験片の両端つかみ部間の平行部
の表面温度をあらかじめ定められた規定温度に制御する
温度制御手段とを備えたことを特徴とする。
[Means for Solving the Problems] A tensile testing device for metallic materials according to the present invention includes a cooling means for cooling the surfaces of gripping portions at both ends of a rod-shaped or tubular test piece to a predetermined temperature below room temperature, and and temperature control means for controlling the surface temperature of the parallel portion between the grip portions at both ends to a predetermined temperature.

【0013】またこの発明に係る金属材料の引張試験方
法は、棒状あるいは管状試験片の両端つかみ部間の平行
部の表面温度をあらかじめ定められた規定温度に制御し
ながら、上記試験片の両端つかみ部をあらかじめ定めら
れた室温以下の一定温度に冷却し、管状試験片の平行部
の表面温度と両端つかみ部の表面温度に温度勾配を持た
せた後、上記試験片の引張試験を行うことを特徴とする
[0013] Furthermore, in the tensile testing method for metal materials according to the present invention, while controlling the surface temperature of the parallel portion between the gripping portions at both ends of the rod-shaped or tubular test piece to a predetermined temperature, After cooling the test piece to a constant temperature below a predetermined room temperature and creating a temperature gradient between the surface temperature of the parallel part of the tubular test piece and the surface temperature of the gripping parts at both ends, the above test piece was subjected to a tensile test. Features.

【0014】[0014]

【作用】この発明においては、棒状あるいは管状金属材
料の試験片の平行部の表面温度をあらかじめ定められた
規定温度に制御しながら、試験片の両端つかみ部の温度
をあらかじめ定められた一定温度に冷却し、試験片の温
度を平行部からつかみ部に対して徐々に低下するように
温度勾配を持たせ、管状試験片の平行部より両端つかみ
部の引張強さを高めた状態にした後、試験片の引張試験
を行い破断位置を試験片の中央部に集中させる。
[Operation] In this invention, while controlling the surface temperature of the parallel part of a rod-shaped or tubular metal material test piece to a predetermined temperature, the temperature of the gripping parts at both ends of the test piece is kept at a predetermined constant temperature. After cooling and creating a temperature gradient so that the temperature of the test piece gradually decreases from the parallel part to the gripping part, the tensile strength of the gripping parts at both ends is higher than that of the parallel part of the tubular specimen. Perform a tensile test on the test piece and focus the fracture location on the center of the test piece.

【0015】[0015]

【実施例】図1はこの発明の一実施例を示す構成図であ
る。図において、1は試験をする管材から切り取られた
管状試験片であり、管状試験片1は両端のつかみ部3と
平行部2とから形成されている。平行部2には伸び測定
の基準となる標点5,6が所定の標点距離Lだけ隔てて
ポンチ又はけがき針でしるされている。この管状試験片
1の引張試験を行う試験機には、冷却装置7に接続され
た冷却コイル8及び温度センサ9と、温度制御装置10
に接続された加熱コイル11及び温度センサ12を一組
ずつ有する。冷却コイル8は管状試験片1の両端つかみ
部3表面にそれぞれ装着され、つかみ部3を冷却する。 温度センサ9はつかみ部3端部に取り付けられ冷却中の
つかみ部3の温度を検出する。加熱コイル11はつかみ
部3と平行部2の境目近傍に取り付けられる。温度セン
サ12はつかみ部3と平行部2の境目近傍の温度を検出
し温度制御装置10に送る。温度制御装置10は温度セ
ンサ11で検出した温度により加熱コイル11に流す電
流を制御する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a tubular test piece cut from a tube material to be tested, and the tubular test piece 1 is formed from gripping parts 3 and parallel parts 2 at both ends. Gauge points 5 and 6, which serve as a reference for elongation measurement, are marked on the parallel portion 2 with a punch or a scribing needle, separated by a predetermined gauge distance L. A testing machine that performs a tensile test on the tubular test piece 1 includes a cooling coil 8 connected to a cooling device 7, a temperature sensor 9, and a temperature control device 10.
It has one set of heating coil 11 and one temperature sensor 12 connected to each other. The cooling coils 8 are attached to the surfaces of the gripping portions 3 at both ends of the tubular test piece 1, respectively, to cool the gripping portions 3. The temperature sensor 9 is attached to the end of the grip 3 and detects the temperature of the grip 3 during cooling. The heating coil 11 is attached near the boundary between the grip part 3 and the parallel part 2. The temperature sensor 12 detects the temperature near the boundary between the grip part 3 and the parallel part 2 and sends it to the temperature control device 10. The temperature control device 10 controls the current flowing through the heating coil 11 based on the temperature detected by the temperature sensor 11.

【0016】引張試験を行う試験温度は、一般には5〜
35°Cの範囲内とされ、温度変化に敏感な材料につい
ては20±2°Cが標準とされている。そこで管状試験
片1の両端つかみ部3を冷却しながら、温度センサ12
で管状試験片1の中央部の表面温度を検出し、検出した
温度に応じて温度制御装置10で加熱コイル11の通電
電流を可変することにより、図2に示すような温度分布
、すなわち平行部2の温度を規定試験温度範囲内に保持
し、つかみ部3の温度は端部にいくほど徐々に低くなる
ように管状試験片1の表面温度を制御する。
[0016] The test temperature for performing the tensile test is generally 5 to
It is within the range of 35°C, and 20±2°C is standard for materials sensitive to temperature changes. Therefore, while cooling the gripping portions 3 at both ends of the tubular test piece 1, the temperature sensor 12
By detecting the surface temperature of the central part of the tubular test piece 1 and varying the current flowing through the heating coil 11 with the temperature control device 10 according to the detected temperature, the temperature distribution as shown in FIG. 2, that is, the parallel part The surface temperature of the tubular test piece 1 is controlled such that the temperature of the test piece 2 is maintained within the specified test temperature range, and the temperature of the gripping part 3 gradually decreases toward the end.

【0017】次に、上記のように構成された試験機によ
り管状試験片1の引張試験を行う場合の動作を説明する
。まず、管状試験片1の両端つかみ部3の表面に冷却コ
イル8と温度センサ9を取付け、つかみ部3と平行部2
の境目近傍に加熱コイル11と温度センサ12を取り付
ける。その後、冷却装置7を駆動して冷却コイル8によ
りつかみ部3を冷却する。このつかみ部3を冷却してい
るときに温度センサ12により逐次つかみ部3と平行部
2の境目近傍の温度を検出して温度制御装置10に送る
。温度制御装置10は温度センサ12で検出した温度を
、あらかじめ設定されている規定試験温度、例えば20
°Cと比較し、平行部2の温度が規定試験温度以下にな
らないように加熱コイル11に通電する電流を制御する
。そして温度センサ9で検出しているつかみ部3端部の
温度が試験片の寸法に応じた所定の温度、例えばマイナ
ス5℃まで低下したら冷却装置7の停止,駆動を一定時
間繰り返して、管状試験片1の温度分布を安定させる。
Next, the operation when performing a tensile test on the tubular test piece 1 using the testing machine configured as described above will be explained. First, the cooling coil 8 and the temperature sensor 9 are attached to the surfaces of the gripping parts 3 at both ends of the tubular test piece 1.
A heating coil 11 and a temperature sensor 12 are attached near the boundary. Thereafter, the cooling device 7 is driven to cool the grip portion 3 by the cooling coil 8. While the grip portion 3 is being cooled, the temperature sensor 12 successively detects the temperature near the boundary between the grip portion 3 and the parallel portion 2 and sends it to the temperature control device 10. The temperature control device 10 adjusts the temperature detected by the temperature sensor 12 to a preset specified test temperature, for example, 20
℃, and the current applied to the heating coil 11 is controlled so that the temperature of the parallel portion 2 does not fall below the specified test temperature. When the temperature at the end of the grip part 3 detected by the temperature sensor 9 drops to a predetermined temperature depending on the size of the test piece, for example, -5°C, the cooling device 7 is stopped and driven repeatedly for a certain period of time, and the tubular test is carried out. Stabilize the temperature distribution of piece 1.

【0018】その後、管状試験片1から冷却コイル8と
温度センサ9,12及び加熱コイル11を取外し、図3
に示すようにつかみ部3に心金4を挿入し、管状試験片
1を手動または自動操作で試験機の上部クロスヘッド1
3と下部クロスヘッド14のチャック15にすみやかに
セットする。そして上部クロスヘッド13を所定の速度
で上昇させて、管状試験片1に局部伸びが生じて破断す
るまで荷重を加える。この管状試験片1に加える荷重を
測定しながら、電気マイクロメ−タやひずみゲ−ジ等を
利用した伸び計により伸び量を測定する。そして管状試
験片1の破断時の全伸びを伸び計で測定したり、あるい
は両破断片の破断面を突き合わせて標点5,6間の長さ
を測定して破断伸びを得る。
Thereafter, the cooling coil 8, temperature sensors 9, 12, and heating coil 11 were removed from the tubular test piece 1, and as shown in FIG.
As shown in the figure, the mandrel 4 is inserted into the grip part 3, and the tubular test piece 1 is placed in the upper crosshead 1 of the testing machine by manual or automatic operation.
3 and the chuck 15 of the lower crosshead 14. Then, the upper crosshead 13 is raised at a predetermined speed, and a load is applied to the tubular test piece 1 until it locally stretches and breaks. While measuring the load applied to the tubular test piece 1, the amount of elongation is measured using an extensometer using an electric micrometer, strain gauge, or the like. Then, the total elongation at break of the tubular test piece 1 is measured using an extensometer, or the fractured surfaces of the two broken pieces are brought together and the length between the gauge points 5 and 6 is measured to obtain the elongation at break.

【0019】上記のよう管状試験片1の引張強さを試験
するときに、管状試験片1は平行部2を規定温度に保持
しながら、平行部2からつかみ部3に対して徐々に低下
する温度勾配を有するから、つかみ部3の引張強さを平
行部2の引張強さより徐々に高めることができる。この
ため引張試験により局部伸びが生じ破断する位置を平行
部2の中央部に集中させることができる。
When testing the tensile strength of the tubular test piece 1 as described above, the tensile strength of the tubular test piece 1 is gradually decreased from the parallel part 2 to the grip part 3 while maintaining the parallel part 2 at a specified temperature. Since there is a temperature gradient, the tensile strength of the grip portion 3 can be gradually increased compared to the tensile strength of the parallel portion 2. Therefore, the position where local elongation occurs and breakage occurs in the tensile test can be concentrated in the center of the parallel portion 2.

【0020】図4は試験材の材質と寸法を変えて引張試
験を行ったときの破断位置を示す。図において、縦軸は
破断後の標点距離に対する短い方の破断位置までの標点
からの距離の割合、すなわち中央部破断率を表し、横軸
方向に管状試験片1の材料と寸法を表し、Aは管状試験
片1のつかみ部3を冷却した場合、Bは冷却せずに室温
のままで試験を行った場合の中央部破断率を示す。図に
示すように、つかみ部3を冷却した場合の中央部破断率
は46〜50%となり、室温のままで試験した場合と比
べてA破断率を向上させることができた。またつかみ部
3を冷却して試験した場合と常温で試験した場合との各
特性値はほぼ同様な値をえることができた。
FIG. 4 shows the fracture positions when a tensile test was conducted with different materials and dimensions of the test material. In the figure, the vertical axis represents the ratio of the distance from the gauge to the shorter fracture position to the gauge distance after fracture, that is, the center fracture rate, and the horizontal axis represents the material and dimensions of the tubular specimen 1. , A shows the fracture rate at the center when the gripping part 3 of the tubular test piece 1 is cooled, and B shows the breakage rate at the center when the test is carried out at room temperature without cooling. As shown in the figure, when the grip portion 3 was cooled, the center portion breakage rate was 46 to 50%, and the A breakage rate was able to be improved compared to the case where the test was performed at room temperature. In addition, almost the same characteristic values were obtained when the grip portion 3 was tested while being cooled and when it was tested at room temperature.

【0021】なお、上記実施例においてはつかみ部3の
温度を温度センサ9で検出して、冷却温度を制御する場
合について説明したが、試験片の材質,寸法に応じてあ
らかじめ冷却時間を検出して定めておき、つかみ部3の
冷却温度を冷却時間で制御するようにしても良い。
In the above embodiment, the temperature of the grip portion 3 is detected by the temperature sensor 9 to control the cooling temperature, but the cooling time may be detected in advance depending on the material and size of the test piece. The cooling temperature of the grip portion 3 may be controlled by the cooling time.

【0022】また、上記実施例は冷却コイル8で管状試
験片1の両端つかみ部3を冷却した場合について説明し
たが、リングノズルにより冷媒を噴出させたり、チャッ
ク15にノズルを設けてチャック15を冷却して管状試
験片1の両端つかみ部3を冷却するようにしても上記実
施例と同様な作用を奏することができる。
Furthermore, in the above embodiment, the case where the gripping portions 3 at both ends of the tubular test piece 1 are cooled by the cooling coil 8 has been described. Even if the gripping portions 3 at both ends of the tubular test piece 1 are cooled, the same effect as in the above embodiment can be achieved.

【0023】また、上記実施例においては管状試験片1
の引張試験を行った場合について説明したが、棒状の金
属材料を試験する2号試験片,3号試験片にも同様に適
用することができる。
[0023] Furthermore, in the above embodiment, the tubular test piece 1
Although the case where the tensile test was performed has been described, it can be similarly applied to No. 2 test pieces and No. 3 test pieces for testing rod-shaped metal materials.

【0024】[0024]

【発明の効果】この発明は以上説明したように、棒状あ
るいは管状金属材料の試験片の平行部の表面温度をあら
かじめ定められた規定温度に制御しながら、試験片の両
端つかみ部の温度をあらかじめ定められた一定温度に冷
却し、試験片の温度を平行部からつかみ部に対して徐々
に低下するように温度勾配を持たせ、管状試験片の平行
部より両端つかみ部の引張強さを高めた状態にした後、
試験片の引張試験を行うようにしたから、引張試験によ
る破断位置を試験片の中央部に集中させることができる
。したがって管状試験片の中央部に伸び計をセットした
自動試験機においても精度良く伸び量を測定することが
でき、管状試験片の引張試験の作業能率を向上させるこ
とができる。
Effects of the Invention As explained above, the present invention is capable of controlling the surface temperature of the parallel part of a test piece of a rod-like or tubular metal material to a predetermined temperature, and at the same time controlling the temperature of the gripping parts at both ends of the test piece in advance. The specimen is cooled to a predetermined constant temperature, and a temperature gradient is created so that the temperature of the specimen gradually decreases from the parallel part to the gripping part, so that the tensile strength of the gripping part at both ends is higher than that of the parallel part of the tubular specimen. After setting the
Since the tensile test is performed on the test piece, the fracture position due to the tensile test can be concentrated in the center of the test piece. Therefore, the amount of elongation can be measured with high accuracy even in an automatic testing machine with an extensometer set in the center of the tubular test piece, and the work efficiency of the tensile test of the tubular test piece can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】管状試験片の温度分布図である。FIG. 2 is a temperature distribution diagram of a tubular test piece.

【図3】管状試験片の取付け状態を示す説明図である。FIG. 3 is an explanatory diagram showing how the tubular test piece is attached.

【図4】中央部破断率を示す特性図である。FIG. 4 is a characteristic diagram showing the center portion fracture rate.

【図5】応力−ひずみ線図である。FIG. 5 is a stress-strain diagram.

【図6】鋼板,平鋼等の試験片を示す正面図である。FIG. 6 is a front view showing a test piece of steel plate, flat steel, etc.

【図7】管状試験片を示す正面図である。FIG. 7 is a front view showing a tubular test piece.

【図8】(a)は破断状態を示す正面図、(b)は破断
時の伸びを示す伸び分布図である。
FIG. 8(a) is a front view showing a broken state, and FIG. 8(b) is an elongation distribution diagram showing elongation at break.

【図9】試験片の破断位置による区分を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing classification of test pieces according to their fracture positions.

【図10】管状試験片の標点を示す正面図である。FIG. 10 is a front view showing gauge points of a tubular test piece.

【符号の説明】[Explanation of symbols]

1        管状試験片 2        平行部 3        つかみ部 5,6    標点 7        冷却装置 8        冷却コイル 9,12  温度センサ 10      温度制御装置 11      加熱コイル 15      チャック 1 Tubular test piece 2 Parallel part 3 Grip part 5, 6 Gauge point 7 Cooling device 8 Cooling coil 9,12 Temperature sensor 10 Temperature control device 11 Heating coil 15 Chuck

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  棒状あるいは管状試験片の両端つかみ
部表面をあらかじめ定められた室温以下の温度に冷却す
る冷却手段と、上記試験片の両端つかみ部間の平行部の
表面温度をあらかじめ定められた規定温度に制御する温
度制御手段とを備えたことを特徴とする金属材料の引張
試験装置。
[Claim 1] Cooling means for cooling the surface of the gripping portions at both ends of a rod-shaped or tubular test piece to a predetermined temperature below room temperature; 1. A tensile testing device for metal materials, comprising: temperature control means for controlling the temperature to a specified temperature.
【請求項2】  棒状あるいは管状試験片の両端つかみ
部間の平行部の表面温度をあらかじめ定められた規定温
度に制御しながら、上記試験片の両端つかみ部をあらか
じめ定められた室温以下の一定温度に冷却し、管状試験
片の平行部の表面温度と両端つかみ部の表面温度に温度
勾配を持たせた後、上記試験片の引張試験を行うことを
特徴とする金属材料の引張試験方法。
2. While controlling the surface temperature of the parallel portion between the gripping portions at both ends of the rod-like or tubular test piece to a predetermined temperature, the gripping portions at both ends of the test piece are held at a constant temperature below a predetermined room temperature. 1. A method for tensile testing a metal material, comprising: cooling the test piece to a temperature of 100 mL to give a temperature gradient between the surface temperature of the parallel portion of the tubular test piece and the surface temperature of the gripping portions at both ends, and then subjecting the test piece to a tensile test.
JP2520891A 1991-01-28 1991-01-28 Device and method for tension test of metallic material Pending JPH04250336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2520891A JPH04250336A (en) 1991-01-28 1991-01-28 Device and method for tension test of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2520891A JPH04250336A (en) 1991-01-28 1991-01-28 Device and method for tension test of metallic material

Publications (1)

Publication Number Publication Date
JPH04250336A true JPH04250336A (en) 1992-09-07

Family

ID=12159541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2520891A Pending JPH04250336A (en) 1991-01-28 1991-01-28 Device and method for tension test of metallic material

Country Status (1)

Country Link
JP (1) JPH04250336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646312U (en) * 1992-11-25 1994-06-24 株式会社豊田中央研究所 Displacement measuring device
CN108507864A (en) * 2018-04-13 2018-09-07 北京航空航天大学 The acquisition methods of test specimen examination section wall thickness direction temperature gradient in a kind of TGMF experiment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646312U (en) * 1992-11-25 1994-06-24 株式会社豊田中央研究所 Displacement measuring device
CN108507864A (en) * 2018-04-13 2018-09-07 北京航空航天大学 The acquisition methods of test specimen examination section wall thickness direction temperature gradient in a kind of TGMF experiment

Similar Documents

Publication Publication Date Title
US7360442B2 (en) Method for measuring and calculating tensile elongation of ductile metals
CN108627396B (en) Method for testing bending strength of ultrathin glass
Sadok et al. Inhomogeneity of mechanical properties in stainless steel rods after drawing
JP5760244B2 (en) Low cycle fatigue crack growth evaluation method
JPH04250336A (en) Device and method for tension test of metallic material
Tsoupis et al. Edge crack sensitivity of lightweight materials under different load conditions
JPH05249011A (en) Apparatus and method for tension test of metallic material
JPH04250335A (en) Device and method for tension test of tubular metallic material
CN116358756A (en) Foil nondestructive residual stress magnetic measurement method and magnetic measurement system
CN105004606A (en) Steel bar tensile test machine clamping slot design and test method
CN109297814A (en) A kind of test method measuring angle steel test specimen tensile mechanical properties
CN105928784B (en) The method for measuring fracture toughness under hot rolling carbon steel plane stress condition
CN209132092U (en) A kind of aluminium alloy elongation percentage measuring device
CN208223950U (en) A kind of timeliness impact specimen predeformation stretching auxiliary clamp that can reduce measurement error
CN207197936U (en) A kind of stretching device for testing heterogeneous interface slabbing
JP3093837B2 (en) Bar sorting method and apparatus
Scibetta et al. Fracture toughness derived from small circumferentially cracked bars
Dokšanović et al. Stress–strain relationships and influence of testing parameters on coupon test results
JPH04370740A (en) Device and method for testing tensile strength of tubular metal material
CN214795072U (en) Insulator on-line measuring structure height calibration frock
US2002495A (en) Apparatus for the determination of brinell-numbers
JP2022116417A (en) Small creep test piece mounting jig
JPH07113732A (en) Tension testing method
Zhang et al. A simple and sensitive method of monitoring crack and load in three-point bending fracture mechanics specimens using strain gages
CN107389452A (en) A kind of stretching device for testing heterogeneous interface slabbing and slabbing method of testing and application