JPH04370684A - Sealed type lighting arrester - Google Patents

Sealed type lighting arrester

Info

Publication number
JPH04370684A
JPH04370684A JP3148746A JP14874691A JPH04370684A JP H04370684 A JPH04370684 A JP H04370684A JP 3148746 A JP3148746 A JP 3148746A JP 14874691 A JP14874691 A JP 14874691A JP H04370684 A JPH04370684 A JP H04370684A
Authority
JP
Japan
Prior art keywords
arrester
tank
grounding
voltage
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3148746A
Other languages
Japanese (ja)
Inventor
Soji Kojima
小島 宗次
Toshio Sumikawa
澄川 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3148746A priority Critical patent/JPH04370684A/en
Publication of JPH04370684A publication Critical patent/JPH04370684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To lessen voltage drop on the grounding lead of a lightning arrester and a grounding mesh as much as practicable. CONSTITUTION:A bus bar 11 of a gas insulated apparatus (GIS) is installed in a bus bar tank 13 in which SF6 gas 12 is encapsulated. A lightning arrester tank 16 is mounted on this bus bar tank 13, and an arrester element 17 is provided in the arrester tank 16. An arrester grounding lead 18 is connected with a grounding mesh 15, and a bushing 19 is set between the arrester grounding lead 18 and arrester tank 16 to generate insulation therebetween. A protection device 20 for lessening an influence of transient voltage appearing on the arrester grounding lead 18 and grounding mesh 15 is installed between the arrester grounding lead 18 and the arrester tank 16. This protection device 20 is formed, concretely described, for example from a non-linear resistant element which presents a high resistance in the large current region and a low resistance in the small current region. This accomplishes suppressing impression of over-voltage between the bus bar 11 and the main circuit insulation of bus bar tank 13 even in the event of flowing of a steep discharge current.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガス絶縁機器(GIS
)保護用の密封形避雷器に係り、特に急峻な雷サージ電
圧等により避雷器が動作しても、避雷器の保護効果を大
きくすることができる密封形避雷器に関する。
[Industrial Application Field] The present invention is applicable to gas insulated equipment (GIS).
) The present invention relates to a sealed lightning arrester for protection, and particularly relates to a sealed lightning arrester that can increase the protective effect of the lightning arrester even if the arrester is activated by a steep lightning surge voltage or the like.

【0002】0002

【従来の技術】ガス絶縁機器(以下、GISという。)
に限らず、一般に変電所等に設置される避雷器は、その
接地線が変電所メッシュに接続されており、この変電所
の接地メッシュの交流抵抗は、通常1Ω以下で充分低い
値になっている。
[Prior art] Gas insulated equipment (hereinafter referred to as GIS)
In general, lightning arresters installed in substations, etc., have their grounding wires connected to the substation mesh, and the AC resistance of the substation's grounding mesh is usually 1Ω or less, which is a sufficiently low value. .

【0003】図8は、従来のGISにおける密封形避雷
器を示すもので、図中、符号1は母線であり、この母線
1は、SF6 ガス2を封入した母線タンク3内に配置
され、母線タンク3は、GIS接地線4を介し接地メッ
シュ5に接続(アース)されている。
FIG. 8 shows a sealed lightning arrester in a conventional GIS. In the figure, reference numeral 1 is a busbar, and this busbar 1 is placed in a busbar tank 3 filled with SF6 gas 2. 3 is connected (earthed) to a ground mesh 5 via a GIS ground line 4.

【0004】母線タンク3には、図8に示すように、避
雷器タンク6が設けられており、この避雷器タンク6に
は、避雷器要素7が内蔵され、この避雷器要素7は避雷
器接地線8を介し接地メッシュ5に接続されている。ま
た、避雷器接地線8と避雷器タンク6との間は、ブッシ
ング9により絶縁されている。
As shown in FIG. 8, the busbar tank 3 is provided with a surge arrester tank 6, and this surge arrester tank 6 has a built-in surge arrester element 7. It is connected to the ground mesh 5. Further, the surge arrester grounding line 8 and the surge arrester tank 6 are insulated by a bushing 9.

【0005】[0005]

【発明が解決しようとする課題】従来の密封形避雷器に
おいて、図8に示すように、雷サージ電圧E等の急峻な
過電圧が母線1に印加されると、避雷器には、急峻な放
電電流が流れる。例えば、変電所近傍の鉄塔に落雷があ
り、逆フラッシュオーバにより雷サージが変電所に侵入
した場合には、避雷器の放電電流波高値は20000A
、波頭までの時間は1μs、したがって電流峻度は20
000A/μsにもなる。
[Problems to be Solved by the Invention] In a conventional sealed lightning arrester, when a steep overvoltage such as a lightning surge voltage E is applied to the bus 1, as shown in FIG. flows. For example, if a steel tower near a substation is struck by lightning and a lightning surge enters the substation due to reverse flashover, the peak value of the discharge current of the lightning arrester will be 20,000 A.
, the time to the wave crest is 1 μs, so the current steepness is 20
000A/μs.

【0006】このように、急峻な電流が避雷器要素7を
通して避雷器接地線8および接地メッシュ5に流れると
、これらの系は単に抵抗インピーダンスとして作用する
だけでなく、インダクタンスドロップLdi/dtが生
じ、このインダクタンスドロップが主要な電圧効果とな
る。
[0006] In this way, when a steep current flows through the arrester element 7 to the arrester grounding line 8 and the grounding mesh 5, these systems not only act as resistive impedance, but also cause an inductance drop Ldi/dt, which Inductance drop becomes the main voltage effect.

【0007】図9は、このような急峻な避雷器放電電流
に対し各部に発生する過電圧の様相を示したものであり
、図9(a)は、避雷器に流れる急峻な放電電流波形を
示し、また図9(b)は、前記放電電流に対する酸化亜
鉛形避雷器単体の制限電圧波形を示す。図9(c)は、
接地系に表われる過渡電圧波形を、また図9(d)は、
制限電圧と接地系電圧とを合成した電圧波形をそれぞれ
示す。
FIG. 9 shows the overvoltage generated in various parts due to such a steep arrester discharge current, and FIG. 9(a) shows the steep discharge current waveform flowing through the arrester, and FIG. 9(b) shows the limiting voltage waveform of a single zinc oxide arrester with respect to the discharge current. FIG. 9(c) is
The transient voltage waveform appearing in the ground system is also shown in Figure 9(d).
Each shows a voltage waveform that is a combination of the limit voltage and the ground system voltage.

【0008】酸化亜鉛形避雷器の電圧−電流(V−I)
特性は、図10に示すように非直線性が極めて優れてい
るため、小電流域でも高い制限電圧に達しており、した
がって、図9(b)に示す制限電圧波形の時間応答も、
図9(a)に示す放電電流波形よりも早い立上り電圧の
応答を示している。
Voltage-current (V-I) of zinc oxide type lightning arrester
As shown in Fig. 10, the characteristics are extremely excellent in non-linearity, reaching a high limiting voltage even in a small current range.Therefore, the time response of the limiting voltage waveform shown in Fig. 9(b) is also
This shows a faster response to the rising voltage than the discharge current waveform shown in FIG. 9(a).

【0009】一方、避雷器接地線8および接地メッシュ
5の接地系は、図9(c)に示すように、Ldi/dt
のインダクタンスドロップ11が抵抗ドロップ12より
も大きく、主要な電圧降下となる。インダクタンスドロ
ップLdi/dtの波高値は、電流iの立上り峻度が最
大になる点で発生する。電流峻度di/dtの最大値は
、図9(a)に示す電流波高値以前の小電流域で発生す
るが、酸化亜鉛形避雷器の制限電圧は、前述のように小
電流でも比較的高い電圧になるので、図9(b)の波形
と図9(c)の波形とを合成した全電圧は、図9(d)
に示すように、短かい時間領域で最大値を示すような波
形となる。 この電圧が、母線1と母線タンク3との間のGISの主
絶縁部に印加される。このため、GIS主絶縁は、避雷
器の制限電圧ばかりでなく、接地系の電圧降下もプラス
した過電圧に耐えるように決定する必要がある。
On the other hand, the grounding system of the lightning arrester grounding wire 8 and the grounding mesh 5 has Ldi/dt as shown in FIG. 9(c).
The inductance drop 11 is larger than the resistance drop 12 and becomes the main voltage drop. The peak value of the inductance drop Ldi/dt occurs at the point where the steepness of the rise of the current i is maximum. The maximum value of current steepness di/dt occurs in a small current range before the current peak value shown in Fig. 9(a), but the limiting voltage of zinc oxide type arresters is relatively high even at small currents, as mentioned above. Therefore, the total voltage obtained by combining the waveform of FIG. 9(b) and the waveform of FIG. 9(c) is as shown in FIG. 9(d).
As shown in the figure, the waveform has a maximum value in a short time domain. This voltage is applied to the main insulation of the GIS between the busbar 1 and the busbar tank 3. Therefore, the GIS main insulation must be determined to withstand not only the voltage limit of the lightning arrester but also the overvoltage including the voltage drop in the grounding system.

【0010】このような接地系に表われる過渡過電圧の
大きさは、Ldi/dtのインダクタンスドロップ(降
下)11より判るように、避雷器接地線8が長い程、ま
た接地メッシュ5が不完全な程、さらに電流峻度di/
dtが大きい程高い値になって好ましくない。
As can be seen from the inductance drop 11 of Ldi/dt, the magnitude of the transient overvoltage appearing in such a grounding system increases as the lightning arrester grounding wire 8 becomes longer and as the grounding mesh 5 becomes more incomplete. , and further the current steepness di/
The larger dt is, the higher the value becomes, which is not preferable.

【0011】ところが、GISのレイアウト上、避雷器
接地線8か長く、インダクタンスLが大きくならざるを
得ない場合もあり、また接地メッシュ5を如何に安全に
張設しても、導線自身がインダクタンスドロップ(降下
)が存在することになり、その分不経済なGISとなっ
ている。
However, due to the layout of the GIS, the surge arrester grounding wire 8 may be long and the inductance L may have to be large, and no matter how safely the grounding mesh 5 is stretched, the conductor itself may have an inductance drop. (descent), which makes the GIS uneconomical.

【0012】本発明は、上述した事情を考慮してなされ
たもので、インダクタンス降下と抵抗ドロップとを合せ
た接地系の電圧降下を、できるだけ小さくすることがで
きる密封形避雷器を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it is an object of the present invention to provide a sealed lightning arrester that can minimize the voltage drop in the grounding system, which is a combination of inductance drop and resistance drop. shall be.

【0013】[0013]

【課題を解決するための手段】本発明は、前記目的を達
成する手段として、母線を母線タンク内に配置するとと
もに、この母線タンクに、避雷器要素を内蔵する避雷器
タンクを接続し、かつこの避雷器タンクと避雷器要素の
接地側を絶縁したGIS保護用の密封形避雷器において
、前記避雷器要素の接地側リードと前記いずれかのタン
クとの間に、接地系に表われる過渡過電圧の影響を少な
くするための保護装置を設けたものである。
[Means for Solving the Problems] As a means for achieving the above object, the present invention provides a method for arranging a busbar in a busbar tank, connecting a lightning arrester tank having a built-in lightning arrester element to the busbar tank, and In a sealed type lightning arrester for GIS protection in which the grounding side of the arrester element is insulated from the tank, in order to reduce the influence of transient overvoltage appearing on the grounding system between the grounding side lead of the arrester element and any of the tanks. It is equipped with a protective device.

【0014】そして、本発明において、保護装置は、大
電流域で高抵抗、小電流域で低抵抗を示す非直線抵抗体
、あるいは接地系に表われる過電圧の立上りを緩和でき
る時定数を有するコンデンサ、あるいは所定の電圧で放
電する保護ギャップで構成したり、さらにはこの保護ギ
ャップと前記非直線抵抗体とを直列に接続して構成する
ことが好ましい。
In the present invention, the protective device is a nonlinear resistor that exhibits high resistance in a large current range and low resistance in a small current range, or a capacitor that has a time constant that can alleviate the rise of overvoltage appearing in the ground system. Alternatively, it is preferable that the protective gap is configured to discharge at a predetermined voltage, or that the protective gap and the non-linear resistor are connected in series.

【0015】[0015]

【作用】本発明に係る密封形避雷器においては、避雷器
要素の接地側リードと母線タンクあるいは避雷器タンク
との間に、保護装置が設けられている。このため、急峻
な放電電流が流れた際に、接地系に表われる過電圧が、
GISの母線と母線タンクの主回路絶縁との間に印加さ
れることが極力抑えられ、接地系の電圧降下を可及的に
小さくすることが可能となる。
[Operation] In the sealed type surge arrester according to the present invention, a protection device is provided between the ground side lead of the surge arrester element and the bus tank or the surge arrester tank. Therefore, when a steep discharge current flows, the overvoltage that appears in the ground system is
The voltage applied between the GIS busbar and the main circuit insulation of the busbar tank is suppressed as much as possible, making it possible to reduce the voltage drop in the ground system as much as possible.

【0016】[0016]

【実施例】以下、本発明に係る密封形避雷器の一実施例
を添付図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a sealed lightning arrester according to the present invention will be described below with reference to the accompanying drawings.

【0017】図1は、本発明に係る密封形避雷器の一例
を示すもので、図中、符号11はガス絶縁機器(GIS
)の母線であり、この母線11は、SF6 ガス12を
封入した母線タンク13内に配置され、母線タンク13
は、GIS接地線14を介し接地メッシュ15に接続さ
れている。
FIG. 1 shows an example of a sealed lightning arrester according to the present invention, and in the figure, reference numeral 11 indicates gas insulated equipment (GIS).
), and this bus bar 11 is arranged in a bus bar tank 13 filled with SF6 gas 12.
is connected to the ground mesh 15 via the GIS ground line 14.

【0018】母線タンク13には、図1に示すように、
避雷器タンク16が設けられており、この避雷器タンク
16には、避雷器要素17が内蔵され、この避雷器要素
17は、避雷器接地線18を介し前記接地メッシュ15
に接続されている。また、避雷器接地線18と避雷器タ
ンク16との間は、ブッシング19により絶縁されてる
い。
As shown in FIG. 1, the bus tank 13 includes:
A lightning arrester tank 16 is provided, and a lightning arrester element 17 is built into the lightning arrester tank 16, and the lightning arrester element 17 is connected to the ground mesh 15 via a lightning arrester grounding wire 18.
It is connected to the. Further, the surge arrester grounding wire 18 and the surge arrester tank 16 are insulated by a bushing 19.

【0019】避雷器接地線18と避雷器タンク16との
間には、図1に示すように、保護装置20が設けられて
おり、この保護装置20により、避雷器に急峻な放電電
流が流れた際に、接地系に表われる過電圧が、GISの
母線11と母線タンク13の主回路絶縁との間に印加さ
れるのを極力抑えることができるようになっている。
As shown in FIG. 1, a protection device 20 is provided between the surge arrester grounding wire 18 and the surge arrester tank 16, and this protection device 20 prevents the surge arrester from flowing when a steep discharge current flows through the surge arrester. The overvoltage appearing in the ground system can be suppressed as much as possible from being applied between the GIS bus bar 11 and the main circuit insulation of the bus tank 13.

【0020】この保護装置20に要求される条件を、図
2に示す等価回路を参照して説明する。図中、符号22
は接地系の過電圧、符号23は避雷器タンク16と避雷
器接地線18との間隙、符号24は接地メッシュ15の
インダクタンスL1 、符号25は避雷器タンク16お
よび避雷器接地線18のインダクタンスL2 である。
The conditions required of this protection device 20 will be explained with reference to the equivalent circuit shown in FIG. In the figure, code 22
is the overvoltage of the grounding system, 23 is the gap between the arrester tank 16 and the arrester grounding wire 18, 24 is the inductance L1 of the grounding mesh 15, and 25 is the inductance L2 of the arrester tank 16 and the arrester grounding wire 18.

【0021】図2において、保護装置20が動作した際
に、間隙23に表われる過電圧eを大幅に低減させるた
めには、(L1 +L2 )のインダクタンスによるイ
ンピーダンスに比べ、充分低いインピーダンスを有し、
また過電圧eが終了後は、インピーダンスを充分高い値
に回復することが必要となり、これが保護装置20に要
求される条件である。
In FIG. 2, in order to significantly reduce the overvoltage e appearing in the gap 23 when the protection device 20 is activated, it has a sufficiently low impedance compared to the impedance due to the inductance of (L1 +L2).
Further, after the overvoltage e ends, it is necessary to restore the impedance to a sufficiently high value, and this is a condition required of the protection device 20.

【0022】このような条件を満足する保護装置20の
具体例を、図3ないし図6にそれぞれ示す。
Specific examples of the protection device 20 that satisfy these conditions are shown in FIGS. 3 to 6, respectively.

【0023】図3は、非直線抵抗体28を保護装置20
の要素として適用する場合を示し、この非直線抵抗体2
8としては、例えば酸化亜鉛素子または炭化珪素抵抗体
等が考えられる。これらは、図10に示す電圧−電流(
V−I)特性のように、大電流域で高抵抗、小電流域で
低抵抗を示し、前記条件に適合している。
FIG. 3 shows the protection device 20 for the nonlinear resistor 28.
The case where this non-linear resistor 2 is applied as an element is shown.
As 8, for example, a zinc oxide element or a silicon carbide resistor can be considered. These are the voltage-current (
As shown in the VI) characteristics, it exhibits high resistance in the large current range and low resistance in the small current range, meeting the above conditions.

【0024】また図4は、コンデンサ29を保護装置2
0の要素として適用する場合を示し、このコンデンサ2
9の容量を大きくして、接地系に表われる過電圧の立上
りを緩和し得るような時定数が得られるようにすること
により、図2の間隙23に表われる電圧を、過電圧eよ
りも充分に低い値にすることができる。
FIG. 4 also shows that the capacitor 29 is connected to the protection device 2.
0 element, this capacitor 2
By increasing the capacitance of 9 to obtain a time constant that can alleviate the rise of overvoltage appearing in the grounding system, the voltage appearing in gap 23 in FIG. 2 can be made sufficiently higher than overvoltage e. It can be set to a lower value.

【0025】また図5は、保護ギャップ30を保護装置
20の要素として適用する場合を示し、この保護ギャッ
プ30の放電電圧を適性に設定することにより、図2の
間隙23に表われる電圧を、過電圧eよりも充分に低い
値にすることができる。なお、この保護ギャップ30の
条件としては、放電遅れやばらつきがなく所定の電圧で
放電する機能を有し、かつ放電電流による損耗が少ない
ことが必要となる。
FIG. 5 shows a case where the protective gap 30 is applied as an element of the protective device 20. By appropriately setting the discharge voltage of the protective gap 30, the voltage appearing in the gap 23 of FIG. The value can be made sufficiently lower than the overvoltage e. Note that the conditions for this protective gap 30 are that it has a function of discharging at a predetermined voltage without discharge delay or variation, and that there is little wear and tear due to discharge current.

【0026】さらに図6は、保護ギャップ30と非直線
抵抗体28とを直列に接続した系を保護装置20の要素
とした場合を示し、非直線抵抗体28により、適度な値
にまで放電電流を制限することにより、保護ギャップ3
0の損耗をより少なくすることができる。
Furthermore, FIG. 6 shows a case where a system in which a protective gap 30 and a non-linear resistor 28 are connected in series is used as an element of the protective device 20. By limiting the protection gap 3
0 wear can be further reduced.

【0027】しかして、このような保護装置20を用い
ることにより、図9(d)に示すような過電圧がGIS
の主絶縁部に印加されることはなくなり、ほぼ図9(b
)に示す避雷器制限電圧に近い値にすることがてきる。 このため、GIS全体の所要絶縁レベルの上昇を抑制し
、経済性なGISが得られる。
By using such a protection device 20, overvoltage as shown in FIG. 9(d) can be prevented from occurring in the GIS.
The voltage is no longer applied to the main insulation part of the
) can be set to a value close to the arrester limit voltage shown in ). Therefore, an increase in the required insulation level of the entire GIS is suppressed, and an economical GIS can be obtained.

【0028】図8は、本発明の第2実施例を示すもので
、保護装置20を避雷器タンク16内に収納するように
したものである。なお、その他の点については、前記第
1実施例と同一構成となっており、作用も同一である。
FIG. 8 shows a second embodiment of the present invention, in which a protection device 20 is housed within a lightning arrester tank 16. In other respects, the structure is the same as that of the first embodiment, and the operation is also the same.

【0029】しかして、保護装置20を避雷器タンク1
6内に収納することにより、保護装置20が風雨に晒さ
れることがなくなるため、保護装置20を別の気密容器
等に収納する必要がなく、コンパクトにまとめることが
できる。
[0029] Therefore, the protection device 20 is connected to the lightning arrester tank 1.
6, the protection device 20 is not exposed to wind and rain, so there is no need to store the protection device 20 in a separate airtight container or the like, and the protection device 20 can be made compact.

【0030】このように、保護装置20を、非直線抵抗
体28、コンデンサ29、保護ギャップ30あるいは保
護ギャップ30と非直線抵抗体28とを直列に接続した
系で構成することにより、安定した性能の保護装置を容
易に得ることができる。
In this way, by configuring the protection device 20 with a system in which the nonlinear resistor 28, the capacitor 29, and the protective gap 30, or the protective gap 30 and the nonlinear resistor 28 are connected in series, stable performance can be achieved. protective equipment can be easily obtained.

【0031】なお、前記両実施例においては、保護装置
20を避雷器タンク16と避雷器接地線18との間に設
ける場合について説明したが、母線タンク13と避雷器
接地線18との間に設けても同様の効果が期待できる。
In both of the above embodiments, the case where the protection device 20 is provided between the lightning arrester tank 16 and the lightning arrester grounding wire 18 has been described, but it may also be provided between the busbar tank 13 and the lightning arrester grounding wire 18. Similar effects can be expected.

【0032】[0032]

【発明の効果】以上説明したように本発明は、避雷器要
素の接地側リードと母線タンクあるいは避雷器タンクと
の間に、接地系に表われる過渡過電圧の影響を少なくす
るための保護装置を設けるようにしているので、接地系
の電圧降下を可及的に小さくし、経済性なGISを得る
ことができる。
As explained above, the present invention provides a protection device between the ground side lead of the surge arrester element and the bus tank or the surge arrester tank to reduce the influence of transient overvoltage appearing on the ground system. Therefore, it is possible to minimize the voltage drop in the grounding system and obtain an economical GIS.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る密封形避雷器の第1実施例を示す
構成図。
FIG. 1 is a configuration diagram showing a first embodiment of a sealed lightning arrester according to the present invention.

【図2】図1の等価回路図。FIG. 2 is an equivalent circuit diagram of FIG. 1.

【図3】非直線抵抗体を保護装置の要素として用いる具
体例を示す説明図。
FIG. 3 is an explanatory diagram showing a specific example of using a nonlinear resistor as an element of a protection device.

【図4】コンデンサを保護装置の要素として用いる具体
例を示す説明図。
FIG. 4 is an explanatory diagram showing a specific example of using a capacitor as an element of a protection device.

【図5】保護ギャップを保護装置の要素として用いる具
体例を示す説明図。
FIG. 5 is an explanatory diagram showing a specific example of using a protection gap as an element of a protection device.

【図6】保護ギャップと非直線抵抗体とを直列に接続し
て保護装置の要素とする具体例を示する説明図。
FIG. 6 is an explanatory diagram showing a specific example in which a protection gap and a non-linear resistor are connected in series as elements of a protection device.

【図7】本発明の第2実施例に係る密封形避雷器を示す
構成図。
FIG. 7 is a configuration diagram showing a sealed lightning arrester according to a second embodiment of the present invention.

【図8】従来の密封形避雷器を示す構成図。FIG. 8 is a configuration diagram showing a conventional sealed lightning arrester.

【図9】(a)は避雷器に流れる急峻な放電電流波形を
示すグラフ、(b)は放電電流に対する酸化亜鉛形避雷
器単体の制限電圧波形を示すグラフ、(c)は接地系に
表われる過渡電圧波形を示すグラフ、(d)は制限電圧
と接地系電圧とを合成した電圧波形を示すグラフ。
[Figure 9] (a) is a graph showing the steep discharge current waveform flowing through the arrester, (b) is a graph showing the limiting voltage waveform of a single zinc oxide arrester against discharge current, and (c) is a graph showing the transient that appears in the grounding system. Graph showing a voltage waveform; (d) is a graph showing a voltage waveform obtained by combining the limit voltage and the ground system voltage.

【図10】酸化亜鉛形避雷器のV−I特性を示すグラフ
FIG. 10 is a graph showing the VI characteristics of a zinc oxide type lightning arrester.

【符号の説明】[Explanation of symbols]

11  母線 12  SF6 ガス 13  母線タンク 15  接地メッシュ 16  避雷器タンク 17  避雷器要素 18  避雷器接地線 19  ブッシング 20  保護装置 28  非直線抵抗体 29  コンデンサ 30  保護ギャップ 11 Bus line 12 SF6 gas 13 Busbar tank 15 Ground mesh 16 Lightning arrester tank 17 Lightning arrester element 18 Surge arrester grounding wire 19 Bushing 20 Protective device 28 Nonlinear resistor 29 Capacitor 30 Protection gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  母線を母線タンク内に配置するととも
に、この母線タンクに、避雷器要素を内蔵する避雷器タ
ンクを接続し、かつこの避雷器タンクと避雷器要素の接
地側を絶縁したGIS保護用の密封形避雷器において、
前記避雷器要素の接地側リードと前記いずれかのタンク
との間に、接地系に表われる過渡過電圧の影響を少なく
するための保護装置を設けたことを特徴とする密封形避
雷器。
Claim 1: A sealed type for GIS protection in which the bus bar is placed in a bus tank, a surge arrester tank containing a built-in surge arrester element is connected to the bus tank, and the ground side of the surge arrester tank and the surge arrester element are insulated. In lightning arresters,
A sealed lightning arrester, characterized in that a protection device is provided between the grounding side lead of the lightning arrester element and any of the tanks for reducing the influence of transient overvoltage appearing in the grounding system.
JP3148746A 1991-06-20 1991-06-20 Sealed type lighting arrester Pending JPH04370684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3148746A JPH04370684A (en) 1991-06-20 1991-06-20 Sealed type lighting arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3148746A JPH04370684A (en) 1991-06-20 1991-06-20 Sealed type lighting arrester

Publications (1)

Publication Number Publication Date
JPH04370684A true JPH04370684A (en) 1992-12-24

Family

ID=15459700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3148746A Pending JPH04370684A (en) 1991-06-20 1991-06-20 Sealed type lighting arrester

Country Status (1)

Country Link
JP (1) JPH04370684A (en)

Similar Documents

Publication Publication Date Title
EP1058366B1 (en) Surge suppression network responsive to the rate of change of power disturbances
US20240305067A1 (en) Spark gap assembly for overvoltage protection and surge arrester
RU2096882C1 (en) Power transmission line with pulse lightning arrester
JPH0432114A (en) Lightning arresting insulator device
US4270160A (en) Lightning resistive device in aerial power transmission system
KR100981787B1 (en) One chip surge arrester with selector switch
JPS59220017A (en) Surge absorber for transformer
JPH04370684A (en) Sealed type lighting arrester
EP0004348B1 (en) Lightning arrester device for power transmission line
US4340921A (en) HVDC Power transmission system with metallic return conductor
JPH0630525A (en) Three-phase alternating-current power supply apparatus of electronic apparatus
JPH06283315A (en) Lightning arrestor device
CN213151649U (en) Explosion-proof surge protector lightning protection unit
CN214626357U (en) Self-adaptive neutral point grounding device of 3kV-66kV power distribution system
JPS5843975B2 (en) Hiraikisetsuchihoushiki
SU892572A1 (en) Device for earthing transformer neutral wire
JPH0119561Y2 (en)
JP2509741B2 (en) Lightning arrester device for power lines
JPH01309303A (en) Tank type arrester and gas insulated switchgear utilizing same arrester
JPS62142Y2 (en)
RU2041542C1 (en) Resonance-proof clipper of overvoltage
SU928482A1 (en) Device for overvoltage protection of multiphase networks with insulated neutral wire
RU2009596C1 (en) Device for protection against commutation overvoltages
SU913518A1 (en) High-voltage substation
JP2941974B2 (en) Lightning arrester for two-circuit transmission line