JPS62142Y2 - - Google Patents

Info

Publication number
JPS62142Y2
JPS62142Y2 JP409579U JP409579U JPS62142Y2 JP S62142 Y2 JPS62142 Y2 JP S62142Y2 JP 409579 U JP409579 U JP 409579U JP 409579 U JP409579 U JP 409579U JP S62142 Y2 JPS62142 Y2 JP S62142Y2
Authority
JP
Japan
Prior art keywords
side electrode
voltage
gap device
voltage side
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP409579U
Other languages
Japanese (ja)
Other versions
JPS55104291U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP409579U priority Critical patent/JPS62142Y2/ja
Publication of JPS55104291U publication Critical patent/JPS55104291U/ja
Application granted granted Critical
Publication of JPS62142Y2 publication Critical patent/JPS62142Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 本考案は例えば変電所等の送電線側に使用する
SF6ガスギヤツプ装置に係り、特にケースと接地
する接地側電極の接地端子部を改良したSF6ガス
ギヤツプ装置に関する。
[Detailed explanation of the invention] This invention is used, for example, on the power transmission line side of substations, etc.
The present invention relates to an SF 6 gas gap device, and particularly to an SF 6 gas gap device with an improved grounding terminal portion of a ground side electrode that is grounded to the case.

SF6ガスギヤツプ装置は無保守、無点検および
絶縁特性等の点ですぐれた特長をもつている。こ
のため、近年では空気絶縁開閉所に代つてSF6
ス絶縁開閉所が多く実用化されている。
SF 6 gas gap equipment has excellent features such as no maintenance, no inspection, and excellent insulation properties. For this reason, in recent years, SF 6 gas-insulated switchyards have been increasingly put into practical use in place of air-insulated switchyards.

ところで、従来の気中棒一棒ジヤツプ装置は第
1図に示すv−t特性図から明らかなように開閉
所機器を過電圧から保護できない問題がある。即
ち、第1図において1は気中棒一棒ジヤツプ装置
のv−t特性曲線であり、2はSF6ガスギヤツプ
装置のv−t特性曲線である。この気中棒一棒ギ
ヤツプ装置のv−t特性曲線1では、電圧傾斜が
激しいので時間の遅い領域で開閉所機器を保護し
ようとすれば、時間の早い領域で保護することが
できない。逆に、時間の早い領域で開閉所機器を
保護しようとすれば、時間の遅い領域で気中棒一
棒ギヤツプ装置の放電々圧が低くなりすぎて保護
ギヤツプの役目を果さなくなつてしまう。
However, as is clear from the v-t characteristic diagram shown in FIG. 1, the conventional one-bar jump system has a problem in that it cannot protect switchyard equipment from overvoltage. That is, in FIG. 1, 1 is the v-t characteristic curve of the air rod one-rod jump device, and 2 is the v-t characteristic curve of the SF 6 gas gap device. In the v-t characteristic curve 1 of this aerial rod one-rod gap device, the voltage gradient is severe, so if it is attempted to protect the switchyard equipment in a region where time is slow, it cannot be protected in a region where time is early. Conversely, if you try to protect switchyard equipment in an area where the time is early, the discharge pressure of the air rod one-rod gap device will become too low in the area where the time is slow, and it will no longer fulfill its role as a protective gap. .

そこで、かかる不都合を補う機器として避電器
がある。しかし、この避電器は、過電圧の保護ひ
いては要求性能を満足する点ですぐれているが、
価格的に高くなる欠点がある。従つて、以上の理
由から経済性にすぐれ、かつ平担なv−t特性曲
線2を有するSF6ガスギヤツプ装置の開発が行な
われ実用に供されつつある。
Therefore, there is an earth arrester as a device that compensates for this inconvenience. However, although this earth arrester is superior in terms of overvoltage protection and satisfying the required performance,
The disadvantage is that it is expensive. Therefore, for the above reasons, an SF 6 gas gap device which is highly economical and has a flat v-t characteristic curve 2 has been developed and is being put into practical use.

ところが、SF6ガスギヤツプ装置の開発中に次
の点が明らかにされた、SF6ガスギヤツプ装置の
放電時、そのギヤツプ装置の低圧側電極の接地端
子部が絶縁特性上問題となる点である。これにつ
いて種々研究した結果、SF6ガスギヤツプ装置の
放電時間が極めて短かく、放電時に極めて急峻な
電流が接地端子部に流れるため、極く短い時間で
ある低圧側電極の接地端子部に過電圧の発生する
ことが判明された。
However, during the development of the SF 6 gas gap device, the following point was revealed: When the SF 6 gas gap device discharges, the ground terminal of the low voltage side electrode of the gap device poses a problem in terms of insulation properties. As a result of various studies on this issue, we found that the discharge time of the SF 6 gas gap device is extremely short, and an extremely steep current flows through the ground terminal during discharge. It turned out to be.

次に、以上のようなSF6ガスギヤツプ装置を変
電所に適用した例について第2図ないし第4図を
参照して説明する。先ず、第2図において3は送
電線のサージインピーダンス、4はSF6ガス開閉
所のサージインピーダンスを示し、これらの送電
線およびSF6ガス開閉所間にしや断器5を介挿し
ている。6はSF6ガスギヤツプ装置を示し、これ
は高圧側電極6a、低圧側電極6bおよび低圧側
電極6bの接地端子部6cを備えている。6dは
ギヤツプ装置の金属ケース、7は金属ケース6d
の接地線、8は接地線7のサージインピーダンス
である。9はメツシユワイヤである。
Next, an example in which the SF 6 gas gap device as described above is applied to a substation will be described with reference to FIGS. 2 to 4. First, in FIG. 2, 3 indicates the surge impedance of the power transmission line, and 4 indicates the surge impedance of the SF 6 gas switching station, and a sheath breaker 5 is inserted between these transmission lines and the SF 6 gas switching station. Reference numeral 6 indicates an SF 6 gas gap device, which includes a high voltage side electrode 6a, a low voltage side electrode 6b, and a ground terminal portion 6c of the low voltage side electrode 6b. 6d is the metal case of the gap device, 7 is the metal case 6d
8 is the surge impedance of the ground line 7. 9 is a mesh wire.

而して、第2図のような構成を彩つた場合、送
電線側から雷サージが侵入すると、放電々圧設定
値に応じてSF6ガスギヤツプ装置6は放電を開始
する。この放電前後を電気的に表わすと、第3図
の等価回路に置き換えることができる。今、送電
線のサージインピーダンスZ1の送電線に落雷があ
り、VOなる電圧が侵入して電極6a,6b間の
第4図aのような放電々圧VOGが生じたとする
と、この放電々圧VOGは送電線のサージインピー
ダンスZ1と接地線8のサージインピーダンスZ2
分圧され、低圧側電極の接地端子部6cにZ/Z
OGなる電圧VOEを発生する。この電圧V1Eは接
地点で反射を繰返して第4図bに示すような波形
となる。例えばVOG=2000Kv、Z1=350Ω、Z2
20Ωとすれば、接地端子6cの電圧VIEは108Kv
となる。この電圧VIEは低圧側電極の接地端子部
6cの絶縁にとつて非常に高いものであつて、接
地端子6cの絶縁破壊或いは近接低圧制御ケーブ
ルへの誘導ノイズといつた障害を発生させる。
In the case of a configuration as shown in FIG. 2, when a lightning surge enters from the power transmission line side, the SF 6 gas gap device 6 starts discharging according to the discharge voltage setting value. If the state before and after this discharge is electrically expressed, it can be replaced with the equivalent circuit shown in FIG. Now, suppose that there is a lightning strike on a power transmission line with a surge impedance of Z 1 , and a voltage of V O enters and a discharge voltage V O G as shown in Fig. 4a is generated between electrodes 6a and 6b. The voltage V OG is divided by the surge impedance Z 1 of the power transmission line and the surge impedance Z 2 of the grounding wire 8, and Z 2 /Z 1 + is applied to the ground terminal 6c of the low voltage side electrode.
A voltage V OE of Z 2 V OG is generated. This voltage V 1E is repeatedly reflected at the ground point, resulting in a waveform as shown in FIG. 4b. For example, V OG = 2000Kv, Z 1 = 350Ω, Z 2 =
If it is 20Ω, the voltage V IE of the ground terminal 6c is 108Kv
becomes. This voltage V IE is extremely high for the insulation of the ground terminal portion 6c of the low-voltage side electrode, and may cause problems such as dielectric breakdown of the ground terminal 6c or induced noise to the nearby low-voltage control cable.

これを防ぐ手段として、接地端子部6cと金属
ケース6dとの間にコンデンサを挿入してサージ
電圧VIEを抑制することが考えられるが、コンデ
ンサ容量を小さくするとサージ抑制効果がなく、
反対にコンデンサ容量を大きくすればサージを押
えることができるが、コンデンサを通して流れる
急峻な電流によつて近接低圧制御ケーブルに誘導
導を引き起す不都合がある。
As a means to prevent this, it may be possible to suppress the surge voltage V IE by inserting a capacitor between the ground terminal part 6c and the metal case 6d, but if the capacitor capacity is made small, there will be no surge suppression effect.
On the other hand, if the capacitor capacity is increased, surges can be suppressed, but this has the disadvantage that the steep current flowing through the capacitor causes induction in the nearby low-voltage control cable.

本考案は上記実情にかんがみてなされたもので
あつて、低圧側電極を支持する支持棒を固定支持
する導電体部と金属ケースの蓋体との間の絶縁体
部に同軸状に複数の非直線抵抗体を配置し、放電
時の急峻な電流を前記非直線抵抗体の特性により
金属ケースに流すようにし、これにより低圧側電
極の接地端子部のサージ保護と低圧制御ケーブル
への誘導ノイズの低減化を図るようにするSF6
スギヤツプ装置を提供するものである。
The present invention was developed in view of the above-mentioned circumstances, and includes a plurality of non-contact elements coaxially attached to an insulating part between a conductive part that fixedly supports a support rod that supports a low-voltage side electrode and a lid of a metal case. A linear resistor is arranged to allow the steep current during discharge to flow through the metal case due to the characteristics of the non-linear resistor, thereby protecting the ground terminal of the low voltage side electrode from surges and reducing induced noise to the low voltage control cable. The purpose of the present invention is to provide an SF 6 gas gap device that aims to reduce the amount of gas.

以下、本考案の一実施例について図面を参照し
て説明する。第5図はSF6ガスギヤツプ装置の低
圧側電極部分を示す縦断面図であつて、同図にお
いて11および12は高圧側電極および低圧側電
極を示し、これら両電極11,12でギヤツプ部
を形成している。この両電極11,12はSF6
スを充填してなる筒状の金属ケース13に収納さ
れ、前記低圧側電極12の支棒14は金属ケース
13の端部を閉塞する蓋体15の貫通孔15aを
所定隙間を有して挿通される。16は低圧側電極
12の支持棒14を支持固定し、かつ支持棒14
を通す蓋体貫通孔15aを気密に閉塞する接地端
子部である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 5 is a longitudinal sectional view showing the low voltage side electrode part of the SF 6 gas gap device, in which 11 and 12 indicate the high voltage side electrode and the low voltage side electrode, and these electrodes 11 and 12 form the gap part. are doing. Both electrodes 11 and 12 are housed in a cylindrical metal case 13 filled with SF 6 gas, and the support rod 14 of the low-voltage side electrode 12 is inserted into a through-hole in a lid 15 that closes the end of the metal case 13. 15a with a predetermined gap. 16 supports and fixes the support rod 14 of the low voltage side electrode 12, and the support rod 14
This is a ground terminal portion that airtightly closes the lid through hole 15a through which the wire is passed.

次に、第6図は第5図の接地端子部16を詳細
に示した図である。即ち、この接地端子部16
は、支持棒14を支持固定する導電体部161の
内側に、所望の肉厚を有し同軸状に複数の穴部1
62a,162b…を設けた絶縁体部163を配
置する。従つて、絶縁体部163は蓋体15と導
電体部161とで挾持された状態となる。そし
て、絶縁体部163の穴部162a,162b…
に金属酸化物を主体とした非直線抵抗体164
a,164b…を収納し、これをばね165a,
165b…および166a,166b…により支
持するとともに蓋体15と導電体部161に対し
て電気的に接続している。167,168はSF6
ガスギを密封するためのパツキングである。
Next, FIG. 6 is a diagram showing the ground terminal section 16 of FIG. 5 in detail. That is, this ground terminal portion 16
A plurality of holes 1 having a desired thickness are coaxially formed inside the conductor portion 161 that supports and fixes the support rod 14.
An insulator section 163 provided with 62a, 162b, . . . is arranged. Therefore, the insulator section 163 is held between the lid 15 and the conductor section 161. Holes 162a, 162b of the insulator section 163...
Non-linear resistor 164 mainly made of metal oxide
a, 164b... are stored, and this is used as the spring 165a,
165b... and 166a, 166b... and are electrically connected to the lid body 15 and the conductor portion 161. 167,168 is SF 6
This is a packing used to seal gas pipes.

而して、上記構成のSF6ガスギヤツプ装置は、
第7図のような電気的等価回路で表わすことがで
きる。即ち、第2図の接地線8のサージインピー
ダンスZ2に対し非直線抵抗体164a,164b
…が並列に接続された構成である。なお、この非
直線抵抗体164a,164b…は同時にキヤパ
シタンスをもつている。
Therefore, the SF 6 gas gap device with the above configuration is
It can be represented by an electrical equivalent circuit as shown in FIG. That is, for the surge impedance Z 2 of the grounding wire 8 in FIG.
...is connected in parallel. Note that the nonlinear resistors 164a, 164b, . . . simultaneously have capacitance.

この結果、本考案のSF6ガスギヤツプ装置は従
来のSF6ガスギヤツプ装置と比較し第8図に示す
ような動作上の差異を生ずる。第8図は雷電圧
VoによるSF6ガスギヤツプ装置の放電前後の電圧
を示しているが、従来のように非直線抵抗体16
4a,164b…のない場合、電極11,12間
に表われる放電々圧VOGは同図aの点線のように
減衰し、同様に低圧側電圧VIEの接地端子部16
に同図Bの点線のような電圧が発生する。
As a result, the SF 6 gas gap device of the present invention has operational differences as compared to the conventional SF 6 gas gap device as shown in FIG. Figure 8 shows lightning voltage
This shows the voltage before and after the discharge of the SF 6 gas gap device due to Vo, but the non-linear resistor 16
4a, 164b..., the discharge voltage V OG appearing between the electrodes 11 and 12 attenuates as shown by the dotted line in the figure a, and similarly the low voltage side voltage V IE at the ground terminal 16
A voltage as indicated by the dotted line in Figure B is generated.

これに対し、非直線抵抗体164a,164b
…を設けた場合、電圧VOG,VIEは第8図a,b
の実線のような電圧波形となる。このことは、放
電開始時に放電々流の一部を非直線抵抗体164
a,164b…を用いて流したためであつて、こ
の電流Iは第8図cの実線のような波頭しゆん度
の緩慢な波形となる。接地線8のサージインピー
ダンスZ2にコンデンサのみ並設することが考えら
れるが、この場合は第8図cの点線のような電流
が流れる。
On the other hand, the nonlinear resistors 164a, 164b
..., the voltages V OG and V IE are as shown in Figure 8 a and b.
The voltage waveform will be as shown by the solid line. This means that a part of the discharge current is transferred to the non-linear resistor 164 at the start of discharge.
a, 164b, . . . , and this current I has a waveform with a slow waveform as shown by the solid line in FIG. 8c. It is conceivable to connect only a capacitor to the surge impedance Z2 of the grounding wire 8, but in this case, a current as shown by the dotted line in FIG. 8c flows.

特に、第8図cのように電流波高値が小さくか
つ波頭しゆん度の緩慢な電流波形の得られる理由
は、非直線抵抗体164a,164b…が第9図
のような特性を持つていることをを起因する。つ
まり、非直線抵抗体164a,164b…は、第
9図aのようなV−I曲線の履歴特性が見られ、
従つて同図bのような急峻な電圧の印加に際し、
最初比較的抵抗値が高いために電流が流れず、そ
の後徐々に増加していく。ステツプ電圧を印加し
た場合でもなだらかに増加する電流しか流ない。
In particular, the reason why a current waveform with a small current peak value and a slow wave crest susceptibility is obtained as shown in FIG. Due to that. In other words, the non-linear resistors 164a, 164b... exhibit a history characteristic of the VI curve as shown in FIG. 9a,
Therefore, when applying a steep voltage as shown in figure b,
At first, the resistance is relatively high, so no current flows, and then it gradually increases. Even when a step voltage is applied, only a gradually increasing current flows.

実際に、500Kv級SF6ガスギヤツプ装置につい
て実験を試みたところ、接地端子部16の電圧は
従来のSF6ガスギヤツプ装置の1/15以下であり、
さらに5000PFのココンデンサを付加した時の制
御ケーブルへの誘導電圧と非直線抵抗体164
a,164b…を付加したときの制御ケーブルの
誘導電圧の比は1/100以下であつた。この結果、
接地端子部16の絶縁は10号〜120号程度の構造
的要求性能を満たす絶縁で充分であり、しかも制
御ケーブルの誘導ノイズも全く問題とならなくな
る。また、実験結果から非直線抵抗体は1個では
効果が少なく、複数個の非直線抵抗体164a,
164b…を同軸状に分散した時に格段に効果を
発揮することが判明された。
In fact, when we tested a 500Kv class SF 6 gas gap device, we found that the voltage at the ground terminal 16 was less than 1/15 of that of a conventional SF 6 gas gap device.
Induced voltage to control cable and non-linear resistor 164 when adding 5000PF co-capacitor
The ratio of the induced voltage in the control cable when adding a, 164b, . . . was less than 1/100. As a result,
The insulation of the ground terminal portion 16 is sufficient to meet the structural requirements of No. 10 to No. 120, and the induced noise of the control cable will not be a problem at all. Also, from the experimental results, one non-linear resistor has little effect, and multiple non-linear resistors 164a,
It has been found that when 164b... is dispersed coaxially, it is significantly effective.

以上詳記したように本考案によれば、低圧側電
極の接地端子部を、低圧側電極の支持棒を支持す
る導電体部の内側にv−i曲線の履歴特性を有す
る複数の非直線抵抗体を同軸状に分散配置して金
属ケースの端部を閉塞する蓋体と電気的に接続す
る構成としたので、接地線のサージインピーダン
スに非直線抵抗体が並列に入つた状態となつてギ
ヤツプ放電開始時のサージ電圧がが抑制され接地
端子部の絶縁破壊を回避できる。さらに非直線抵
抗体は放電開始時に比較的高抵抗を示して電流を
阻止し、徐々に電流増加をもたらすので急峻な電
流がケースに流れることがなく、近接する低圧制
御ケーブルへの誘導ノイズも問題にならない程小
さくなり、誘導ノイズの障害を除去できる。
As described in detail above, according to the present invention, the grounding terminal portion of the low voltage side electrode is connected to a plurality of nonlinear resistors having a v-i curve history characteristic inside the conductor portion that supports the support rod of the low voltage side electrode. Since the body is distributed coaxially and electrically connected to the lid body that closes the end of the metal case, a non-linear resistor is connected in parallel to the surge impedance of the grounding wire, resulting in a gap. Surge voltage at the start of discharge is suppressed and dielectric breakdown of the ground terminal can be avoided. Furthermore, the non-linear resistor exhibits a relatively high resistance at the start of discharge, blocking the current and gradually increasing the current, so a steep current does not flow into the case, and induced noise to nearby low-voltage control cables is also a problem. It is so small that it does not become a nuisance, and the interference caused by induced noise can be eliminated.

さらにに、サージ電圧の抑制によつて絶縁の問
題を解決できるばかりでなく、経済的に安価であ
る特徴も維持でき、益々SF6ガスギヤツプ装置の
実用的価値を高めることができる。
Furthermore, by suppressing the surge voltage, not only can the insulation problem be solved, but also the economically inexpensive feature can be maintained, further increasing the practical value of the SF 6 gas gap device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の気中棒ギヤツプ装置およびSF6
ガスギヤツプ装置のv−t特性図、第2図は変電
所の送電線側に適用した従来のSF6ガスギヤツプ
装置の構成図、第3図は従来のSF6ガスギヤツプ
装置の等価回路図、第4図a,bは雷サージの侵
入における発生電圧の波形図、第5図ないし第9
図a,bは本考案に係るSF6ガスギヤツプ装置の
一実施例を説明するためのものであつて、第5図
は低圧側電極部分を示す縦断面図、第6図は低圧
側電極の接地端子部を詳細に示す縦断面図、第7
図はSF6ガスギヤツプ装置の等価回路図、第8図
a〜cは非直線抵抗体の有る場合と無い場合の電
圧、電流の比較波形図、第9図a,bは非直線抵
抗体のi−v特性および電圧に対する電流の変化
状態を示す図である。 3……送電線のサージインピーダンス、8……
接地線のサージインピーダンス、11……高圧側
電極、12……低圧側電極、13……金属ケー
ス、15……金属ケースを構成する蓋体、16…
…接地端子部、161……導電体部、163……
絶縁体部、164a,164b……非直線抵抗
体。
Figure 1 shows the conventional aerial rod gap device and the SF 6
Figure 2 is a configuration diagram of a conventional SF 6 gas gap device applied to the transmission line side of a substation, Figure 3 is an equivalent circuit diagram of a conventional SF 6 gas gap device, and Figure 4 is a v-t characteristic diagram of a gas gap device. a, b are waveform diagrams of the voltage generated during lightning surge invasion, Figures 5 to 9.
Figures a and b are for explaining one embodiment of the SF 6 gas gap device according to the present invention, in which Figure 5 is a longitudinal sectional view showing the low voltage side electrode portion, and Figure 6 is a grounding of the low voltage side electrode. Vertical cross-sectional view showing the terminal part in detail, No. 7
The figure is an equivalent circuit diagram of the SF 6 gas gap device, Figures 8 a to c are comparative waveform diagrams of voltage and current with and without a non-linear resistor, and Figures 9 a and b are i of the non-linear resistor. FIG. 3 is a diagram showing a -v characteristic and a state of change in current with respect to voltage. 3... Surge impedance of power line, 8...
Surge impedance of grounding wire, 11... High voltage side electrode, 12... Low voltage side electrode, 13... Metal case, 15... Lid body constituting the metal case, 16...
...Ground terminal section, 161...Conductor section, 163...
Insulator portion, 164a, 164b...non-linear resistor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高圧線路に接続される高圧側電極と、これと所
定間隙を存して対向配置される低圧側電極とを
SF6、ガスが封入されかつ接地された金属ケース
内に収納してなる過電圧保護用SF6ガスギヤツプ
装置において、前記金属ケースの端部を閉塞する
蓋体の貫通孔に前記低圧側電極を支持する支持棒
が挿通され、この支持棒を支持固定する導電体部
を前記蓋体の貫通孔近くに配置し、前記導電体部
と前記蓋体との間に、前記支持棒に対して複数の
非直線抵抗体を同軸状に収納配置可能な収納部を
有する絶縁体部を気密に設けるとともに、この絶
縁体部の収納部に複数の非直線抵抗体を前記支持
棒に対してそれぞれ同軸状に収納し、かつ前記導
電体部および金属ケースの蓋体との間を電気的に
接続したことを特徴とするSF6ガスギヤツプ装
置。
A high-voltage side electrode connected to a high-voltage line and a low-voltage side electrode placed opposite to this with a predetermined gap.
In an overvoltage protection SF 6 gas gap device which is housed in a metal case filled with gas and grounded, the low voltage side electrode is supported in a through hole in a lid that closes an end of the metal case. A conductor part through which a support rod is inserted and which supports and fixes the support rod is arranged near the through hole of the lid, and a plurality of non-conductors are provided between the conductor part and the lid with respect to the support rod. An insulator part having a storage part capable of coaxially storing and arranging linear resistors is provided in an airtight manner, and a plurality of non-linear resistors are respectively stored coaxially with respect to the support rod in the storage parts of this insulator part. An SF 6 gas gap device characterized in that the conductor portion and the lid of the metal case are electrically connected.
JP409579U 1979-01-17 1979-01-17 Expired JPS62142Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP409579U JPS62142Y2 (en) 1979-01-17 1979-01-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP409579U JPS62142Y2 (en) 1979-01-17 1979-01-17

Publications (2)

Publication Number Publication Date
JPS55104291U JPS55104291U (en) 1980-07-21
JPS62142Y2 true JPS62142Y2 (en) 1987-01-06

Family

ID=28808712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP409579U Expired JPS62142Y2 (en) 1979-01-17 1979-01-17

Country Status (1)

Country Link
JP (1) JPS62142Y2 (en)

Also Published As

Publication number Publication date
JPS55104291U (en) 1980-07-21

Similar Documents

Publication Publication Date Title
US5532897A (en) High-voltage surge eliminator
CN87107192A (en) Lightning protection transmission device
Ishida et al. Development of a 500 kV transmission line arrester and its characteristics
CN110492462A (en) A kind of surge arrester with parallel gaps for the protection of 110kV transformer neutral point
DE2934235C2 (en)
JPS62142Y2 (en)
CA1105550A (en) Protective device
JPH01309303A (en) Tank type arrester and gas insulated switchgear utilizing same arrester
JPS5843975B2 (en) Hiraikisetsuchihoushiki
US4258407A (en) Lightning arrester device for power transmission line
US20090323245A1 (en) Device for Reduction of Voltage Derivative
JPS61190910A (en) Gas insulated transformer
CN220273320U (en) Resistance-capacitance overvoltage protector
JPS6036969Y2 (en) gas insulated electrical equipment
JPH0119561Y2 (en)
KR960005325B1 (en) Wiring method of high voltage apparatus
Gholami et al. Theoretical and analytical investigation of lightning over-voltages and arrester operation
JPH0214291Y2 (en)
CN114336562A (en) Transformer lightning overvoltage protection device
JPH09154231A (en) Power transmission system using gas insulated pipeline
SU383159A1 (en) DEVICE TO REDUCE CURRENT IN DANGEROUS DRAINS
JPH0520969B2 (en)
JPS6115659B2 (en)
Okafor et al. SURGE PROTECTION PRACTICE FOR EQUIPMENT IN SUBSTATIONS.
JP2000021275A (en) Gas insulated appliance