JPH04370671A - Conductor connecting structure - Google Patents

Conductor connecting structure

Info

Publication number
JPH04370671A
JPH04370671A JP3147093A JP14709391A JPH04370671A JP H04370671 A JPH04370671 A JP H04370671A JP 3147093 A JP3147093 A JP 3147093A JP 14709391 A JP14709391 A JP 14709391A JP H04370671 A JPH04370671 A JP H04370671A
Authority
JP
Japan
Prior art keywords
conductor
hollow
welding
notch
hollow conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3147093A
Other languages
Japanese (ja)
Inventor
Kazuo Tominaga
富永 和雄
Tatsuo Yonezawa
米沢 立雄
Hiroyuki Kamiya
宏之 神谷
Takashi Watanabe
隆 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3147093A priority Critical patent/JPH04370671A/en
Publication of JPH04370671A publication Critical patent/JPH04370671A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

PURPOSE:To provide a connecting structure of a hollow conductor, which has a narrow softening range and with which operations are possible even though the operating space is small. CONSTITUTION:A passage for a coolant is formed in a hollow conductor 21, and at its end a notch (processing groove) 26 is provided in such a way as including the passage. After welding of the end part excluding the notch, a connecting piece (blocking piece) 22 is installed so as to cover the notch and is welded to the hollow conductor 21. This lessens the softening range compared with connection by the brazing as conventional, and conductor can be connected easily even where the operation space is restricted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷却媒体を通過させる
ための溝(流路)が形成されている中空導体同志を接続
するのに好適な導体の接続構造に係り、特に核融合装置
用ポロイダルコイルの導体の接続構造に関する。
[Industrial Application Field] The present invention relates to a conductor connection structure suitable for connecting hollow conductors each having a groove (flow path) formed therein for passing a cooling medium, and particularly for use in a nuclear fusion device. This invention relates to a connection structure for conductors of a poloidal coil.

【0002】0002

【従来の技術】従来の導体同志の接続は、特許第544
587号に示される様に、接続部の面積を板厚より大き
くして、ロー付け,溶接等で実施している。
[Prior Art] Conventional connection between conductors is described in Patent No. 544.
As shown in No. 587, the area of the connection part is made larger than the plate thickness, and the connection is performed by brazing, welding, etc.

【0003】0003

【発明が解決しようとする課題】核融合装置の概要を図
4,図5に示す。該図の如く、内部を真空にした真空容
器1内にはプラズマ2が保持されている。前記真空容器
1の外周にはトロイダル磁場コイル3がトーラス周方向
に所定間隔をもって複数個配置されており、プラズマ2
の芯とも言えるトロイダル磁場を発生している。またポ
ロイダル磁場コイル4が前記トロイダル磁場コイル3と
真空容器1との間に、容器1と同心状に配置されており
、プラズマ電流の発生制御等を行っている。5は前記真
空容器1を形成する厚肉部、6は厚肉部5と交互に配置
されるベローズ部、7は変流器、8は真空排気装置、9
はベローズである。
[Problem to be Solved by the Invention] An outline of a nuclear fusion device is shown in FIGS. 4 and 5. As shown in the figure, plasma 2 is held in a vacuum container 1 whose interior is evacuated. A plurality of toroidal magnetic field coils 3 are arranged on the outer periphery of the vacuum vessel 1 at predetermined intervals in the circumferential direction of the torus.
It generates a toroidal magnetic field, which can be said to be the core of. Further, a poloidal magnetic field coil 4 is arranged between the toroidal magnetic field coil 3 and the vacuum vessel 1, concentrically with the vessel 1, and controls the generation of plasma current. Reference numeral 5 denotes a thick wall portion forming the vacuum container 1, 6 a bellows portion arranged alternately with the thick wall portion 5, 7 a current transformer, 8 a vacuum evacuation device, 9
is a bellows.

【0004】上記のようにトロイダル磁場コイル3とポ
ロイダル磁場コイル4とは鎖交しているため、図6に示
すように、通常ポロイダル磁場コイル4に組立分解部1
0を形成し、この組立分解部10からトロイダル磁場コ
イル3を組み込み、その後、組立分解部10を冶金的に
接続し装置全体を組立てる構造となっている。
As mentioned above, since the toroidal magnetic field coil 3 and the poloidal magnetic field coil 4 are interlinked, as shown in FIG.
0, the toroidal magnetic field coil 3 is assembled from this assembly/disassembly section 10, and then the assembly/disassembly section 10 is metallurgically connected to assemble the entire device.

【0005】ところで、ポロイダル磁場コイル4は図6
に示すように、通常、コイル支持体11で上下方向を支
持され、半径方向はコイルの熱膨張を逃すためのスライ
ド構造となっている。またコイル口出部12の両側のコ
イル支持体11とコイル4間には詰物13をし、コイル
4の水平方向の固定点を形成している。
By the way, the poloidal magnetic field coil 4 is shown in FIG.
As shown in FIG. 2, the coil is normally supported in the vertical direction by a coil support 11, and has a sliding structure in the radial direction to release thermal expansion of the coil. Further, a padding 13 is placed between the coil support 11 and the coil 4 on both sides of the coil outlet 12 to form a fixing point of the coil 4 in the horizontal direction.

【0006】このように構成されるポロイダル磁場コイ
ル4において、組立分解部10を冶金的に接続する際に
接続強度が問題になる。ポロイダル磁場コイルは高強度
直接水冷コイルであり、硬銅の中空導体が使用されるが
、通常部の0.2 %耐力は30kg/mm2程度であ
る。通常中空導体接続はロー付けで接続しており、組立
分解部をロー付け方法で接続しようとすると、接続部長
さは300mm程度が必要であり、ロー付け部の接続部
の0.2%耐力も3〜4kg/mm2 程度となり大幅
に低下してしまう。又、広い作業スペースが必要となり
、現地作業が困難になること等の問題があった。
[0006] In the poloidal magnetic field coil 4 constructed as described above, connection strength becomes a problem when metallurgically connecting the assembly and disassembly parts 10. The poloidal magnetic field coil is a high-strength direct water-cooled coil that uses a hollow conductor of hard copper, but the 0.2% yield strength of the normal part is about 30 kg/mm2. Normally, hollow conductor connections are connected by brazing, and if you try to connect assembled and disassembled parts using the brazing method, the length of the connection part needs to be about 300 mm, and the 0.2% proof strength of the connection part of the brazed part It becomes about 3 to 4 kg/mm2, which is a significant decrease. In addition, there was a problem that a large work space was required, making on-site work difficult.

【0007】本発明は、軟化範囲が小さく、作業スペー
スが狭くても作業可能な導体の接続構造を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductor connection structure that has a small softening range and can be operated even in a narrow working space.

【0008】[0008]

【課題を解決するための手段】上記目的は、中空導体同
志の接続を組合わせ溶接で実施することにより達成され
る。
[Means for Solving the Problems] The above object is achieved by connecting hollow conductors to each other by combination welding.

【0009】[0009]

【作用】中空導体同志の接続に溶接法を用いれば、局部
加熱部はロー付け法に比べ小さくてすむので、導体の軟
化範囲が小さくなり、より高強度の接続が得られる。 又、接続作業スペースも溶接作業の方が小さくなるので
、現地作業,機器組立後の修正作業等の限られたスペー
スでの接続作業が容易になる。
[Function] If welding is used to connect hollow conductors, the local heating area can be smaller than in brazing, so the softening range of the conductors is reduced and a connection with higher strength can be obtained. Furthermore, since the space for connection work is smaller in welding work, it becomes easier to perform connection work in limited spaces, such as on-site work or modification work after equipment assembly.

【0010】0010

【実施例】以下本発明の一実施例を図1〜図3にて説明
する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

【0011】ポロイダル磁場コイル導体には、図1に示
すように冷却媒体を通過させるための溝を持つ中空導体
21を使用する。中空導体同志を直接溶接すると、接続
部の溶接溝を閉止させてしまうため、導体端部に加工溝
26を設け、中空導体同志を突き合わせて、加工溝26
以外の接触面に開先27を設けて図3に示す様にTIG
溶接する。この時、接続部周辺の導体を水冷して溶接に
よる軟化範囲をできるだけ小さくおさえる。
As shown in FIG. 1, a hollow conductor 21 having grooves for passing a cooling medium is used as the poloidal magnetic field coil conductor. If the hollow conductors are directly welded together, the welding groove at the connection part will be closed. Therefore, a machined groove 26 is provided at the end of the conductor, and the hollow conductors are butted together to close the weld groove 26.
A groove 27 is provided on the other contact surface and TIG is performed as shown in Fig. 3.
Weld. At this time, the conductor around the connection part is cooled with water to keep the extent of softening caused by welding as small as possible.

【0012】次にこの加工溝26を塞ぐための穴塞ぎピ
ース22を溝に装着して、溝とピースの隙間に沿って、
TIG溶接を施し密封すると図2に示す様な溶接構造が
得られる。
Next, a hole closing piece 22 for closing this processed groove 26 is attached to the groove, and along the gap between the groove and the piece,
When TIG welding is performed and sealed, a welded structure as shown in FIG. 2 is obtained.

【0013】[0013]

【発明の効果】硬銅を溶接接続した場合、溶接部の強度
は8kg/mm2程度であり、ロー付けによる接続部強
度の2倍以上の強度が得られる。又溶接による軟化範囲
も100mm程度であり、ロー付け法に比べると約1/
3となる。
[Effects of the Invention] When hard copper is welded and connected, the strength of the welded part is about 8 kg/mm2, which is more than twice the strength of the joint made by brazing. Also, the softening range due to welding is about 100 mm, which is about 1/1 compared to brazing.
It becomes 3.

【0014】従って、本発明によれば接続部付近の軟化
範囲が小さく、作業スペースの限られた現地作業,装置
組立後の修正作業に適したポロイダル磁場コイルの溶接
作業が可能となる。
Therefore, according to the present invention, the softening range in the vicinity of the connection portion is small, making it possible to weld a poloidal magnetic field coil suitable for on-site work with limited work space and repair work after device assembly.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例による溶接作業前の各部片の
外形図。
FIG. 1 is an external view of each part before welding work according to an embodiment of the present invention.

【図2】本発明の一実施例による溶接作業完了後の外形
図。
FIG. 2 is an external view after completion of welding work according to an embodiment of the present invention.

【図3】本発明の一実施例によるTIG溶接後で、電子
ビーム溶接前の外形図。
FIG. 3 is an outline diagram after TIG welding and before electron beam welding according to an embodiment of the present invention.

【図4】核融合装置の概念図。FIG. 4 is a conceptual diagram of a nuclear fusion device.

【図5】図4のA−A断面図。FIG. 5 is a sectional view taken along line AA in FIG. 4;

【図6】核融合装置のポロイダル磁場コイルの組立前の
平面図。
FIG. 6 is a plan view of the poloidal magnetic field coil of the fusion device before assembly.

【符号の説明】[Explanation of symbols]

21…中空導体、22…穴塞ぎピース、23…溶接部、
26…加工溝、27…開先。
21... Hollow conductor, 22... Hole closing piece, 23... Welding part,
26... Machining groove, 27... Bevel.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷却媒体を通過させるための流路が形成さ
れた中空導体同志の接続構造であって、該中空導体の端
部同志を溶接により接続する構造としたことを特徴とす
る導体の接続構造。
1. A connection structure between hollow conductors each having a flow path formed therein for passing a cooling medium, characterized in that the ends of the hollow conductors are connected by welding. connection structure.
【請求項2】請求項1に記載の導体の接続構造において
、前記中空導体の端部に前記流路を含むように形成され
た切欠き部と、該切欠き部を除いた端部の溶接後に前記
切欠き部を覆うように設けられて前記中空導体に溶接さ
れるとともに前記中空導体と共に流路を形成するように
した接続片を有することを特徴とする導体の接続構造。
2. The conductor connection structure according to claim 1, wherein a notch portion is formed at an end of the hollow conductor to include the flow path, and an end portion other than the notch portion is welded. A conductor connection structure characterized by having a connection piece that is later provided so as to cover the notch, is welded to the hollow conductor, and forms a flow path together with the hollow conductor.
【請求項3】請求項2に記載の導体の接続構造において
、前記切欠き部を除いた中空導体の端部には開先が設け
られていることを特徴とする導体の接続構造。
3. The conductor connection structure according to claim 2, wherein an end portion of the hollow conductor excluding the notch portion is provided with a groove.
JP3147093A 1991-06-19 1991-06-19 Conductor connecting structure Pending JPH04370671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147093A JPH04370671A (en) 1991-06-19 1991-06-19 Conductor connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147093A JPH04370671A (en) 1991-06-19 1991-06-19 Conductor connecting structure

Publications (1)

Publication Number Publication Date
JPH04370671A true JPH04370671A (en) 1992-12-24

Family

ID=15422321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147093A Pending JPH04370671A (en) 1991-06-19 1991-06-19 Conductor connecting structure

Country Status (1)

Country Link
JP (1) JPH04370671A (en)

Similar Documents

Publication Publication Date Title
JP5704735B1 (en) Water-cooled plate cooling unit
JPS5989902A (en) Repair of sleeve type of damaged nuclear power steam generator pipe
GB2130860A (en) Induced current heating probe
JPS6310661B2 (en)
JP3034294B2 (en) Laser welding method and laser welding device
JPH04370671A (en) Conductor connecting structure
CA1091433A (en) Welded heat exchanger and method of making
JP2681589B2 (en) Heat treatment method for welded pipe joints
EP0025988A1 (en) Braze repair method
JP2909434B2 (en) Assembly method of steam turbine rotor
JP3810935B2 (en) Fusion reactor reactor structure
JP2001004767A (en) Fusion reactor blanket structure
JPS5912148Y2 (en) Impeder device for medium frequency induction welding method
JP3808661B2 (en) Fusion reactor vacuum vessel and method of manufacturing the same
JPH0229168B2 (en) DENJIRYURYOKEINOSEIZOHOHO
JP2012038652A (en) Electromagnetic induction heating device
JPH0214861Y2 (en)
JPS6239954B2 (en)
JPH0314019Y2 (en)
JPS6119908B2 (en)
JPH0319516B2 (en)
JPH0648644B2 (en) Superconducting device
Huguet Design, manufacture and assembly of the JET machine
JPH06249980A (en) Vacuum vessel for fusion reactor
JPH0154675B2 (en)