JPH04370521A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH04370521A
JPH04370521A JP17337891A JP17337891A JPH04370521A JP H04370521 A JPH04370521 A JP H04370521A JP 17337891 A JP17337891 A JP 17337891A JP 17337891 A JP17337891 A JP 17337891A JP H04370521 A JPH04370521 A JP H04370521A
Authority
JP
Japan
Prior art keywords
magnetic layer
ferromagnetic powder
layer
magnetic
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17337891A
Other languages
Japanese (ja)
Inventor
Naoto Murao
村尾 直人
Shinji Saito
真二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP17337891A priority Critical patent/JPH04370521A/en
Publication of JPH04370521A publication Critical patent/JPH04370521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To intensify mechanical strength by regulating the sizes of the respective Co-contg. iron oxides of upper and lower layers and regulating SQ1, the Young's modulus of the lower layer and SQ2. CONSTITUTION:The upper magnetic layer contains the Co-contg. iron oxide having >=60m<2>/g BET specific surface area as ferromagnetic powder and is formed to have >=0.4 squareness ratio (SQ1) in the direction vertical to the plane of a nonmagnetic base and >=200kg/mm<2> Young's modulus. The lower magnetic layer contains the Co-contg. iron oxide having BET specific surface area ranging from 20 to 50m<2>/g as the ferromagnetic powder and is formed to have >=0.7 squareness ratio (SQL2) in the horizontal direction and >=300kg/mm<2> Young's modulus in the horizontal direction. The mechanical strength of the recording medium is then intensified and the traveling durability is improved. Powder dislodging, etc., are suppressed and the surface characteristic of the upper layer are improved, by which the output in a high-frequency region and S/N are improved and the electromagnetic conversion characteristics in the low-frequency region to be contributed by the lower layer are well assured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【発明の利用分野】本発明は重層構成で電磁変換特性と
走行耐久性に優れた特性を有する磁気記録媒体に関する
ものである。
FIELD OF THE INVENTION The present invention relates to a magnetic recording medium having a multilayer structure and having excellent electromagnetic conversion characteristics and running durability.

【0002】0002

【従来の技術】磁気記録媒体の電磁変換特性および走行
耐久性を向上させるために重層構成にすることはよく知
られた技術である。重層構成にすることにより磁性層の
抗磁力や残留磁束密度、あるいは強磁性粉末の粒子サイ
ズ(結晶子サイズ、比表面積で表される)を上下層で変
えることが可能となり、広い周波数帯域での出力向上に
よる電磁変換特性の向上と走行耐久性(エッジ折れ、粉
落ちで表わされる)両立ができる。
2. Description of the Related Art It is a well-known technique to form a multilayer structure in order to improve the electromagnetic conversion characteristics and running durability of a magnetic recording medium. By having a multilayer structure, it is possible to change the coercive force and residual magnetic flux density of the magnetic layer, or the particle size of the ferromagnetic powder (represented by crystallite size and specific surface area) between the upper and lower layers, making it possible to It is possible to achieve both improved electromagnetic conversion characteristics by increasing output and running durability (expressed by broken edges and powder falling).

【0003】このような例は特開昭52−51908号
公報、同54−21304号公報、同54−48504
号公報、同58−56228号公報、同58−5622
9号公報、同53−54002号公報、特開平2−10
8232号公報、特開平2−260123号公報に示さ
れている。
[0003] Examples of this type are disclosed in Japanese Unexamined Patent Publication Nos. 52-51908, 54-21304, and 54-48504.
No. 58-56228, No. 58-5622
Publication No. 9, Publication No. 53-54002, JP-A-2-10
This method is disclosed in Japanese Patent Publication No. 8232 and Japanese Patent Application Laid-Open No. 2-260123.

【0004】短波長における高出力化のために上層にバ
リウムフェライト等の板状強磁性粉末の使用もしくは短
針状強磁性粉末又はCoを固溶させた三軸異方性の強磁
性粉末を垂直配向することで従来の重層構成での電磁変
換特性を劣化させることなく短波長における高出力化が
できる。
In order to achieve high output at short wavelengths, plate-shaped ferromagnetic powder such as barium ferrite is used in the upper layer, or short needle-shaped ferromagnetic powder or triaxially anisotropic ferromagnetic powder containing Co as a solid solution is vertically oriented. By doing so, high output at short wavelengths can be achieved without deteriorating the electromagnetic conversion characteristics of the conventional multilayer structure.

【0005】このような例は特開昭57−195329
号、特開昭57−200936号、特開昭58−139
336号に示されている。しかしながら、上層の垂直配
向成分を向上させるためにバリウムフェライトを使用し
た場合、分散性が酸化鉄強磁性粉末に較べ著しく劣るた
め垂直配向成分増加による短波長側の出力向上は可能な
ものの表面性が劣りS/Nが劣化してしまう。更にバイ
ンダーとの親和性が著しく劣るため耐久性の劣化も免れ
ない。また短針状強磁性粉末は形状異方性が小さいため
Coの被着が困難で高い抗磁力を得られない。またCo
を固溶させた強磁性粉末は容易に高い抗磁力が得られる
が、Coを固溶させた強磁性粉末は、温度により強磁性
粉末内のCoの位置が変化するため温度変化とともに抗
磁力が変化し安定した電磁変換特性が得られない。また
上層に針状強磁性粉末を使用して垂直配向した磁気記録
媒体は水平配向したそれより水平方向のヤング率が低下
し粉落ち等の実害が生じ易く走行耐久性が劣ることがわ
かった。
[0005] Such an example is disclosed in Japanese Patent Application Laid-Open No. 57-195329.
No., JP-A-57-200936, JP-A-58-139
No. 336. However, when barium ferrite is used to improve the vertical alignment component of the upper layer, its dispersibility is significantly inferior to that of iron oxide ferromagnetic powder, so although it is possible to improve the output on the short wavelength side by increasing the vertical alignment component, the surface properties deteriorate. Inferior S/N deteriorates. Furthermore, since the affinity with the binder is significantly poor, durability is inevitably deteriorated. Further, since the short needle-shaped ferromagnetic powder has small shape anisotropy, it is difficult to deposit Co on it, and high coercive force cannot be obtained. Also Co
Ferromagnetic powder with solid solution of Co can easily obtain high coercive force, but ferromagnetic powder with Co in solid solution changes the position of Co in the ferromagnetic powder depending on the temperature, so the coercive force decreases with temperature change. It changes and stable electromagnetic conversion characteristics cannot be obtained. It has also been found that a vertically oriented magnetic recording medium using acicular ferromagnetic powder in the upper layer has a lower Young's modulus in the horizontal direction than a horizontally oriented magnetic recording medium, is more likely to cause actual damage such as powder falling, and is inferior in running durability.

【0006】具体的には、特開昭58−139335号
公報には、非磁性支持体上に酸化鉄系強磁性粉末を磁性
層の水平方向に角型で0.7以上となるように配向させ
た第1の磁性層を形成し、さらにその上に酸化鉄強磁性
粉末の粒子内部にコバルトを固溶させた三軸異方性の強
磁性粉末を磁性層の垂直方向に角型で0.4以上とした
第2の磁性層を重層形成したことを特徴とする磁気記録
媒体が開示されている。しかしながら三軸異方性のコバ
ルトの固溶タイプの強磁性粉末は垂直方向への配向はし
やすいが、抗磁力(Hc)が劣化しやすく、良好な結果
は得られなかった。三軸異方性とはサイコロのような形
状をしたもののことである。
Specifically, JP-A No. 58-139335 discloses that iron oxide-based ferromagnetic powder is oriented on a non-magnetic support so that it has a rectangular shape of 0.7 or more in the horizontal direction of the magnetic layer. A first magnetic layer is formed on the first magnetic layer, and triaxially anisotropic ferromagnetic powder in which cobalt is dissolved inside the particles of iron oxide ferromagnetic powder is formed in a rectangular shape in the perpendicular direction of the magnetic layer. A magnetic recording medium is disclosed in which a second magnetic layer having a magnetic flux of .4 or higher is formed in a multilayered manner. However, although triaxially anisotropic cobalt solid solution type ferromagnetic powder can be easily oriented in the vertical direction, the coercive force (Hc) tends to deteriorate, and good results have not been obtained. Triaxial anisotropy is something that has a dice-like shape.

【0007】そこで本発明者らは、通常のCo含有酸化
鉄粉末を用いて非磁性支持体面に垂直方向に配向させる
ことにより、Hc劣化がなく、強度的にも優れ、かつ垂
直記録のできる磁気記録媒体が得られることを見出した
本発明に至った。
Therefore, the present inventors have developed a magnetic material that does not suffer from Hc deterioration, has excellent strength, and is capable of perpendicular recording by using ordinary Co-containing iron oxide powder and orienting it perpendicularly to the surface of a non-magnetic support. The present invention has been achieved by discovering that a recording medium can be obtained.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の目的
は、短波長における高出力化と走行耐久性に優れた磁気
記録媒体を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a magnetic recording medium that has high output at short wavelengths and excellent running durability.

【0009】[0009]

【課題を解決するための手段】本発明者等は、重層構成
磁気記録媒体の電磁変換特性と走行耐久性の両立につい
て鋭意研究した結果、従来の技術では得られない優れた
電磁変換特性と走行耐久性を有する磁気記録媒体を見い
だし本発明にいたったものである。即ち本発明は、非磁
性支持体の表面に強磁性粉末と結合剤を含む下層磁性層
とその上に設けた上層磁性層よりなる複数の磁性層を有
する磁気記録媒体において、上層磁性層は前記強磁性粉
末としてBET比表面積が60m2 /g以上のCo含
有酸化鉄を含有し、非磁性支持体面に垂直方向の角型比
が0.4以上であり、ヤング率は200kg/mm2 
以上であり、下層磁性層は前記強磁性粉末としてBET
比表面積が20〜50m2 /gの範囲のCo含有酸化
鉄を含有し、水平方向の角型比が0.7以上、水平方向
のヤング率が300kg/mm2 以上であることを特
徴とする磁気記録媒体である。
[Means for Solving the Problems] As a result of intensive research into the coexistence of electromagnetic conversion characteristics and running durability of a multilayered magnetic recording medium, the present inventors have found that the present inventors have achieved excellent electromagnetic conversion characteristics and running durability that cannot be obtained with conventional techniques. The present invention was achieved by discovering a durable magnetic recording medium. That is, the present invention provides a magnetic recording medium having a plurality of magnetic layers including a lower magnetic layer containing ferromagnetic powder and a binder on the surface of a non-magnetic support and an upper magnetic layer provided thereon. Contains Co-containing iron oxide with a BET specific surface area of 60 m2/g or more as a ferromagnetic powder, has a squareness ratio perpendicular to the non-magnetic support surface of 0.4 or more, and has a Young's modulus of 200 kg/mm2.
The above is described above, and the lower magnetic layer is made of BET as the ferromagnetic powder.
A magnetic recording comprising Co-containing iron oxide having a specific surface area of 20 to 50 m2/g, a horizontal squareness ratio of 0.7 or more, and a horizontal Young's modulus of 300 kg/mm2 or more. It is a medium.

【0010】本発明は、重層構成の磁気記録媒体におい
て、上層磁性層(以下、単に上層とも記す)と下層磁性
層(以下、単に下層とも記す)の強磁性粉末の種類とB
ET比表面積、即ち、サイズを規定すると共に下層磁性
層の水平方向の角型比(以下、SQ1と記す)と水平方
向のヤング率を所定の値以上に制御し、かつ上層磁性層
の垂直方向の角型比(以下、SQ2と記す)を所定の値
に規定して、水平方向のヤング率を確保することにより
、磁気記録媒体の機械的強度を強化して走行耐久性を改
善して粉落ち等を抑制し、かつ上層の表面性を向上して
高周波数領域における出力とS/Nを改善すると共に下
層が担う低周波数領域における電磁変換特性を良好に確
保することができる。
[0010] The present invention provides a magnetic recording medium with a multilayer structure, in which the type of ferromagnetic powder in the upper magnetic layer (hereinafter also simply referred to as upper layer) and the lower layer magnetic layer (hereinafter simply referred to as lower layer) and B
The ET specific surface area, that is, the size, is defined, and the horizontal squareness ratio (hereinafter referred to as SQ1) and horizontal Young's modulus of the lower magnetic layer are controlled to a predetermined value or more, and the vertical direction of the upper magnetic layer is controlled. By setting the squareness ratio (hereinafter referred to as SQ2) to a predetermined value and ensuring the Young's modulus in the horizontal direction, the mechanical strength of the magnetic recording medium is strengthened and running durability is improved. It is possible to suppress drop-off and the like, improve the surface properties of the upper layer, improve the output and S/N in the high frequency region, and ensure good electromagnetic conversion characteristics in the low frequency region, which is the responsibility of the lower layer.

【0011】本発明において角型比は、残留磁束密度(
Br)/最大磁束密度(Bm)の比であり、VSM測定
機の外部磁場に対してサンプルを水平にセットした場合
の角型比を水平方向の角型比とし、垂直方向にサンプル
をセットした場合の角型比を垂直方向の角型比とする。 又、このようにサンプルをセットして、それぞれの角型
比を測定する。
In the present invention, the squareness ratio is defined as the residual magnetic flux density (
Br)/maximum magnetic flux density (Bm), and the squareness ratio when the sample is set horizontally against the external magnetic field of the VSM measuring machine is taken as the horizontal squareness ratio, and the sample is set vertically. Let the squareness ratio in the vertical direction be the squareness ratio in the vertical direction. Also, the samples are set in this way and the squareness ratio of each is measured.

【0012】又、本発明において、水平方向のヤング率
は、テープを長手方向に引っ張って強度測定を行い、0
.5%伸びた時の強度である。本発明において、上層磁
性層の強磁性粉末は、Co含有酸化鉄であって、BET
比表面積が60m2 /g以上、好ましくは60〜10
0m2 /gの範囲である。強磁性粉末の形状は、針状
が好ましく、結晶子サイズは、25nm以下、好ましく
は、25〜18nm、長軸長は、140nm以下、好ま
しくは140〜100nmであり、針状比は、3以上、
好ましくは5〜10である。SQ2は0.4以上、好ま
しくは0.4〜0.65の範囲である。
In addition, in the present invention, Young's modulus in the horizontal direction is determined by measuring the strength of the tape by pulling it in the longitudinal direction.
.. This is the strength when elongated by 5%. In the present invention, the ferromagnetic powder of the upper magnetic layer is Co-containing iron oxide, and BET
Specific surface area is 60 m2 /g or more, preferably 60 to 10
It is in the range of 0m2/g. The shape of the ferromagnetic powder is preferably acicular, the crystallite size is 25 nm or less, preferably 25 to 18 nm, the major axis length is 140 nm or less, preferably 140 to 100 nm, and the acicular ratio is 3 or more. ,
Preferably it is 5-10. SQ2 is 0.4 or more, preferably in the range of 0.4 to 0.65.

【0013】上層磁性層の強磁性粉末は、Co含有酸化
鉄であって、BET比表面積が60m2 /gより小さ
いと短波長におけるノイズレベルが高い。またBET比
表面積が100m2 /gより大きいと分散性が低下し
表面性劣化によるS/Nが低下する。さらにSQ2が0
.4より小さいと短波長での出力が充分得られず、0.
65より大きいと水平方向のヤング率が著しく低下し粉
落ちによるドロップアウトが増加する。
The ferromagnetic powder of the upper magnetic layer is Co-containing iron oxide, and if the BET specific surface area is less than 60 m 2 /g, the noise level at short wavelengths is high. Further, if the BET specific surface area is larger than 100 m2/g, the dispersibility decreases and the S/N decreases due to surface property deterioration. Furthermore, SQ2 is 0
.. If it is smaller than 4, sufficient output at short wavelengths cannot be obtained, and if it is smaller than 0.
When it is larger than 65, Young's modulus in the horizontal direction decreases significantly and dropouts due to falling powder increase.

【0014】下層磁性層の強磁性粉末は、Co含有酸化
鉄であって、BET比表面積が20〜50m2 /gで
ある。強磁性粉末の形状は、針状が好ましく、結晶子サ
イズは、40nm以下、好ましくは、25〜40nm、
長軸長は、250nm以下、好ましくは150〜250
nmであり、針状比は、3以上、好ましくは5〜10で
ある。水平方向の角型比、即ちSQ1で0.7以上、水
平方向のヤング率300kg/mm2 以上である。
The ferromagnetic powder of the lower magnetic layer is Co-containing iron oxide and has a BET specific surface area of 20 to 50 m2/g. The shape of the ferromagnetic powder is preferably acicular, and the crystallite size is 40 nm or less, preferably 25 to 40 nm,
The long axis length is 250 nm or less, preferably 150 to 250 nm.
nm, and the acicular ratio is 3 or more, preferably 5 to 10. The squareness ratio in the horizontal direction, that is, SQ1, is 0.7 or more, and the Young's modulus in the horizontal direction is 300 kg/mm2 or more.

【0015】下層に含有される磁性粉のBET比表面積
が20m2 /gより小さいと長波長におけるノイズレ
ベルが高く、50m2 /gより大きいと充分な分散度
が得られず目的に充分なSQ1が得られず、低域出力が
充分得られない。また比表面積が20〜50m2 /g
の範囲でもSQ1が0.7より小さいと長波長における
残留磁束密度が低下し低域の出力が得られない。また、
水平方向のヤング率が300kg/mm2 より小さい
と上層の垂直配向によるヤング率低下に伴う全層のヤン
グ率の低下を下層のヤング率で補正出来なくなりその結
果、粉落ち等のドロップアウトが増加し耐久性が劣化す
る。
[0015] If the BET specific surface area of the magnetic powder contained in the lower layer is smaller than 20 m2/g, the noise level at long wavelengths will be high, and if it is larger than 50 m2/g, sufficient dispersion cannot be obtained and SQ1 sufficient for the purpose cannot be obtained. The low frequency output cannot be obtained sufficiently. Also, the specific surface area is 20~50m2/g
Even within this range, if SQ1 is smaller than 0.7, the residual magnetic flux density at long wavelengths decreases, making it impossible to obtain low-frequency output. Also,
If the Young's modulus in the horizontal direction is less than 300 kg/mm2, the lower Young's modulus cannot compensate for the lower Young's modulus of the entire layer due to the lower Young's modulus due to the vertical orientation of the upper layer, and as a result, dropouts such as powder dropout increase. Durability deteriorates.

【0016】本発明において、上記SQ1及びSQ2を
調整する手段は特に制限されないが、通常、上層磁性層
および下層磁性層の各塗布液の粘度等のレオロジー特性
および各磁性層への磁場配向時の磁場の向き、塗布後の
各磁性層の乾燥と磁場配向のタイミング(例えば、配向
前に予め適度の乾燥工程を設けること等)により調整さ
れる。例えば、本発明の磁気記録媒体は下層を塗布、水
平配向、乾燥したのち上層をその上に設け垂直配向した
のち乾燥する逐次重層方式で製造する方法、下層の流動
性を上層のそれより悪くし同時重層塗布後、水平配向し
、さらに垂直配向を施して上層のみ垂直配向する方法等
が例示される。
In the present invention, the means for adjusting SQ1 and SQ2 is not particularly limited, but it usually depends on the rheological properties such as the viscosity of each coating liquid of the upper magnetic layer and the lower magnetic layer and the time of magnetic field orientation to each magnetic layer. It is adjusted by the direction of the magnetic field, the timing of drying each magnetic layer after coating, and the magnetic field orientation (for example, by providing an appropriate drying step in advance before orientation). For example, the magnetic recording medium of the present invention can be manufactured using a sequential multilayer method in which a lower layer is coated, horizontally aligned, dried, an upper layer is placed thereon, vertically aligned, and then dried; Examples include a method in which after simultaneous multilayer coating, horizontal alignment is performed, and further vertical alignment is applied, so that only the upper layer is vertically aligned.

【0017】該配向には、1000G(ガウス)以上の
ソレノイドと2000G以上のコバルト磁石を併用する
ことが好ましい。また、乾燥後、表面平滑化加工を施し
、所望の形状に裁断して、磁気記録媒体を製造する。 この表面平滑化加工は、カレンダリング処理によって行
われる。
For this orientation, it is preferable to use a solenoid of 1000 G (Gauss) or more and a cobalt magnet of 2000 G or more in combination. After drying, the surface is smoothed and cut into a desired shape to produce a magnetic recording medium. This surface smoothing process is performed by calendering process.

【0018】カレンダ処理ロールとしてエポキシ、ポリ
イミド、ポリアミド、ポリイミドアミド等の耐熱性のあ
るプラスチックロールを使用する。また、金属ロール同
志で処理することもできる。処理温度は、好ましくは7
0℃以上、さらに好ましくは80℃以上である。線圧力
は好ましくは200kg/cm、さらに好ましくは30
0kg/cm以上である。
As the calendering roll, a heat-resistant plastic roll made of epoxy, polyimide, polyamide, polyimide amide, etc. is used. Further, the treatment can also be carried out using metal rolls. The treatment temperature is preferably 7
The temperature is 0°C or higher, more preferably 80°C or higher. The linear pressure is preferably 200 kg/cm, more preferably 30 kg/cm.
It is 0 kg/cm or more.

【0019】本発明において、SQ1またはSQ2を測
定する方法は、振動試料型磁束計(東英工業製)が使用
できる。該上層用および下層用磁性塗料を製造する工程
は、少なくとも混練工程、分散工程、およびこれらの工
程の前後に必要に応じて設けた混合工程からなる。個々
の工程はそれぞれ2段階以上にわかれていてもかまわな
い。
In the present invention, a vibrating sample magnetometer (manufactured by Toei Kogyo) can be used to measure SQ1 or SQ2. The process of producing the magnetic paint for the upper layer and the lower layer consists of at least a kneading process, a dispersion process, and a mixing process provided before and after these processes as necessary. Each individual process may be divided into two or more stages.

【0020】本発明に使用する強磁性粉末、結合剤、カ
ーボンブラック、研磨剤、帯電防止剤、潤滑剤、溶剤な
どすべての原料はどの工程の最初または途中で添加して
もかまわない。また、個々の原料を2つ以上の工程で分
割して添加してもかまわない。例えば、ポリウレタンを
混練工程、分散工程、分散後の粘度調整のための混合工
程で分割して投入してもよい。
All raw materials used in the present invention, such as ferromagnetic powder, binder, carbon black, abrasive, antistatic agent, lubricant, and solvent, may be added at the beginning or during any step. In addition, individual raw materials may be added in portions in two or more steps. For example, polyurethane may be added in portions during a kneading process, a dispersion process, and a mixing process for adjusting the viscosity after dispersion.

【0021】本発明は、従来の公知の製造技術を一部の
工程として用いることができることはもちろんであるが
、混練工程では連続ニーダや加圧ニーダなど強い混練力
をもつものを使用することにより磁気記録媒体の高いB
rを得ることができる。
[0021] In the present invention, it is possible to use conventional known manufacturing techniques for some of the processes, but in the kneading process, by using a device with a strong kneading force such as a continuous kneader or a pressure kneader, High B of magnetic recording media
We can obtain r.

【0022】連続ニーダまたは加圧ニーダを用いる場合
は強磁性粉末と結合剤のすべてまたはその一部(ただし
全結合剤の30%以上が好ましい)および強磁性粉末1
00部に対し15〜500部の範囲で混練処理される。 これらの混練処理の詳細については特開平1−1063
38号、特開平1−79274号に記載されている。
When using a continuous kneader or a pressure kneader, all or a part of the ferromagnetic powder and the binder (however, 30% or more of the total binder is preferable) and the ferromagnetic powder 1
The kneading treatment is carried out in a range of 15 to 500 parts per 00 parts. For details of these kneading processes, see Japanese Patent Application Laid-Open No. 1-1063.
No. 38 and JP-A-1-79274.

【0023】本発明の磁気記録媒体の磁性層面およびそ
の反対面のSUS420Jに対する摩擦係数は好ましく
は0.5以下、さらに0.3以下、表面固有抵抗は好ま
しくは10−5〜10−12 オーム/sq、破断強度
は好ましくは1〜30kg/cm2 、残留のびは好ま
しくは0.5%以下、100℃以下のあらゆる温度での
熱収縮率は好ましくは1%以下、さらに好ましくは0.
5%以下、もっとも好ましくは0.1%以下である。
The coefficient of friction of the magnetic layer surface and the opposite surface of the magnetic recording medium of the present invention against SUS420J is preferably 0.5 or less, more preferably 0.3 or less, and the surface resistivity is preferably 10-5 to 10-12 ohms/ sq, the breaking strength is preferably 1 to 30 kg/cm2, the residual elongation is preferably 0.5% or less, and the heat shrinkage rate at any temperature below 100°C is preferably 1% or less, more preferably 0.
It is 5% or less, most preferably 0.1% or less.

【0024】磁性層中に含まれる残留溶媒は好ましくは
100mg/m2以下、さらに好ましくは10mg/m
2 以下であり、上層に含まれる残留溶媒が下層に含ま
れる残留溶媒より少ないほうが好ましい。
The residual solvent contained in the magnetic layer is preferably 100 mg/m2 or less, more preferably 10 mg/m2.
2 or less, and it is preferable that the residual solvent contained in the upper layer is smaller than the residual solvent contained in the lower layer.

【0025】磁性層が有する空隙率は下層、上層とも好
ましくは30容量%以下、さらに好ましくは10容量%
以下である。下層の空隙率が上層の空隙率より大きいほ
うが好ましいが、下層の空隙率が5%以上であれば小さ
くてもかまわない。磁性層のSFDは0.6以下である
ことが好ましい。
The porosity of the magnetic layer is preferably 30% by volume or less, more preferably 10% by volume in both the lower layer and the upper layer.
It is as follows. It is preferable that the porosity of the lower layer is larger than that of the upper layer, but it may be smaller as long as the porosity of the lower layer is 5% or more. The SFD of the magnetic layer is preferably 0.6 or less.

【0026】本発明において上層磁性層および下層磁性
層は通常各々単層で構成されるが、各々単層構成でも複
層構成でも上記組成、規定条件を満足すればかまわない
。上層の強磁性粉末含有率は70%以上が好ましい。 強磁性粉末含有率が70%未満では、充填度が低下して
電磁変換特性が劣化する。ここでいう強磁性粉末含有率
とは(強磁性粉末)/(強磁性粉末+結合剤+添加剤等
の磁性層に含有されるもの)の重量%を表している。
In the present invention, each of the upper magnetic layer and the lower magnetic layer is usually composed of a single layer, but each may have a single layer structure or a multilayer structure as long as they satisfy the above composition and specified conditions. The content of ferromagnetic powder in the upper layer is preferably 70% or more. When the ferromagnetic powder content is less than 70%, the degree of filling decreases and the electromagnetic conversion characteristics deteriorate. The ferromagnetic powder content here refers to the weight percent of (ferromagnetic powder)/(ferromagnetic powder + binder + additives, etc. contained in the magnetic layer).

【0027】本発明に使用される強磁性粉末のσS は
50emu/g以上、好ましくは70emu/g以上で
ある。また、含水率は0.01〜2%とするのが好まし
い。結合剤の種類によって強磁性粉末の含水率は最適化
するのが好ましい。
The ferromagnetic powder used in the present invention has a σS of 50 emu/g or more, preferably 70 emu/g or more. Moreover, it is preferable that the water content is 0.01 to 2%. It is preferable to optimize the moisture content of the ferromagnetic powder depending on the type of binder.

【0028】本発明の強磁性粉末としてコバルト変成酸
化鉄を用いる場合は、2価の鉄の3価の鉄に対する比は
好ましくは0〜33.3%であり、さらに好ましくは5
〜10%である。また鉄原子に対するコバルト原子の量
は0〜15%、好ましくは3〜8%である。
When cobalt-modified iron oxide is used as the ferromagnetic powder of the present invention, the ratio of divalent iron to trivalent iron is preferably 0 to 33.3%, more preferably 5%.
~10%. The amount of cobalt atoms relative to iron atoms is 0 to 15%, preferably 3 to 8%.

【0029】強磁性粉末のpHは用いる結合剤との組合
せにより最適化することが好ましい。その範囲は4〜1
2である。強磁性粉末はAl、Si、Pまたはこれらの
酸化物などで表面処理を施してもかまわない。その量は
強磁性粉末に対し0.1〜10%である。
The pH of the ferromagnetic powder is preferably optimized depending on the combination with the binder used. The range is 4 to 1
It is 2. The ferromagnetic powder may be surface-treated with Al, Si, P, or oxides thereof. Its amount is 0.1-10% based on the ferromagnetic powder.

【0030】下層、上層の強磁性粉末とも可溶性のNa
、Ca、Fe、Ni、Sr等の無機イオンを含む場合が
あるが500ppm以下であれば特に影響を与えない。 本発明に使用するCo含有酸化鉄としてはCo変性γ−
FeOx(x=1.33〜1.5)など公知の強磁性粉
末が使用できる。これらの強磁性粉末には所定の原子以
外にAl、Si、S、Sc、Ti、V、Cr、Cu、Y
、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、
Ta、W、Re、Au、Hg、Pb、Bi、La、Ce
、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B
などの原子を含んでもかまわない。これらの強磁性粉末
にはあとで述べる分散剤、潤滑剤、界面活性剤、帯電防
止剤などで分散前にあらかじめ処理を行ってもかまわな
い。また、本発明に用いられる強磁性粉末は空孔が少な
いほうが好ましくその値は20容量%以下、さらに好ま
しくは5容量%以下である。本発明に用いられる強磁性
粉末は公知の方法に従って製造することができる。
Both the lower and upper ferromagnetic powders contain soluble Na.
Although it may contain inorganic ions such as , Ca, Fe, Ni, and Sr, it has no particular effect if the amount is 500 ppm or less. The Co-containing iron oxide used in the present invention is Co-modified γ-
Known ferromagnetic powders such as FeOx (x=1.33 to 1.5) can be used. In addition to the specified atoms, these ferromagnetic powders contain Al, Si, S, Sc, Ti, V, Cr, Cu, and Y.
, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ba,
Ta, W, Re, Au, Hg, Pb, Bi, La, Ce
, Pr, Nd, P, Co, Mn, Zn, Ni, Sr, B
It does not matter if it contains atoms such as. These ferromagnetic powders may be treated with a dispersant, lubricant, surfactant, antistatic agent, etc., which will be described later, before being dispersed. Further, it is preferable that the ferromagnetic powder used in the present invention has fewer pores, and the value thereof is preferably 20% by volume or less, and more preferably 5% by volume or less. The ferromagnetic powder used in the present invention can be manufactured according to a known method.

【0031】本発明に使用される結合剤としては従来公
知の熱可塑系樹脂、熱硬化系樹脂、反応型樹脂やこれら
の混合物が使用される。熱可塑系樹脂としては、ガラス
転移温度が−100〜150℃、数平均分子量が100
0〜200000、好ましくは10000〜10000
0、重合度が約50〜1000程度のものである。この
ような例としては、塩化ビニル、酢酸ビニル、ビニルア
ルコール、マレイン酸、アクリル酸、アクリル酸エステ
ル、塩化ビニリデン、アクリロニトリル、メタクリル酸
、メタクリル酸エステル、スチレン、ブタジエン、エチ
レン、ビニルブチラール、ビニルアセタール、ビニルエ
ーテル、等を構成単位として含む重合体または共重合体
、ポリウレタン樹脂、各種ゴム系樹脂がある。また、熱
硬化性樹脂または反応型樹脂としてはフエノール樹脂、
エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メ
ラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホル
ムアルデヒド樹脂、シリコーン樹脂、エポキシ−ポリア
ミド樹脂、ポリエステル樹脂とイソシアネートプレポリ
マーの混合物、ポリエステルポリオールとポリイソシア
ネートの混合物、ポリウレタンとポリイソシアネートの
混合物等があげられる。これらの樹脂については朝倉書
店発行の「プラスチックハンドブック」に詳細に記載さ
れている。また、公知の電子線硬化型樹脂を使用するこ
とも可能である。これらの例とその製造方法については
特開昭62−256219号に詳細に記載されている。 以上の樹脂は単独または組合せて使用できるが、好まし
いものとして塩化ビニル樹脂、塩化ビニル酢酸ビニル樹
脂、塩化ビニル酢酸ビニルビニルアルコール樹脂、塩化
ビニル酢酸ビニル無水マレイン酸共重合体、中から選ば
れる少なくとも1種とポリウレタン樹脂の組合せ、また
はこれらにポリイソシアネートを組合せたものがあげら
れる。ポリウレタン樹脂の構造はポリエステルポリウレ
タン、ポリエーテルポリウレタン、ポリエーテルポリエ
ステルポリウレタン、ポリカーボネートポリウレタン、
ポリエステルポリカーボネートポリウレタン、ポリカプ
ロラクトンポリウレタンなど公知のものが使用できる。 ここに示したすべての結合剤について、より優れた分散
性と耐久性を得るためには必要に応じ、COOM、SO
3 M、OSO3 M、P=O(OM)2 、O−P=
O(OM)2 、(以上につきMは水素原子、またはア
ルカリ金属塩基)、OH、NR2 、N+ R3 、R
は炭化水素基)、エポキシ基、SH、CN、などから選
ばれる少なくとも一つ以上の極性基を共重合または付加
反応で導入したものを用いることが好ましい。このよう
な極性基の量は10−1〜10−8モル/gであり、好
ましくは10−2〜10−6モル/gである。本発明に
用いられるこれらの結合剤の具体的な例としてはユニオ
ンカーバイト社製:VAGH、VYHH、VMCH、V
AGF、VAGD、VROH、VYES、VYNC、V
MCC、XYHL、XYSG、PKHH、PKHJ、P
KHC、PKFE、日信化学工業社製:MPR−TA、
MPR−TA5、MPR−TAL、MPR−TSN、M
PR−TMF、MPR−TS、MPR−TM、電気化学
社製:1000W、DX80、DX81、DX82、D
X83、日本ゼオン社製:MR110、MR100、4
00X110A、日本ポリウレタン社製:ニッポランN
2301、N2302、N2304、大日本インキ社製
:パンデックスT−5105、T−R3080、T−5
201、バーノックD−400、D−210−80、ク
リスボン6109、7209、東洋紡社製:バイロンU
R8200、UR8300、RV530、RV280、
大日精化社製:ダイフエラミン4020、5020、5
100、5300、9020、9022、7020、三
菱化成社製:MX5004、三洋化成社製:サンプレン
SP−150、旭化成社製:サランF310、F210
などがあげられる。本発明に用いられる結合剤は上層、
下層とも各層の強磁性粉末に対し、5〜50重量%の範
囲、好ましくは10〜30%の範囲で用いられる。塩化
ビニル系樹脂を用いる場合は、5〜30重量%、ポリウ
レタン樹脂合を用いる場合は2〜20重量%、ポリイソ
シアネートは2〜20重量%の範囲でこれらを組合せて
用いるのが好ましい。本発明において、ポリウレタンを
用いる場合はガラス転移温度が−50〜100℃、破断
伸びが100〜2000%、破断応力は0.05〜10
Kg/cm2、降伏点は0.05〜10Kg/cm2 
が好ましい。本発明に用いるポリイソシアネートとして
は、トリレンジイソシアネート、4−4′−ジフエニル
メタンジイソシアネート、ヘキサメチレンジイソシアネ
ート、キシリレンジイソシアネート、ナフチレン−1,
5−ジイソシアネート、o−トルイジイソシアネート、
イソホロンジイソシアネート、トリフエニルメタントリ
イソシアネート等のイソシアネート類、また、これらの
イソシアネート類とポリアルコールとの生成物、また、
イソシアネート類の縮合によって生成したポリイソシア
ネート等を使用することができる。これらのイソシアネ
ート類の市販されている商品名としては、日本ポリウレ
タン社製:コロネートL、コロネートHL、コロネート
2030、コロネート2031、ミリオネートMR、ミ
リオネートMTL、武田薬品社製:タケネートD−10
2、タケネートD−110N、タケネートD−200、
タケネートD−202、住友バイエル社製:デスモジュ
ールL、デスモジュールIL、デスモジュールN、デス
モジュールHL等があり、これらを単独または硬化反応
性の差を利用して二つもしくはそれ以上の組合せで下層
、上層ともに用いることができる。
As the binder used in the present invention, conventionally known thermoplastic resins, thermosetting resins, reactive resins, and mixtures thereof can be used. The thermoplastic resin has a glass transition temperature of -100 to 150°C and a number average molecular weight of 100.
0-200000, preferably 10000-10000
0, the degree of polymerization is about 50 to 1000. Such examples include vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic esters, vinylidene chloride, acrylonitrile, methacrylic acid, methacrylic esters, styrene, butadiene, ethylene, vinyl butyral, vinyl acetal, There are polymers or copolymers containing vinyl ether and the like as constituent units, polyurethane resins, and various rubber-based resins. In addition, as thermosetting resins or reactive resins, phenolic resins,
Epoxy resin, polyurethane curable resin, urea resin, melamine resin, alkyd resin, acrylic reaction resin, formaldehyde resin, silicone resin, epoxy-polyamide resin, mixture of polyester resin and isocyanate prepolymer, mixture of polyester polyol and polyisocyanate, Examples include mixtures of polyurethane and polyisocyanate. These resins are described in detail in the "Plastic Handbook" published by Asakura Shoten. Further, it is also possible to use a known electron beam curable resin. These examples and their manufacturing methods are described in detail in Japanese Patent Laid-Open No. 62-256219. The above resins can be used alone or in combination, but preferred ones include vinyl chloride resin, vinyl chloride vinyl acetate resin, vinyl chloride vinyl acetate vinyl alcohol resin, vinyl chloride vinyl acetate maleic anhydride copolymer, and at least one resin selected from among them. Examples include combinations of seeds and polyurethane resins, or combinations of these with polyisocyanates. The structure of polyurethane resin is polyester polyurethane, polyether polyurethane, polyether polyester polyurethane, polycarbonate polyurethane,
Known materials such as polyester polycarbonate polyurethane and polycaprolactone polyurethane can be used. For all binders listed here, COOM, SO
3 M, OSO3 M, P=O(OM)2, O-P=
O(OM)2, (M is a hydrogen atom or an alkali metal base), OH, NR2, N+ R3, R
It is preferable to use one into which at least one polar group selected from a hydrocarbon group), an epoxy group, SH, CN, etc. is introduced by copolymerization or addition reaction. The amount of such polar groups is 10-1 to 10-8 mol/g, preferably 10-2 to 10-6 mol/g. Specific examples of these binders used in the present invention include those manufactured by Union Carbide: VAGH, VYHH, VMCH, V
AGF, VAGD, VROH, VYES, VYNC, V
MCC, XYHL, XYSG, PKHH, PKHJ, P
KHC, PKFE, Nissin Chemical Industry Co., Ltd.: MPR-TA,
MPR-TA5, MPR-TAL, MPR-TSN, M
PR-TMF, MPR-TS, MPR-TM, Denki Kagaku: 1000W, DX80, DX81, DX82, D
X83, manufactured by Zeon Corporation: MR110, MR100, 4
00X110A, manufactured by Nippon Polyurethane Co., Ltd.: Nipporan N
2301, N2302, N2304, manufactured by Dainippon Ink Co., Ltd.: Pandex T-5105, T-R3080, T-5
201, Burnock D-400, D-210-80, Chrisbon 6109, 7209, Toyobo Co., Ltd.: Byron U
R8200, UR8300, RV530, RV280,
Manufactured by Dainichiseika: Daiferamine 4020, 5020, 5
100, 5300, 9020, 9022, 7020, Mitsubishi Kasei: MX5004, Sanyo Kasei: Samplen SP-150, Asahi Kasei: Saran F310, F210
etc. The binder used in the present invention is an upper layer,
Both the lower layer and the ferromagnetic powder are used in an amount of 5 to 50% by weight, preferably 10 to 30% by weight, based on the ferromagnetic powder of each layer. It is preferable to use a combination of 5 to 30% by weight when using a vinyl chloride resin, 2 to 20% by weight when using a polyurethane resin, and 2 to 20% by weight when using a polyisocyanate. In the present invention, when polyurethane is used, the glass transition temperature is -50 to 100°C, the elongation at break is 100 to 2000%, and the stress at break is 0.05 to 10.
Kg/cm2, yield point is 0.05-10Kg/cm2
is preferred. Examples of the polyisocyanate used in the present invention include tolylene diisocyanate, 4-4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, naphthylene-1,
5-diisocyanate, o-toluidiisocyanate,
Isocyanates such as isophorone diisocyanate and triphenylmethane triisocyanate, products of these isocyanates and polyalcohols,
Polyisocyanates etc. produced by condensation of isocyanates can be used. Commercially available product names of these isocyanates include: Coronate L, Coronate HL, Coronate 2030, Coronate 2031, Millionate MR, Millionate MTL, manufactured by Nippon Polyurethane Co., Ltd.; Takenate D-10, manufactured by Takeda Pharmaceutical Co., Ltd.
2. Takenate D-110N, Takenate D-200,
Takenate D-202, manufactured by Sumitomo Bayer: Desmodur L, Desmodur IL, Desmodur N, Desmodur HL, etc. These can be used alone or in combination of two or more by taking advantage of the difference in curing reactivity. Both the lower layer and the upper layer can be used.

【0032】本発明の磁性層に使用されるカーボンブラ
ックはゴム用フアーネス、ゴム用サーマル、カラー用ブ
ラック、アセチレンブラック、等を用いることができる
。比表面積は5〜500m2 /g、DBP吸油量は1
0〜400ml/100g、粒子径は5mμ〜300m
μ、pHは2〜10、含水率は0.1〜10%、タップ
密度は0.1〜1g/ccが好ましい。本発明に用いら
れるカーボンブラックの具体的な例としてはキャボット
社製:BLACKPEARLS  2000、1300
、1000、900、800、700、VULCAN 
 XC−72、旭カーボン社製:♯80、♯60、♯5
5、♯50、♯35、三菱化成工業社製:♯2400B
、♯2300、♯900、♯1000、♯30、♯40
、♯10B、コンロンビアカーボン社製:CONDUC
TEX  SC、RAVEN  150、50,40,
15などがあげられる。カーボンブラックを分散剤など
で表面処理したり、樹脂でグラフト化して使用しても、
表面の一部をグラフアイト化したものを使用してもかま
わない。 また、カーボンブラックを磁性塗料に添加する前にあら
かじめ結合剤で分散してもかまわない。これらのカーボ
ンブラックは単独、または組合せで使用することができ
る。カーボンブラックを使用する場合は磁性体に対する
量の0.1〜30%でもちいることが好ましい。カーボ
ンブラックは磁性層の帯電防止、摩擦係数低減、遮光性
付与、膜強度向上などの働きがあり、これらは用いるカ
ーボンブラックにより異なる。従って本発明に使用され
るこれらのカーボンブラックは下層、上層でその種類、
量、組合せを変え、粒子サイズ、吸油量、電導度、pH
などの先に示した諸特性をもとに目的に応じて使い分け
ることはもちろん可能である。本発明の磁性層で使用で
きるカーボンブラックは例えば「カーボンブラック便覧
」(カーボンブラック協会編)を参考にすることができ
る。
As the carbon black used in the magnetic layer of the present invention, furnace black for rubber, thermal black for rubber, black for color, acetylene black, etc. can be used. Specific surface area is 5-500m2/g, DBP oil absorption is 1
0~400ml/100g, particle size is 5mμ~300m
μ, pH is preferably 2 to 10, water content is preferably 0.1 to 10%, and tap density is preferably 0.1 to 1 g/cc. Specific examples of carbon black used in the present invention include BLACKPEARLS 2000 and 1300 manufactured by Cabot.
, 1000, 900, 800, 700, VULCAN
XC-72, manufactured by Asahi Carbon: #80, #60, #5
5, #50, #35, manufactured by Mitsubishi Chemical Corporation: #2400B
, #2300, #900, #1000, #30, #40
, #10B, manufactured by Conlonbia Carbon Co., Ltd.: CONDUC
TEX SC, RAVEN 150, 50, 40,
15 etc. Even if carbon black is surface treated with a dispersant or grafted with a resin,
It is also possible to use a material whose surface is partially graphite. Further, carbon black may be dispersed in advance with a binder before being added to the magnetic paint. These carbon blacks can be used alone or in combination. When carbon black is used, it is preferably used in an amount of 0.1 to 30% of the amount of the magnetic material. Carbon black has functions such as preventing static electricity on the magnetic layer, reducing the coefficient of friction, imparting light-shielding properties, and improving film strength, and these functions vary depending on the carbon black used. Therefore, these carbon blacks used in the present invention have different types and types in the lower layer and upper layer.
Change the amount and combination, particle size, oil absorption, electrical conductivity, pH
It is of course possible to use them differently depending on the purpose based on the characteristics shown above. For carbon black that can be used in the magnetic layer of the present invention, reference may be made to, for example, "Carbon Black Handbook" (edited by Carbon Black Association).

【0033】本発明に用いられる研磨剤としてはα化率
90%以上のα−アルミナ、β−アルミナ、炭化ケイ素
、酸化クロム、酸化セリウム、α−酸化鉄、コランダム
、人造ダイアモンド、窒化珪素、炭化珪素チタンカーバ
イト、酸化チタン、二酸化珪素、窒化ホウ素、など主と
してモース6以上の公知の材料が単独または組合せで使
用される。また、これらの研磨剤どうしの複合体(研磨
剤を他の研磨剤で表面処理したもの)を使用してもよい
。これらの研磨剤には主成分以外の化合物または元素が
含まれる場合もあるが主成分が90%以上であれば効果
にかわりはない。これら研磨剤の粒子サイズは0.01
〜2μが好ましいが、必要に応じて粒子サイズの異なる
研磨剤を組合せたり、単独の研磨剤でも粒径分布を広く
して同様の効果をもたせることもできる。タップ密度は
0.3〜2g/cc、含水率は0.1〜5%、pHは2
〜11、比表面積は1〜30m2 /g、が好ましい。 本発明に用いられる研磨剤の形状は針状、球状、サイコ
ロ状、のいずれでも良いが、形状の一部に角を有するも
のが研磨性が高く好ましい。本発明に用いられる研磨剤
の具体的な例としては、住友化学社製:AKP−20,
AKP−30,AKP−50,HIT−50、日本化学
工業社製:G5,G7,S−1、戸田工業社製:100
ED,140ED、などがあげられる。これらの研磨剤
はあらかじめ結合剤で分散処理したのち磁性塗料中に添
加してもかまわない。
[0033] The abrasives used in the present invention include α-alumina, β-alumina, silicon carbide, chromium oxide, cerium oxide, α-iron oxide, corundum, artificial diamond, silicon nitride, and carbide with an α-ization rate of 90% or more. Known materials having Mohs 6 or higher, such as silicon titanium carbide, titanium oxide, silicon dioxide, and boron nitride, are used singly or in combination. Further, a composite of these abrasives (an abrasive whose surface is treated with another abrasive) may also be used. These abrasives may contain compounds or elements other than the main component, but as long as the main component is 90% or more, the effect remains the same. The particle size of these abrasives is 0.01
~2μ is preferred, but if necessary, abrasives with different particle sizes may be combined, or a single abrasive may be used with a wide particle size distribution to provide the same effect. Tap density is 0.3-2g/cc, moisture content is 0.1-5%, pH is 2
-11, and the specific surface area is preferably 1-30 m2/g. The shape of the abrasive used in the present invention may be needle-like, spherical, or dice-like, but it is preferable to have a part of the shape with a corner because of its high abrasiveness. Specific examples of the abrasive used in the present invention include AKP-20 manufactured by Sumitomo Chemical Co., Ltd.
AKP-30, AKP-50, HIT-50, manufactured by Nihon Kagaku Kogyo Co., Ltd.: G5, G7, S-1, manufactured by Toda Kogyo Co., Ltd.: 100
Examples include ED, 140ED, etc. These abrasives may be dispersed in advance with a binder and then added to the magnetic paint.

【0034】本発明に使用される、添加剤としては潤滑
効果、帯電防止効果、分散効果、可塑効果、などをもつ
ものが使用される。二硫化モリブデン、二硫化タングス
テングラフアイト、窒化ホウ素、フッ化黒鉛、シリコー
ンオイル、極性基をもつシリコーン、脂肪酸変性シリコ
ーン、フッ素含有シリコーン、フッ素含有アルコール、
フッ素含有エステル、ポリオレフイン、ポリグリコール
、アルキル燐酸エステルおよびそのアルカリ金属塩、ア
ルキル硫酸エステルおよびそのアルカリ金属塩、ポリフ
エニルエーテル、フッ素含有アルキル硫酸エステルおよ
びそのアルカリ金属塩、炭素数10〜24の一塩基性脂
肪酸(不飽和結合を含んでも、また分岐していてもかま
わない)、および、これらの金属塩(Li,Na,K,
Cuなど)または、炭素数12〜22の一価、二価、三
価、四価、五価、六価アルコール(不飽和結合を含んで
も、また分岐していてもかまわない)、炭素数12〜2
2のアルコキシアルコール、炭素数10〜24の一塩基
性脂肪酸(不飽和結合を含んでも、また分岐していても
かまわない)と炭素数2〜12の一価、二価、三価、四
価、五価、六価アルコールのいずれか一つ(不飽和結合
を含んでも、また分岐していてもかまわない)とからな
るモノ脂肪酸エステルまたはジ脂肪酸エステルまたはト
リ脂肪酸エステル、アルキレンオキシド重合物のモノア
ルキルエーテルの脂肪酸エステル、炭素数8〜22の脂
肪酸アミド、炭素数8〜22の脂肪族アミン、などが使
用できる。これらの具体例としてはラウリン酸、ミリス
チン酸、パルミチン酸、ステアリン酸、ベヘン酸、ステ
アリン酸ブチル、オレイン酸、リノール酸、リノレン酸
、エライジン酸、ステアリン酸オクチル、ステアリン酸
アミル、ステアリン酸イソオクチル、ミリスチン酸オク
チル、ステアリン酸ブトキシエチル、アンヒドロソルビ
タンモノステアレート、アンヒドロソルビタンジステア
レート、アンヒドロソルビタントリステアレート、オレ
イルアルコール、ラウリルアルコール、があげられる。 また、アルキレンオキサイド系、グリセリン系、グリシ
ドール系、アルキルフエノールエチレンオキサイド付加
体、等のノニオン界面活性剤、環状アミン、エステルア
ミド、第四級アンモニウム塩類、ヒダントイン誘導体、
複素環類、ホスホニウムまたはスルホニウム類、等のカ
チオン系界面活性剤、カルボン酸、スルフォン酸、燐酸
、硫酸エステル基、燐酸エステル基、などの酸性基を含
むアニオン界面活性剤、アミノ酸類、アミノスルホン酸
類、アミノアルコールの硫酸または燐酸エステル類、ア
ルキルベダイン型、等の両性界面活性剤等も使用できる
。これらの界面活性剤については、「界面活性剤便覧」
(産業図書株式会社発行)に詳細に記載されている。こ
れらの潤滑剤、帯電防止剤等は必ずしも100%純粋で
はなく、主成分以外に異性体、未反応物、副反応物、分
解物、酸化物、等の不純分が含まれてもかまわない。こ
れらの不純分は30%以下が好ましく、さらに好ましく
は10%以下である。本発明で使用されるこれらの潤滑
剤、界面活性剤は各層でその種類、量を必要に応じ使い
分けることができる。また本発明で用いられる添加剤の
すべてまたはその一部は、磁性塗料製造のどの工程で添
加してもかまわない、例えば、混練工程前に磁性体と混
合する場合、磁性体と結合剤と溶剤による混練工程で添
加する場合、分散工程で添加する場合、分散後に添加す
る場合、塗布直前に添加する場合などがある。
The additives used in the present invention include those having a lubricating effect, an antistatic effect, a dispersing effect, a plasticizing effect, etc. Molybdenum disulfide, tungsten graphite disulfide, boron nitride, graphite fluoride, silicone oil, silicone with polar groups, fatty acid-modified silicone, fluorine-containing silicone, fluorine-containing alcohol,
Fluorine-containing esters, polyolefins, polyglycols, alkyl phosphates and their alkali metal salts, alkyl sulfates and their alkali metal salts, polyphenyl ethers, fluorine-containing alkyl sulfates and their alkali metal salts, monobases with 10 to 24 carbon atoms fatty acids (which may contain unsaturated bonds or be branched), and their metal salts (Li, Na, K,
Cu, etc.) or monovalent, divalent, trivalent, tetravalent, pentavalent, hexavalent alcohol with 12 to 22 carbon atoms (it doesn't matter if it contains an unsaturated bond or is branched), 12 carbon atoms ~2
2 alkoxy alcohol, monobasic fatty acid with 10 to 24 carbon atoms (which may contain unsaturated bonds or be branched), and monovalent, divalent, trivalent, or tetravalent with 2 to 12 carbon atoms , mono-, di-, or tri-fatty acid esters consisting of any one of pentahydric and hexahydric alcohols (which may contain unsaturated bonds or be branched), and alkylene oxide polymer monomers. Fatty acid esters of alkyl ethers, fatty acid amides having 8 to 22 carbon atoms, aliphatic amines having 8 to 22 carbon atoms, and the like can be used. Specific examples of these include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, butyl stearate, oleic acid, linoleic acid, linolenic acid, elaidic acid, octyl stearate, amyl stearate, isooctyl stearate, and myristic acid. Examples include octyl acid, butoxyethyl stearate, anhydrosorbitan monostearate, anhydrosorbitan distearate, anhydrosorbitan tristearate, oleyl alcohol, and lauryl alcohol. In addition, nonionic surfactants such as alkylene oxide type, glycerin type, glycidol type, alkylphenol ethylene oxide adducts, cyclic amines, ester amides, quaternary ammonium salts, hydantoin derivatives,
Cationic surfactants such as heterocycles, phosphoniums or sulfoniums, anionic surfactants containing acidic groups such as carboxylic acids, sulfonic acids, phosphoric acids, sulfuric ester groups, phosphoric ester groups, amino acids, amino sulfonic acids, etc. Amphoteric surfactants such as sulfuric acid or phosphoric acid esters of amino alcohols, alkylbedine type surfactants, etc. can also be used. For information on these surfactants, please refer to the "Surfactant Handbook"
(published by Sangyo Tosho Co., Ltd.) is described in detail. These lubricants, antistatic agents, etc. are not necessarily 100% pure, and may contain impurities such as isomers, unreacted products, side reactants, decomposed products, oxides, etc. in addition to the main components. The content of these impurities is preferably 30% or less, more preferably 10% or less. These lubricants and surfactants used in the present invention can be used in different types and amounts in each layer as required. In addition, all or part of the additives used in the present invention may be added at any step in the production of magnetic paint. In some cases, it is added in the kneading step, in the dispersion step, after dispersion, or just before coating.

【0035】本発明で用いられる有機溶媒は任意の比率
でアセトン、メチルエチルケトン、メチルイソブチルケ
トン、ジイソブチルケトン、シクロヘキサノン、イソホ
ロン、テトラヒドロフラン、等のケトン類、メタノール
、エタノール、プロパノール、ブタノール、イソブチル
アルコール、イソプロピルアルコール、メチルシクロヘ
キサノール、などのアルコール類、酢酸メチル、酢酸ブ
チル、酢酸イソブチル、酢酸イソプロピル、乳酸エチル
、酢酸グリコール等のエステル類、グリコールジメチル
エーテル、グリコールモノエチルエーテル、ジオキサン
、などのグリコールエーテル系、ベンゼン、トルエン、
キシレン、クレゾール、クロルベンゼン、などの芳香族
炭化水素類、メチレンクロライド、エチレンクロライド
、四塩化炭素、クロロホルム、エチレンクロルヒドリン
、ジクロルベンゼン、等の塩素化炭化水素類、N,N−
ジメチルホルムアミド、ヘキサン等のものが使用できる
The organic solvent used in the present invention includes ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, and tetrahydrofuran, methanol, ethanol, propanol, butanol, isobutyl alcohol, and isopropyl alcohol in any ratio. , alcohols such as methylcyclohexanol, esters such as methyl acetate, butyl acetate, isobutyl acetate, isopropyl acetate, ethyl lactate, glycol acetate, glycol ethers such as glycol dimethyl ether, glycol monoethyl ether, dioxane, benzene, toluene,
Aromatic hydrocarbons such as xylene, cresol, chlorobenzene, chlorinated hydrocarbons such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, ethylene chlorohydrin, dichlorobenzene, N,N-
Dimethylformamide, hexane, etc. can be used.

【0036】本発明の磁気記録媒体の厚み構成は非磁性
支持体が1〜100μm、好ましくは6〜20μm、下
層磁性層が0.5μm〜10μm、好ましくは1.5〜
5μm、上層磁性層の0.05μm〜2μm、好ましく
は0.2〜1.0μmである。磁性層の厚みは非磁性支
持体の厚みの1/100〜2倍の範囲で用いられる。ま
た、非磁性支持体と下層の間に密着性向上のための下塗
り層、または帯電防止のためのカーボンブラックを含む
層等の中間層を設けてもかまわない。これらの厚みは0
.01〜2μ、好ましくは0.05〜0.5μである。 また、非磁性支持体性の磁性層側と反対側にバックコー
ト層を設けてもかまわない。この厚みは0.1〜2μ、
好ましくは0.3〜1.0μである。これらの中間層、
バックコート層は公知のものが使用できる。
The thickness of the magnetic recording medium of the present invention is such that the non-magnetic support has a thickness of 1 to 100 μm, preferably 6 to 20 μm, and the lower magnetic layer has a thickness of 0.5 to 10 μm, preferably 1.5 to 1.5 μm.
5 μm, and 0.05 μm to 2 μm of the upper magnetic layer, preferably 0.2 to 1.0 μm. The thickness of the magnetic layer used is in the range of 1/100 to 2 times the thickness of the nonmagnetic support. Further, an intermediate layer such as an undercoat layer for improving adhesion or a layer containing carbon black for preventing static electricity may be provided between the nonmagnetic support and the lower layer. The thickness of these is 0
.. 01-2μ, preferably 0.05-0.5μ. Further, a back coat layer may be provided on the side opposite to the magnetic layer side of the non-magnetic support. This thickness is 0.1~2μ,
Preferably it is 0.3 to 1.0μ. These middle class
A known back coat layer can be used.

【0037】本発明に用いられる非磁性支持体はポリエ
チレンテレフタレート、ポリエチレンナフタレート、等
のポリエステル類、ポリオレフイン類、セルローストリ
アセテート、ポリカーボネート、ポリアミド、ポリイミ
ド、ポリアミドイミド、ポリスルフオン、アラミド、芳
香族ポリアミドなどの公知のフイルムが使用できる。こ
れらの支持体にはあらかじめコロナ放電処理、プラズマ
処理、易接着処理、熱処理、除塵処理、などをおこなっ
ても良い。本発明の目的を達成するには、非磁性支持体
として中心線平均表面粗さが、好ましくは0.02以下
、さらに好ましくは0.01μ以下のものを使用する必
要がある。また、これらの非磁性支持体は単に中心線平
均表面粗さが小さいだけではなく、1μ以上の粗大突起
がないことが好ましい。また表面の粗さ形状は必要に応
じて支持体に添加されるフイラーの大きさと量により自
由にコントロールされるものである。これらのフイラー
としては一例としてはCa,Si,Tiなどの酸化物や
炭酸塩の他、アクリル系などの有機微粉末があげられる
The non-magnetic support used in the present invention includes known polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone, aramid, aromatic polyamide and the like. Films can be used. These supports may be subjected to corona discharge treatment, plasma treatment, adhesion treatment, heat treatment, dust removal treatment, etc. in advance. In order to achieve the object of the present invention, it is necessary to use a nonmagnetic support having a center line average surface roughness of preferably 0.02 or less, more preferably 0.01 μ or less. Furthermore, it is preferable that these nonmagnetic supports not only have a small center line average surface roughness, but also have no coarse protrusions of 1 μm or more. Further, the surface roughness and shape can be freely controlled by the size and amount of filler added to the support as necessary. Examples of these fillers include oxides and carbonates of Ca, Si, and Ti, as well as organic fine powders such as acrylic fillers.

【0038】[0038]

【実施例】  実施例1 下層磁性層   コバルト変性酸化鉄              
                  100部   
   Hc  600Oe、比表面積  35m2 /
g      結晶子サイズ400オングストローム 
     粒子サイズ(長軸径)  0.25μ、針状
比  10  塩化ビニル−酢酸ビニル−無水マレイン
酸共重合体      10部      組成比  
86:13:1    重合度400  ポリエステル
ポリウレタン樹脂                 
         5部  カーボンブラック(粒子サ
イズ0.05μm)            3部  
ブチルステアレート                
                    1部  ス
テアリン酸                    
                      2部 
 酢酸ブチル                   
                     200部
上層磁性層   コバルト変性酸化鉄              
                  100部   
   Hc  1000Oe、比表面積  60m2 
/g      結晶子サイズ350オングストローム
      粒子サイズ(長軸径)  0.20μ、針
状比  12  塩化ビニル−酢酸ビニル−無水マレイ
ン酸共重合体      12部      組成比 
 86:13:1    重合度400  ポリエステ
ルポリウレタン樹脂                
          6部      (カルボキシル
基10−4モル/g含有)  α−アルミナ(粒子サイ
ズ0.3μm)                  
3部  カーボンブラック(粒子サイズ0.10μm)
            3部  ブチルステアレート
                         
           1部  ステアリン酸    
                         
             2部  酢酸ブチル   
                         
            200部上記2つの塗料のそ
れぞれについて、各成分を連続ニーダで混練したのち、
サンドミルをもちいて分散させた。 得られた分散液にポリイソシアネートを下層の塗布液に
は5部、上層の塗布液には6部を加え、さらにそれぞれ
に酢酸ブチル40部を加え、1μmの平均孔径を有する
フィルターを用いて濾過し、下層磁性層形成用および上
層磁性層形成用塗布液をそれぞれ調製した。得られた下
層磁性層用塗布液を、乾燥後の厚さが3.0μmになる
ように塗布し、水平方向に配向し、さらにその直後にそ
の上に上層磁性層の厚さが0.5μmになるように塗布
し垂直方向に配向してから乾燥する。つづいて金属ロー
ルのみから構成される7段のカレンダーで温度120℃
にて処理を行い、1/2インチの幅にスリットし、ビデ
オテープを製造した。
[Example] Example 1 Lower magnetic layer cobalt modified iron oxide
100 copies
Hc 600Oe, specific surface area 35m2 /
g Crystallite size 400 angstroms
Particle size (major axis diameter) 0.25μ, acicular ratio 10 Vinyl chloride-vinyl acetate-maleic anhydride copolymer 10 parts Composition ratio
86:13:1 Polymerization degree 400 Polyester polyurethane resin
5 parts Carbon black (particle size 0.05 μm) 3 parts
butyl stearate
1 part stearic acid
2nd part
butyl acetate
200 parts Upper magnetic layer Cobalt modified iron oxide
100 copies
Hc 1000Oe, specific surface area 60m2
/g Crystallite size 350 angstroms Particle size (major axis diameter) 0.20μ, needle ratio 12 Vinyl chloride-vinyl acetate-maleic anhydride copolymer 12 parts Composition ratio
86:13:1 Polymerization degree 400 Polyester polyurethane resin
6 parts (contains carboxyl group 10-4 mol/g) α-alumina (particle size 0.3 μm)
3 parts carbon black (particle size 0.10μm)
Part 3 Butyl stearate
1 part stearic acid

2 parts Butyl acetate

200 parts For each of the above two paints, after kneading each component with a continuous kneader,
It was dispersed using a sand mill. To the obtained dispersion, 5 parts of polyisocyanate was added to the lower layer coating liquid, 6 parts to the upper layer coating liquid, and 40 parts of butyl acetate was added to each, and the mixture was filtered using a filter having an average pore size of 1 μm. Coating liquids for forming the lower magnetic layer and for forming the upper magnetic layer were prepared respectively. The obtained lower magnetic layer coating liquid was applied to a dry thickness of 3.0 μm, oriented in the horizontal direction, and immediately thereafter, an upper magnetic layer was applied on top of it to a thickness of 0.5 μm. Apply it vertically, then dry. Next, the temperature was 120℃ using a 7-stage calender consisting only of metal rolls.
The tape was then processed and slit to a width of 1/2 inch to produce a videotape.

【0039】実施例2 実施例1の上層の強磁性粉末の比表面積を82m2 /
gに変えた以外は実施例1と同様に上層磁性層を形成し
、下層磁性層は実施例1と同様の磁性塗料を用いて実施
例1の記載の方法でビデオテープを得た。
Example 2 The specific surface area of the upper layer of ferromagnetic powder in Example 1 was 82 m2/
A videotape was obtained by the method described in Example 1, except that the upper magnetic layer was formed in the same manner as in Example 1, and the lower magnetic layer was formed using the same magnetic paint as in Example 1.

【0040】実施例3 実施例1の上層の強磁性粉末の比表面積を98m2 /
gに変えた以外は実施例1と同様に上層磁性層を形成し
、下層磁性層は実施例1と同様の磁性塗料を用いて実施
例1の記載の方法でビデオテープを得た。
Example 3 The specific surface area of the upper layer of ferromagnetic powder in Example 1 was 98 m2/
A videotape was obtained by the method described in Example 1, except that the upper magnetic layer was formed in the same manner as in Example 1, and the lower magnetic layer was formed using the same magnetic paint as in Example 1.

【0041】比較例1 実施例1の上層の強磁性粉末の比表面積を45m2 /
gに変えた以外は実施例1と同様に上層磁性層を形成し
、下層磁性層は実施例1と同様の磁性塗料を用いて実施
例1の記載の方法でビデオテープを得た。
Comparative Example 1 The specific surface area of the upper layer of ferromagnetic powder in Example 1 was set to 45 m2/
A videotape was obtained by the method described in Example 1, except that the upper magnetic layer was formed in the same manner as in Example 1, and the lower magnetic layer was formed using the same magnetic paint as in Example 1.

【0042】比較例2 実施例1の上層の強磁性粉末の比表面積を110m2 
/gに変えた以外は実施例1と同様に上層磁性層を形成
し、下層磁性層は実施例1と同様の磁性塗料を用いて実
施例1の記載の方法でビデオテープを得た。
Comparative Example 2 The specific surface area of the upper layer of ferromagnetic powder in Example 1 was 110 m2.
A videotape was obtained by the method described in Example 1, except that the upper magnetic layer was formed in the same manner as in Example 1, and the lower magnetic layer was made of the same magnetic paint as in Example 1.

【0043】実施例4 実施例1のSQ2を0.55に変えた以外は実施例1と
同様に上層磁性層を形成し、下層磁性層は実施例1と同
様の磁性塗料を用いて実施例1の記載の方法でビデオテ
ープを得た。
Example 4 The upper magnetic layer was formed in the same manner as in Example 1 except that SQ2 in Example 1 was changed to 0.55, and the lower magnetic layer was formed using the same magnetic paint as in Example 1. A videotape was obtained by the method described in 1.

【0044】実施例5 実施例1のSQ2を0.65に変えた以外は実施例1と
同様に上層磁性層を形成し、下層磁性層は実施例1と同
様の磁性塗料を用いて実施例1の記載の方法でビデオテ
ープを得た。
Example 5 The upper magnetic layer was formed in the same manner as in Example 1 except that SQ2 in Example 1 was changed to 0.65, and the lower magnetic layer was formed using the same magnetic paint as in Example 1. A videotape was obtained by the method described in 1.

【0045】比較例.3 実施例1のSQ2を0.23に変えた以外は実施例1と
同様に上層磁性層を形成し、下層磁性層は実施例1と同
様の磁性液を用いて実施例1の記載の方法でビデオテー
プを得た。
Comparative example. 3 The upper magnetic layer was formed in the same manner as in Example 1 except that SQ2 in Example 1 was changed to 0.23, and the lower magnetic layer was formed by the method described in Example 1 using the same magnetic liquid as in Example 1. I got a videotape.

【0046】比較例.4 実施例1のSQ2を0.71に変えた以外は実施例1と
同様に上層磁性層を形成し、下層磁性層は実施例1と同
様の磁性液を用いて実施例1の記載の方法でビデオテー
プを得た。
Comparative example. 4 The upper magnetic layer was formed in the same manner as in Example 1 except that SQ2 in Example 1 was changed to 0.71, and the lower magnetic layer was formed by the method described in Example 1 using the same magnetic liquid as in Example 1. I got a videotape.

【0047】実施例.6 実施例1の下層の強磁性粉末の比表面積を21m2 /
gに変えた以外は実施例1と同様に下層磁性層を形成し
、上層は実施例1と同様の磁性液を用いて実施例1の記
載の方法でビデオテープを得た。
Example. 6 The specific surface area of the lower layer ferromagnetic powder in Example 1 was 21 m2/
A videotape was obtained by the method described in Example 1, except that the lower magnetic layer was formed in the same manner as in Example 1, and the upper layer was made of the same magnetic liquid as in Example 1.

【0048】実施例.7 実施例1の下層の強磁性粉末の比表面積を48m2 /
gに変えた以外は実施例1と同様に下層磁性層を形成し
、上層は実施例1と同様の磁性液を用いて実施例1の記
載の方法でビデオテープを得た。
Example. 7 The specific surface area of the lower layer ferromagnetic powder in Example 1 was 48 m2/
A videotape was obtained by the method described in Example 1, except that the lower magnetic layer was formed in the same manner as in Example 1, and the upper layer was made of the same magnetic liquid as in Example 1.

【0049】比較例.5 実施例1の下層磁性層の強磁性粉末の比表面積を14m
2 /gに変えた以外は実施例1と同様に下層磁性層を
形成し、上層は実施例1と同様の磁性液を用いて実施例
1の記載の方法でビデオテープを得た。
Comparative example. 5 The specific surface area of the ferromagnetic powder of the lower magnetic layer in Example 1 was 14 m
A videotape was obtained by the method described in Example 1, except that the lower magnetic layer was formed in the same manner as in Example 1, and the upper layer was made of the same magnetic liquid as in Example 1.

【0050】比較例.6 実施例1の下層の強磁性粉末の比表面積を55m2 /
gに変えた以外は実施例1と同様に下層磁性層を形成し
、上層は実施例1と同様の磁性液を用いて実施例1の記
載の方法でビデオテープを得た。
Comparative example. 6 The specific surface area of the lower layer ferromagnetic powder in Example 1 was 55 m2/
A videotape was obtained by the method described in Example 1, except that the lower magnetic layer was formed in the same manner as in Example 1, and the upper layer was made of the same magnetic liquid as in Example 1.

【0051】比較例.7 実施例1のSQ1を0.60に変えた以外は実施例1と
同様に下層磁性層を形成し、上層は実施例1と同様の磁
性液を用いて実施例1の記載の方法でビデオテープを得
た。
Comparative example. 7 The lower magnetic layer was formed in the same manner as in Example 1 except that SQ1 in Example 1 was changed to 0.60, and the upper layer was formed using the same magnetic liquid as in Example 1, and a video film was formed by the method described in Example 1. Got the tape.

【0052】評価方法 RF出力(Y−S) 画像信号50IREの映像信号を基準録画電流で記録し
た。この再生RF出力のエンベロープの平均値をオシロ
スコープで測定し、次式により算出した。 RF出力(dB)=20  log10(V/V0 )
V    平均値 V0   基準値 クロマ出力(C−S) 画像信号50IREの映像信号にクロマ信号を重畳し基
準録画電流で記録したのち、再生クロマ出力のエンベロ
ープの平均値をオシロスコープで測定し同様に算出した
。 Y−S/N,C−S/N シバソク製ノイズメータ(925R)を使用し、比較例
1で得たテープを基準テープとしてS/N比の差を求め
た。使用したVTRは松下NV−8300である。 粉落ち VTR(松下電器製AG−6200)を用いて、試験テ
ープを全長2時間300パス走行させ、デッキ内及びハ
ーフ内の、オーディオコントロールヘッド及びポールに
付着した汚れ具合いを観察し、5点満点で表示した。
Evaluation method RF output (Y-S) Image signal A video signal of 50 IRE was recorded at a standard recording current. The average value of the envelope of this reproduced RF output was measured using an oscilloscope, and calculated using the following formula. RF output (dB) = 20 log10 (V/V0)
V Average value V0 Standard value chroma output (C-S) After superimposing the chroma signal on the video signal of the image signal 50IRE and recording it at the standard recording current, the average value of the envelope of the reproduced chroma output was measured with an oscilloscope and calculated in the same way. . Y-S/N, C-S/N Using a noise meter (925R) manufactured by Shibasoku, the difference in S/N ratio was determined using the tape obtained in Comparative Example 1 as a reference tape. The VTR used was Matsushita NV-8300. Using a powder removal VTR (Matsushita Electric AG-6200), the test tape was run for 2 hours and 300 passes, and the degree of dirt adhering to the audio control head and poles inside the deck and half was observed, and a score of 5 points was given. It was displayed in

【0053】1:非常に劣る 2:劣る 3:普通 4:良い 5:非常に良い1: Very poor 2: Inferior 3: Normal 4: Good 5: Very good

【0054】[0054]

【表1】[Table 1]

【0055】比較例1、2、実施例1〜3より上層の強
磁性粉末の比表面積が小さいとノイズレベルが高く、大
きすぎると分散性劣化による面性不良でノイズレベルが
高く好ましくないことがわかる。比較例3、4、実施例
1、4、5より上層の垂直方向の角型比が小さいと充分
な出力が得られず、大きすぎると出力は得られるがヤン
グ率の低下による粉落ちが悪化し好ましくない。比較例
5、6、実施例6、7より下層の強磁性粉末の比表面積
が小さいとノイズレベルが高く、大きすぎると分散性劣
化に伴う水平方向角型比が充分に得られずヤング率の低
下による粉落ちが悪化し好ましくない。比較例7、実施
例1より下層に同一の比表面積を有する磁性層を使用し
ても下層の水平方向の角型比が充分でないとヤング率の
低下に伴う粉落ちが悪化し好ましくない。
From Comparative Examples 1 and 2 and Examples 1 to 3, if the specific surface area of the upper layer ferromagnetic powder is small, the noise level is high, and if it is too large, the noise level is undesirably high due to poor surface properties due to deterioration of dispersibility. Recognize. Compared to Comparative Examples 3 and 4 and Examples 1, 4, and 5, if the squareness ratio in the vertical direction of the upper layer is small, sufficient output cannot be obtained, and if it is too large, output can be obtained, but powder falling off due to a decrease in Young's modulus worsens. I don't like it. From Comparative Examples 5 and 6 and Examples 6 and 7, if the specific surface area of the ferromagnetic powder in the lower layer is small, the noise level will be high, and if it is too large, the horizontal squareness ratio due to deterioration of dispersibility will not be obtained sufficiently, and the Young's modulus will be This is not preferable because powder falling due to the drop worsens. Even if a magnetic layer having the same specific surface area as that of Comparative Example 7 and Example 1 is used as a lower layer, if the horizontal squareness ratio of the lower layer is not sufficient, powder falling due to a decrease in Young's modulus will worsen, which is not preferable.

【0056】以上の結果から、本発明に伴う磁気テープ
が、特に短波長における出力の向上と走行耐久性に優れ
た特性を示すことが明らかである。
From the above results, it is clear that the magnetic tape according to the present invention exhibits excellent characteristics, particularly in improved output at short wavelengths and excellent running durability.

【0057】[0057]

【発明の効果】本発明は、下層、上層の各Co含有酸化
鉄のサイズを各々規定すると共にSQ1と下層のヤング
率およびSQ2を規定することにより、長波長域の電磁
変換特性を良好に維持すると共に短波長域の電磁変換特
性を改善し、かつ走行耐久性の優れた磁気記録媒体を提
供できる。
Effects of the Invention The present invention maintains good electromagnetic conversion characteristics in the long wavelength range by specifying the size of each of the Co-containing iron oxides in the lower layer and the upper layer, as well as specifying SQ1, the Young's modulus of the lower layer, and SQ2. At the same time, it is possible to provide a magnetic recording medium with improved electromagnetic conversion characteristics in a short wavelength region and excellent running durability.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  非磁性支持体の表面に強磁性粉末と結
合剤を含む下層磁性層とその上に設けた上層磁性層より
なる複数の磁性層を有する磁気記録媒体において、上層
磁性層は前記強磁性粉末としてBET比表面積が60m
2 /g以上のCo含有酸化鉄を含有し、非磁性支持体
面に垂直方向の角型比が0.4以上であり、水平方向の
ヤング率は200kg/mm2 以上であり、下層磁性
層は前記強磁性粉末としてBET比表面積が20〜50
m2 /gの範囲のCo含有酸化鉄を含有し、水平方向
の角型比が0.7以上、水平方向のヤング率が300k
g/mm2 以上であることを特徴とする磁気記録媒体
1. A magnetic recording medium having a plurality of magnetic layers on the surface of a non-magnetic support, including a lower magnetic layer containing ferromagnetic powder and a binder, and an upper magnetic layer provided thereon, the upper magnetic layer comprising: As a ferromagnetic powder, the BET specific surface area is 60m
2 /g or more of Co-containing iron oxide, the squareness ratio in the direction perpendicular to the surface of the nonmagnetic support is 0.4 or more, the Young's modulus in the horizontal direction is 200 kg/mm2 or more, and the lower magnetic layer is As a ferromagnetic powder, the BET specific surface area is 20 to 50.
Contains Co-containing iron oxide in the range of m2/g, has a horizontal squareness ratio of 0.7 or more, and has a horizontal Young's modulus of 300k.
A magnetic recording medium characterized in that it has a magnetic recording capacity of at least g/mm2.
【請求項2】  前記上層磁性層含有の強磁性粉末のB
ET比表面積が60〜100m2 /gの範囲にあるこ
とを特徴とする請求項1記載の磁気記録媒体。
2. B of the ferromagnetic powder containing the upper magnetic layer.
The magnetic recording medium according to claim 1, characterized in that the ET specific surface area is in the range of 60 to 100 m2/g.
【請求項3】  前記上層磁性層の垂直方向の角型比が
0.4〜0.65の範囲にあることを特徴とする請求項
1または2記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the vertical squareness ratio of the upper magnetic layer is in the range of 0.4 to 0.65.
JP17337891A 1991-06-19 1991-06-19 Magnetic recording medium Pending JPH04370521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17337891A JPH04370521A (en) 1991-06-19 1991-06-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17337891A JPH04370521A (en) 1991-06-19 1991-06-19 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH04370521A true JPH04370521A (en) 1992-12-22

Family

ID=15959288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17337891A Pending JPH04370521A (en) 1991-06-19 1991-06-19 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH04370521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268043B1 (en) * 1999-02-23 2001-07-31 Sony Corporation Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268043B1 (en) * 1999-02-23 2001-07-31 Sony Corporation Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2566096B2 (en) Magnetic recording media
JP2789065B2 (en) Magnetic recording media
JP2715359B2 (en) Flexible magnetic recording disk and manufacturing method thereof
JP2640268B2 (en) Magnetic recording media
JPH05217149A (en) Magnetic recording medium
JP2614154B2 (en) Magnetic recording media
JPH06139553A (en) Magnetic recording medium
JPH05166182A (en) Magnetic recording medium and production thereof
JP2631562B2 (en) Magnetic recording media
JPH08235570A (en) Magnetic recording disk
JP2623178B2 (en) Magnetic recording media
JP2566085B2 (en) Magnetic recording media
JPH0528464A (en) Magnetic recording medium
JPH03222113A (en) Magnetic recording medium
JPH08306031A (en) Magnetic recording medium
JPH04370521A (en) Magnetic recording medium
JP2566070B2 (en) Method of manufacturing magnetic recording medium
JPH04134725A (en) Magnetic recording medium
JP2571351B2 (en) Magnetic recording media
JP2982086B2 (en) Magnetic recording disk and method of manufacturing the same
JPH05109061A (en) Magnetic recording disk and its manufacture and magnetic recording/reproduction method
JP2821055B2 (en) Magnetic recording media
JPH0660360A (en) Magnetic recording medium
JP2686065B2 (en) Manufacturing method of magnetic recording medium
JPH08221741A (en) Magnetic recording medium