JPH04369480A - Semiconductor flow rate detector - Google Patents

Semiconductor flow rate detector

Info

Publication number
JPH04369480A
JPH04369480A JP3145160A JP14516091A JPH04369480A JP H04369480 A JPH04369480 A JP H04369480A JP 3145160 A JP3145160 A JP 3145160A JP 14516091 A JP14516091 A JP 14516091A JP H04369480 A JPH04369480 A JP H04369480A
Authority
JP
Japan
Prior art keywords
semiconductor chip
heat generating
flow rate
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3145160A
Other languages
Japanese (ja)
Other versions
JP2855885B2 (en
Inventor
Koji Tanimoto
考司 谷本
Yuji Ariyoshi
雄二 有吉
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3145160A priority Critical patent/JP2855885B2/en
Publication of JPH04369480A publication Critical patent/JPH04369480A/en
Application granted granted Critical
Publication of JP2855885B2 publication Critical patent/JP2855885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain the title detector excellent in flow rate detecting accuracy, the response to the fluctuation of a flow rate and response after a power supply is closed. CONSTITUTION:In a heating semiconductor chip 12, a heating element 2 wherein a plurality of NPN transistors are connected in parallel and the heating temp. detection element 3 positioned on the free end side of said element 2 and having three diodes connected thereto in series are formed and the thickness of the substrate of the heating semiconductor chip 12 at the part of the heating element 2 is made less than that of the part of the heating temp. detection element 3 to lower a thermal time constant. The heating semiconductor chip 12 is supported in a cantilevered fashion at one end part thereof by a heat insulating support and electrically connected to a lead frame within the support member by wire bonding.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はエンジンの吸入空気量
を測定する半導体式流量検出装置に関し、特にその発熱
用半導体チップの構造及びチップの取付方法の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor flow rate detection device for measuring the intake air amount of an engine, and more particularly to improvements in the structure of its heat generating semiconductor chip and the method of mounting the chip.

【0002】0002

【従来の技術】一般に自動車のエンジンの電子制御式燃
料噴射装置においては、空燃比制御のためエンジンへの
吸入空気量を精度良く計測することが重要である。この
空気流量検出装置として従来ベーン式のものが主流であ
ったが、最近、小形で質量流量が得られ、応答性の良い
熱式流量検出装置が普及しつつある。この熱式流量検出
装置の流量検出素子はセラミック基板上に白金等の感温
抵抗膜を蒸着あるいは印刷により形成しており、検出素
子がセラミックス基板上に形成されているため振動等に
は強い反面、検出素子および基板の微細な加工ができず
、検出精度や応答性に限界があった。最近、写真複写、
拡散、エッチング等の半導体製造プロセスを利用して検
出素子を半導体基板上に形成した半導体式流量検出装置
も提案されている。
2. Description of the Related Art Generally, in electronically controlled fuel injection systems for automobile engines, it is important to accurately measure the amount of air intake into the engine in order to control the air-fuel ratio. Conventionally, vane type air flow rate detection devices have been mainstream, but recently, thermal type flow rate detection devices that are small, can obtain a mass flow rate, and have good responsiveness are becoming popular. The flow rate detection element of this thermal flow rate detection device is formed by depositing or printing a temperature-sensitive resistance film such as platinum on a ceramic substrate.Since the detection element is formed on the ceramic substrate, it is strong against vibrations, etc. However, fine processing of the detection element and substrate was not possible, and there were limits to detection accuracy and responsiveness. Recently, photocopying,
A semiconductor flow rate detection device has also been proposed in which a detection element is formed on a semiconductor substrate using a semiconductor manufacturing process such as diffusion or etching.

【0003】図13〜図14に例えば特開昭59−14
7221号公報に記載の従来の半導体式流量検出装置の
センサ部を示す。図13はセンサ部の部分断面斜視図、
図14は発熱用半導体チップの平面図である。図13に
おいて、11はシリコン基板上に吸気温度検出素子が形
成された吸気温度検出用半導体チップ、12はシリコン
基板上に発熱素子、発熱用温度検出素子が形成された発
熱用半導体チップである。46はセラミック基板であり
、リードフレーム32と半導体チップ11、12を電気
的に接続するよう導電ペーストが印刷焼成されていて、
半導体チップ11、12がフリップチップバンプ法によ
りハンダ付けされている。セラミック基板46は入口部
がベルマウス状になったケーシング47に収納されてい
る。発熱用半導体チップ12は図14に示すように、シ
リコン基板10に拡散抵抗からなる発熱素子2と直列に
接続された5個のダイオードからなる発熱温度検出素子
が形成されている。図示していないが吸気温度検出用半
導体チップ11も発熱用半導体チップ12と同様にシリ
コン基板上にダイオードからなる吸気温度温度検出素子
が形成されている。
FIGS. 13 and 14 show, for example, Japanese Patent Laid-Open No. 59-14
1 shows a sensor section of a conventional semiconductor flow rate detection device disclosed in Japanese Patent No. 7221. FIG. 13 is a partial cross-sectional perspective view of the sensor section;
FIG. 14 is a plan view of the heat generating semiconductor chip. In FIG. 13, 11 is a semiconductor chip for intake air temperature detection in which an intake air temperature detection element is formed on a silicon substrate, and 12 is a heat generation semiconductor chip in which a heating element and a heat generation temperature detection element are formed on a silicon substrate. 46 is a ceramic substrate on which a conductive paste is printed and fired so as to electrically connect the lead frame 32 and the semiconductor chips 11 and 12;
Semiconductor chips 11 and 12 are soldered using the flip chip bump method. The ceramic substrate 46 is housed in a casing 47 having a bellmouth-shaped entrance. As shown in FIG. 14, the heat generating semiconductor chip 12 includes a heat generating element 2 made of a diffused resistor and a heat generating temperature detecting element made of five diodes connected in series on a silicon substrate 10. Although not shown, the intake air temperature detection semiconductor chip 11 also has an intake air temperature detection element formed of a diode on a silicon substrate, similar to the heat generation semiconductor chip 12.

【0004】このように構成された半導体式流量検出装
置においては、発熱用半導体チップ12上の発熱温度検
出素子2で検出される温度が吸気温度検出用チップ11
上の吸気温度検出素子で検出される温度より一定温度高
くなるように発熱素子2に加熱電流を供給し、この加熱
電流に対応した電圧を測定することで空気流量を検出し
ている。
In the semiconductor type flow rate detection device configured as described above, the temperature detected by the heat generation temperature detection element 2 on the heat generation semiconductor chip 12 is determined by the temperature detected by the heat generation temperature detection element 2 on the heat generation semiconductor chip 12.
A heating current is supplied to the heating element 2 so that the temperature is a certain value higher than that detected by the upper intake air temperature detection element, and the air flow rate is detected by measuring the voltage corresponding to this heating current.

【0005】[0005]

【発明が解決しようとする課題】従来の発熱用半導体チ
ップは両端を熱伝導性の高いアルミナセラミック等の基
板にハンダ付けされており、バンプサイズが比較的大き
いために発熱用半導体チップからセラミックス基板への
熱伝導損失が大きくなる。このため、流量検出感度が小
さい、電源投入後、正確な流量信号が得られるまでの時
間が長い、流量変動に対する応答性が悪いといった問題
がある。
[Problems to be Solved by the Invention] Conventional heat-generating semiconductor chips have both ends soldered to a substrate made of alumina ceramic or the like with high thermal conductivity, and because the bump size is relatively large, the heat-generating semiconductor chips are soldered to ceramic substrates. Thermal conduction loss increases. For this reason, there are problems such as low flow rate detection sensitivity, a long time until an accurate flow rate signal is obtained after power is turned on, and poor responsiveness to flow rate fluctuations.

【0006】この発明は上記の様な問題点を解消するた
めになされたもので、流量検出精度、流量変動に対する
応答性と電源投入後の応答性に優れた半導体式流量検出
装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a semiconductor flow rate detection device that is excellent in flow rate detection accuracy, responsiveness to flow rate fluctuations, and responsiveness after power is turned on. purpose.

【0007】[0007]

【課題を解決するための手段】この発明の半導体式流量
検出装置は、流路内に設置される発熱素子と発熱温度検
出素子が形成された発熱用半導体チップと吸気温度検出
素子が形成された吸気温度検出用半導体チップ、及び上
記発熱温度検出素子で検出される温度が上記吸気温度検
出素子で検出される流体温度よりも一定温度高くなるよ
うに上記発熱素子の発熱量を制御する定温度制御回路を
備えるもので、少なくとも発熱用半導体チップをその一
端部で断熱性支持部材により支持固定したものである。
[Means for Solving the Problems] A semiconductor flow rate detection device of the present invention includes a heat generating element installed in a flow path, a heat generating semiconductor chip on which a heat generating temperature detecting element is formed, and an intake air temperature detecting element. constant temperature control for controlling the amount of heat generated by the heating element so that the temperature detected by the intake air temperature detection semiconductor chip and the heating temperature detection element is a certain temperature higher than the fluid temperature detected by the intake air temperature detection element; It is equipped with a circuit, and at least one end of the heat generating semiconductor chip is supported and fixed by a heat insulating support member.

【0008】また、発熱用半導体チップに発熱温度検出
素子を発熱素子よりも自由端側にこれと近接して設けた
Further, the heat generating semiconductor chip is provided with a heat generating temperature detecting element closer to the free end than the heat generating element.

【0009】また、発熱用半導体チップの基板厚さを発
熱素子を形成した部分が発熱温度検出素子を形成した部
分より薄くなるようにした。
Further, the thickness of the substrate of the heat generating semiconductor chip is such that the part where the heat generating element is formed is thinner than the part where the heat generating temperature detecting element is formed.

【0010】また、発熱素子と発熱用半導体チップの支
持部との間に熱絶縁層を形成した。
[0010] Furthermore, a thermal insulation layer was formed between the heating element and the supporting portion of the heating semiconductor chip.

【0011】さらに、発熱用半導体チップの基板に多結
晶シリコンを用いた。
Furthermore, polycrystalline silicon was used for the substrate of the heat generating semiconductor chip.

【0012】そして、発熱用半導体チップにその支持部
と発熱素子との間に第2の発熱素子を形成し、第2の発
熱素子の温度を上記発熱素子より低い温度で流体温度よ
り所定温度高くなるように電気的に加熱した。
[0012] A second heating element is formed on the heating semiconductor chip between its support portion and the heating element, and the temperature of the second heating element is set to be lower than the heating element and higher than the fluid temperature by a predetermined temperature. It was heated electrically so that

【0013】[0013]

【作用】この発明における半導体式流量検出装置は、少
なくとも発熱用半導体チップをその一端部で断熱性支持
部材により片持ち支持する構造としたので、発熱用半導
体チップから支持部への熱伝導損失が低減でき、流量検
出精度、流量変動に対する応答性と電源投入後の応答性
が向上する。
[Operation] The semiconductor flow rate detection device of the present invention has a structure in which at least one end of the heat generating semiconductor chip is cantilever-supported by the heat insulating support member, so that heat conduction loss from the heat generating semiconductor chip to the support portion is reduced. This improves flow rate detection accuracy, responsiveness to flow rate fluctuations, and responsiveness after power is turned on.

【0014】また、発熱用半導体チップに発熱温度検出
素子を発熱素子よりも自由端側に形成する、あるいは発
熱用半導体チップの支持部と発熱素子との間に第2の発
熱素子を形成し、第2の発熱素子を発熱素子より低い温
度で流体温度より所定温度高くなるように電気的に加熱
したので、発熱用半導体チップから支持部材への熱伝導
損失の流量による変化、長手方向の温度分布の流量によ
る変化が小さくなり、流量変動に対する応答性が向上す
る。
[0014] Further, a heat generating temperature detecting element is formed on the heat generating semiconductor chip on the free end side of the heat generating element, or a second heat generating element is formed between the support part of the heat generating semiconductor chip and the heat generating element, Since the second heating element was electrically heated to a temperature lower than the heating element and a predetermined temperature higher than the fluid temperature, changes in heat conduction loss from the heating semiconductor chip to the support member due to the flow rate, and temperature distribution in the longitudinal direction. changes due to flow rate are reduced, and responsiveness to flow rate fluctuations is improved.

【0015】さらに、発熱用半導体チップの基板厚さを
発熱素子を形成した部分が発熱温度検出素子を形成した
部分より薄くなるようにしたので、発熱温度検出素子の
熱時定数を発熱素子の熱時定数より大きくすることがで
き、流量変動時の発熱温度検出素子における温度復帰が
遅れ、発熱素子へ過大な電流が供給され、流量信号は若
干共振気味になる。この共振特性を利用してセンサの過
渡特性の遅れを補正することができる。即ち、発熱温度
検出素子の応答を遅らせて共振性をもたせることにより
応答性を改善できる。
Furthermore, since the thickness of the substrate of the heat generating semiconductor chip is made such that the part where the heat generating element is formed is thinner than the part where the heat generating temperature detecting element is formed, the thermal time constant of the heat generating temperature detecting element can be adjusted to match the heat of the heat generating element. It can be made larger than the time constant, and the temperature recovery in the heat generating temperature detecting element is delayed when the flow rate fluctuates, an excessive current is supplied to the heat generating element, and the flow rate signal tends to resonate slightly. This resonance characteristic can be used to correct the delay in the transient characteristics of the sensor. That is, the responsiveness can be improved by delaying the response of the heat generating temperature detecting element to provide resonance.

【0016】そして、発熱素子と発熱用半導体チップの
支持部との間に熱絶縁層を形成する、あるいは発熱用半
導体チップの基板に多結晶シリコンを用いたので、発熱
素子から支持部材への熱伝導損失をより低減でき、流量
検出精度及び応答性が向上する。
Since a thermal insulation layer is formed between the heat generating element and the supporting part of the heat generating semiconductor chip, or polycrystalline silicon is used for the substrate of the heat generating semiconductor chip, heat is not transferred from the heat generating element to the support member. Conduction loss can be further reduced, and flow rate detection accuracy and responsiveness are improved.

【0017】[0017]

【実施例】 実施例1.以下、この発明の実施例を図に基づいて説明
する。まず、図1(a)(b)はこの発明の実施例1の
半導体式流量検出装置に係わる発熱用半導体チップを示
すもので、(a)は平面図、(b)は模式断面図である
。図中2はシリコン基板内に形成された複数個のnpn
トランジスタを並列接続してなる発熱素子、3は3個の
ダイオードを直列接続した発熱温度検出素子で、後述す
るように片持ち支持される発熱用半導体チップ12の発
熱素子2より自由端側に配設される。4は凹部で、発熱
素子2部分の基板厚さが発熱温度検出素子部分より薄く
なるように形成されている。10はp形基板、20はn
形エピタキシャル層、21はn+ 埋め込み拡散層、2
2はp形拡散層、23はn+ 拡散層、24は保護膜、
25はアルミ配線、26はボンディングパッドである。
[Example] Example 1. Embodiments of the present invention will be described below with reference to the drawings. First, FIGS. 1(a) and 1(b) show a heat generating semiconductor chip related to a semiconductor flow rate detection device according to a first embodiment of the present invention, where (a) is a plan view and (b) is a schematic cross-sectional view. . 2 in the figure is a plurality of NPNs formed in a silicon substrate.
A heating element 3 is formed by connecting transistors in parallel, and 3 is a heating temperature detecting element formed by connecting three diodes in series, which is arranged on the free end side of the heating element 2 of the heating semiconductor chip 12 supported on a cantilever as will be described later. will be established. Reference numeral 4 denotes a concave portion, which is formed so that the thickness of the substrate at the heat generating element 2 portion is thinner than at the heat generating temperature detecting element portion. 10 is a p-type substrate, 20 is an n-type substrate
type epitaxial layer, 21 is an n+ buried diffusion layer, 2
2 is a p-type diffusion layer, 23 is an n+ diffusion layer, 24 is a protective film,
25 is an aluminum wiring, and 26 is a bonding pad.

【0018】次に、この発熱用半導体チップの製造方法
について図1(b)に基づき説明する。まず、研磨した
平坦なp形基板10、この場合は抵抗率0.05Ωm、
直径100mm、厚さ0.25mmのp形基板10の発
熱素子2と発熱温度検出素子3を形成しようとする位置
に高導電性n+ 層を部分的に拡散し、n+ 埋め込み
拡散層21を形成する。これはコレクタコンタクトから
ベース領域直下のコレクタ活性領域までのコレクタ直列
抵抗を下げるために形成される。次に0.005Ωm、
厚さ10μm、ドナー濃度1022mー3のn形エピタ
キシャル層20を、p形基板10上に結晶構造が母材と
連続して単結晶となる方向に成長させて形成する。次に
n形エピタキシャル層20を酸化し、マスク−エッチン
グ工程によって窓を開けて、それを通してp形を分離拡
散してn形エピタキシャル層20の島を形成し、この中
にトランジスタのベースおよびダイオードのベースとな
るp形拡散層22を拡散形成させる。また、エミッタ、
コレクタ端子の部分にはn+ 拡散を行い、n+ 拡散
層23を形成する。さらに、基板表面には二酸化シリコ
ンまたは窒化膜(Si3N4 )の保護膜24を熱酸化
、または熱分解により形成する。その後アルミ蒸着、及
びフォトリソグラフィで回路配線パターンを形成してア
ルミ配線25及びボンディングパッド26を形成する。 なおボンディングパッド26上のシリコンガラスの部分
は窓開けを行い、回路への外部接続を行う。金属配線工
程終了後、一般にSガラスと呼ばれる熱分解により成長
したSiO2またはシリコンガラスによりチップ表面に
不活性な絶縁性保護膜を形成する。以上の工程で半導体
基板上に主要な部品が構成され、次に基板裏面の少なく
とも発熱素子2に対応した位置に例えばKOHエッチン
グ液を用いてエッチングにより凹部4を形成し、ダイサ
で3mm×14mmのチップに分割して発熱用半導体チ
ップ12が完成する。
Next, a method of manufacturing this heat generating semiconductor chip will be explained based on FIG. 1(b). First, a polished flat p-type substrate 10, in this case has a resistivity of 0.05Ωm,
A highly conductive n+ layer is partially diffused at the positions where the heat generating element 2 and the heat generating temperature detecting element 3 are to be formed on the p-type substrate 10 having a diameter of 100 mm and a thickness of 0.25 mm to form an n+ buried diffusion layer 21. . This is formed to reduce the collector series resistance from the collector contact to the collector active region directly under the base region. Next, 0.005Ωm,
An n-type epitaxial layer 20 having a thickness of 10 μm and a donor concentration of 1022 m −3 is grown on a p-type substrate 10 in a direction in which the crystal structure is continuous with the base material and becomes a single crystal. Next, the n-type epitaxial layer 20 is oxidized and a window is opened by a mask-etch process through which the p-type is isolated and diffused to form an island of the n-type epitaxial layer 20, in which the base of the transistor and the diode are formed. A p-type diffusion layer 22 serving as a base is formed by diffusion. Also, the emitter,
N+ diffusion is performed in the collector terminal portion to form an n+ diffusion layer 23. Furthermore, a protective film 24 of silicon dioxide or nitride film (Si3N4) is formed on the surface of the substrate by thermal oxidation or thermal decomposition. Thereafter, a circuit wiring pattern is formed by aluminum evaporation and photolithography to form aluminum wiring 25 and bonding pads 26. Note that a window is opened in the silicon glass portion on the bonding pad 26 to make an external connection to the circuit. After the metal wiring process is completed, an inert insulating protective film is formed on the chip surface using SiO2 or silicon glass, generally called S glass, grown by thermal decomposition. The main components are formed on the semiconductor substrate through the above steps, and then a recess 4 is formed by etching using, for example, a KOH etching solution at a position corresponding to at least the heating element 2 on the back surface of the substrate, and a recess 4 of 3 mm x 14 mm is formed using a dicer. The heat generating semiconductor chip 12 is completed by dividing into chips.

【0019】前記した発熱用半導体チップの実装方法及
び構造について図2及び図3を用いて述べる。図2(a
)(b)はこの流量検出装置のセンサ部を示すもので、
(a)は平面断面図、(b)は側面断面図である。 吸気温度検出用半導体チップ11は発熱用半導体チップ
12と同様にシリコン基板上にダイオードまたは拡散抵
抗からなる吸気温度検出素子が形成されており、発熱用
半導体チップ12近傍に併設されている。図示するよう
に吸気温度検出用半導体チップ11を発熱用半導体チッ
プ12の上流側にかつ同一面内に設置することにより、
吸気温度検出用半導体チップの後流に渦が発生し、流体
、例えば空気中に含まれる塵埃の発熱用半導体チップ1
2上流側端面への錨着・堆積を軽減させる効果がある。 吸気温度検出用半導体チップ11及び発熱用半導体チッ
プ12はガラスからなる台座33に一端部で銀ペースト
、または接着剤により接着、片持ち支持されており、台
座33は樹脂製のベース31に固定してある。ベース3
1にはリードフレーム32が封止されており、リードフ
レーム32の一端に設けたパッドと上記半導体チップ1
1、12のボンディングパッド間をボンディングワイヤ
30で接続している。さらにベース31とキャップ34
を接着し、内部にゲルまたはエポキシ樹脂等の充填剤3
5を封入している。この実施例ではベース31、台座3
3、キャップ34、充填剤35で断熱性支持部材を構成
している。
The mounting method and structure of the heat generating semiconductor chip described above will be described with reference to FIGS. 2 and 3. Figure 2 (a
)(b) shows the sensor part of this flow rate detection device,
(a) is a plan sectional view, and (b) is a side sectional view. Similar to the heat generating semiconductor chip 12, the intake air temperature detection semiconductor chip 11 has an intake air temperature detection element made of a diode or a diffused resistor formed on a silicon substrate, and is placed adjacent to the heat generating semiconductor chip 12. By installing the intake air temperature detection semiconductor chip 11 on the upstream side and in the same plane as the heat generation semiconductor chip 12 as shown in the figure,
A vortex is generated downstream of the semiconductor chip for detecting the intake air temperature, and the semiconductor chip 1 generates heat from dust contained in the fluid, for example, the air.
2. It has the effect of reducing anchoring and accumulation on the upstream end face. The intake air temperature detection semiconductor chip 11 and the heat generation semiconductor chip 12 are bonded and cantilevered at one end to a pedestal 33 made of glass with silver paste or adhesive, and the pedestal 33 is fixed to a resin base 31. There is. base 3
1 is sealed with a lead frame 32, and a pad provided at one end of the lead frame 32 and the semiconductor chip 1 are sealed.
A bonding wire 30 connects bonding pads 1 and 12. Furthermore, the base 31 and cap 34
Glue and filler such as gel or epoxy resin inside 3
5 is included. In this embodiment, the base 31, the pedestal 3
3, the cap 34 and the filler 35 constitute a heat insulating support member.

【0020】図3(a)(b)はこの装置の上記センシ
ングエレメントを内部に設置したセンサダクトを示すも
ので、(a)は左側面図、(b)は正面断面図を示す。 吸気温度検出用半導体チップ11及び発熱用半導体チッ
プ12はその長手方向が流れに対してほぼ垂直になるよ
うに検出用ダクト41内に設置されており、リードフレ
ーム32は電子回路44に接続されている。検出用ダク
トの上流側には流速分布の均一化等整流を主な目的とし
たメッシュ状のネット43が配設されている。矢印は流
体の流入方向を示す。
FIGS. 3(a) and 3(b) show a sensor duct in which the above-mentioned sensing element of this device is installed, where (a) is a left side view and (b) is a front sectional view. The intake air temperature detection semiconductor chip 11 and the heat generation semiconductor chip 12 are installed in the detection duct 41 so that their longitudinal direction is substantially perpendicular to the flow, and the lead frame 32 is connected to the electronic circuit 44. There is. A mesh-like net 43 is provided on the upstream side of the detection duct for the main purpose of rectifying the flow, such as making the flow velocity distribution uniform. Arrows indicate the direction of fluid inflow.

【0021】次に動作回路について図4の電子回路図を
用いて説明する。図中一点鎖線で抱囲した部分は発熱用
半導体チップ12を示し、内部に発熱温度検出素子とし
てダイオード3、及び発熱素子としてトランジスタ2を
形成している。吸気温度検出用半導体チップ内に形成さ
れた吸気温度温度検出素子のダイオード7と上記発熱用
半導体チップ内に形成された発熱温度検出素子のダイオ
ード3、及び固定抵抗51〜53でブリッジ回路を構成
している。電源65、固定抵抗54、ツェナーダイオー
ド64で構成された定電圧回路から一定電圧が上記ブリ
ッジ回路及びカレントミラー構成のトランジスタ62、
および63に印加されている。増幅器70および固定抵
抗55、56、58、59、及び位相補償用コンデンサ
61で増幅回路を構成しブリッジ回路出力電圧を増幅し
ている。上記増幅器70の出力は固定抵抗57を介して
トランジスタ2に接続され、発熱素子であるトランジス
タ2のエミッター電流に変換される。トランジスタ63
と同一仕様のトランジスタ62のコレクタに抵抗60を
接続することで上記エミッター電流に対応した電圧を出
力端子66で検出できる。
Next, the operating circuit will be explained using the electronic circuit diagram shown in FIG. In the figure, a portion surrounded by a dashed line shows a heat generating semiconductor chip 12, in which a diode 3 as a heat generating temperature detecting element and a transistor 2 as a heat generating element are formed. A bridge circuit is constituted by a diode 7 as an intake air temperature detection element formed in the intake air temperature detection semiconductor chip, a diode 3 as an exothermic temperature detection element formed in the heat generation semiconductor chip, and fixed resistors 51 to 53. ing. A constant voltage is supplied from a constant voltage circuit composed of a power supply 65, a fixed resistor 54, and a Zener diode 64 to the bridge circuit and the transistor 62 having a current mirror configuration.
and 63. An amplifier 70, fixed resistors 55, 56, 58, 59, and a phase compensation capacitor 61 constitute an amplifier circuit to amplify the bridge circuit output voltage. The output of the amplifier 70 is connected to the transistor 2 via a fixed resistor 57, and is converted into an emitter current of the transistor 2, which is a heating element. transistor 63
By connecting a resistor 60 to the collector of a transistor 62 having the same specifications as the above, a voltage corresponding to the emitter current can be detected at the output terminal 66.

【0022】以上のように構成された検出回路の動作方
法について述べる。ダイオードのベース−エミッター電
圧VBEは一般に絶対温度Tの一次関数として数1式で
表される。
A method of operating the detection circuit configured as above will be described. The base-emitter voltage VBE of the diode is generally expressed as a linear function of the absolute temperature T by Equation 1.

【0023】[0023]

【数1】[Math 1]

【0024】ここでV0 は絶対温度ゼロでのVBEで
約1.27Vの値を示し、αは電圧温度係数でエミッタ
ー電流にも依存するが約−2.4mV/Kの値を示す。 ダイオードを複数個、直列接続することで電圧の温度感
度を増大させるとともに昇圧により増幅器の入力同相電
圧範囲内に入るように構成している。ブリッジ増幅回路
のゲインが十分大きいと仮定するとブリッジ回路の平衡
状態時には数2の関係式が成立する。
Here, V0 shows a value of about 1.27 V as VBE at absolute temperature zero, and α is a voltage temperature coefficient, which depends on the emitter current but shows a value of about -2.4 mV/K. By connecting a plurality of diodes in series, the temperature sensitivity of the voltage is increased and the voltage is boosted so that it falls within the input common mode voltage range of the amplifier. Assuming that the gain of the bridge amplifier circuit is sufficiently large, the following relational expression holds true when the bridge circuit is in a balanced state.

【0025】[0025]

【数2】[Math 2]

【0026】ただし、R2 およびR3 はブリッジ抵
抗52、53の抵抗値、VB はブリッジ電圧、VH 
は発熱素子となるダイオード3の両端電圧、VK は温
度検出素子となるダイオード7の両端電圧を示し、数1
式より数3、数4式で表される。
[0026] However, R2 and R3 are the resistance values of the bridge resistors 52 and 53, VB is the bridge voltage, and VH
is the voltage across the diode 3 which is a heating element, VK is the voltage across the diode 7 which is a temperature detection element, and is expressed by the equation 1.
From the equation, it is expressed by equations 3 and 4.

【0027】[0027]

【数3】[Math 3]

【0028】[0028]

【数4】[Math 4]

【0029】ただしTK は吸気温度検出用チップの吸
気温度検出素子における絶対温度、TH は発熱用半導
体チップの発熱温度検出素子における絶対温度を示す。 数1〜数4式より温度TH はTK の関数、数5式で
与えられる。
Here, TK indicates the absolute temperature at the intake air temperature detection element of the intake air temperature detection chip, and TH indicates the absolute temperature at the heat generation temperature detection element of the heat generating semiconductor chip. From Equations 1 to 4, temperature TH is given by Equation 5, which is a function of TK.

【0030】[0030]

【数5】[Math 5]

【0031】発熱用半導体チップ上の発熱温度検出素子
における温度が流量に関係なく一定になるように同チッ
プ上の発熱素子に電流を供給するような回路構成になっ
ている。
The circuit is configured to supply current to the heat generating element on the heat generating semiconductor chip so that the temperature of the heat generating temperature detecting element on the heat generating semiconductor chip becomes constant regardless of the flow rate.

【0032】一方、平板形の発熱用半導体チップを図3
に示すように設置した場合の発熱素子における発熱量P
H と流速Uの関係は平衡状態において数6式で表され
る。
On the other hand, a flat heat generating semiconductor chip is shown in FIG.
Calorific value P of the heating element when installed as shown in
The relationship between H and the flow velocity U is expressed by Equation 6 in an equilibrium state.

【0033】[0033]

【数6】[Math 6]

【0034】ただしA、Bは定数である。また発熱量P
H は発熱用トランジスタ2のコレクタ−エミッター間
電圧VCEと負荷電流IC の積、数7式で表される。
However, A and B are constants. Also, the calorific value P
H is the product of the collector-emitter voltage VCE of the heat generating transistor 2 and the load current IC, and is expressed by Equation 7.

【0035】[0035]

【数7】[Math 7]

【0036】よって発熱用トランジスタのVCE、およ
び温度差(TH−TK)を一定にするような回路を構成
することにより負荷電流IC から流速U、および流量
の検出が可能になる。図4に示した回路ではトランジス
タ62と63でカレントミラー回路を構成することによ
り、発熱用トランジスタ2の負荷電流IC と同等な電
流を抵抗60における電圧出力として取り出している。
Therefore, by configuring a circuit that keeps the VCE of the heat generating transistor and the temperature difference (TH-TK) constant, it becomes possible to detect the flow velocity U and flow rate from the load current IC. In the circuit shown in FIG. 4, the transistors 62 and 63 form a current mirror circuit, so that a current equivalent to the load current IC of the heat generating transistor 2 is taken out as a voltage output at the resistor 60.

【0037】半導体式流量検出装置の発熱用半導体チッ
プの長手方向の温度分布を図5の特性図に示す。図5(
a)は以上のように構成された実施例1の発熱温度検出
素子が発熱素子より自由端側に形成されている場合の温
度分布、同(b)は比較例の発熱温度検出素子が発熱素
子の固定端側に形成された場合の温度分布である。縦軸
に温度、横軸に発熱用半導体チップ自由端から距離をと
っており、特性曲線Hは大流量時の温度分布、Lは小流
量時の温度分布を表わしている。(a)(b)いずれの
発熱温度検出素子も同一温度で動作している。図5(a
)、(b)を比較して明らかなように(b)の方が発熱
用半導体チップの温度分布特性の流量による変化が大き
い。これは発熱用半導体チップの発熱素子から支持部へ
の熱伝導損失が発熱素子から自由端側へのそれに比べて
大きいことによる。よって発熱用半導体チップ上の発熱
素子より自由端側に発熱温度検出素子を形成した方が、
流量変動時の発熱素子の温度変化が小さくなり、応答時
間も低減する。
The temperature distribution in the longitudinal direction of the heat generating semiconductor chip of the semiconductor type flow rate detection device is shown in the characteristic diagram of FIG. Figure 5 (
(a) shows the temperature distribution when the heat generating temperature detecting element of Example 1 configured as above is formed on the free end side of the heat generating element, and (b) shows the temperature distribution when the heat generating temperature detecting element of the comparative example is formed on the free end side of the heat generating element. This is the temperature distribution when formed on the fixed end side. The vertical axis represents the temperature, and the horizontal axis represents the distance from the free end of the heat generating semiconductor chip.The characteristic curve H represents the temperature distribution at a large flow rate, and the characteristic curve L represents the temperature distribution at a small flow rate. (a) (b) Both heat generation temperature detection elements operate at the same temperature. Figure 5 (a
) and (b), it is clear that in (b) the temperature distribution characteristic of the heat generating semiconductor chip changes more with the flow rate. This is because the heat conduction loss from the heating element of the heating semiconductor chip to the support portion is larger than that from the heating element to the free end side. Therefore, it is better to form the heat generating temperature detection element on the free end side of the heat generating element on the heat generating semiconductor chip.
The temperature change of the heating element when the flow rate fluctuates is reduced, and the response time is also reduced.

【0038】上記のように構成されたこの発明の半導体
式流量検出装置は、発熱素子2および温度検出素子3,
7にトランジスタや拡散抵抗等半導体を用いたためバイ
ポーラの一般的半導体プロセスを利用でき、量産性に優
れると共に発熱素子2と基板が同一材料のシリコンより
構成されるために熱応力の問題がなく良好な素子の特性
が得られる。加えて、発熱用半導体チップ12を一端部
で断熱性支持部材により片持ち支持する構造とし、発熱
温度検出素子3を発熱素子2よりも自由端側に設けたの
で、発熱用半導体チップ12から支持部材への熱伝導損
失が低減でき、流量検出精度、流量変動に対する応答性
と電源投入後の応答性が向上する。また、発熱用半導体
チップ12の基板厚さを発熱素子2を形成した部分が発
熱温度検出素子3を形成した部分より薄くしているので
、発熱用半導体チップ12上の発熱温度検出素子3の応
答を遅らせて共振性をもたせ、応答性を改善できる。 さらに発熱素子2として複数個のトランジスタを並列接
続して構成しているので、エミッタ周辺の抵抗が低減し
、発熱素子2内の発熱分布(温度)の均一化が図れると
ともに大電流容量で良好な高周波特性をもった発熱用ト
ランジスタが実現できる。そして半導体チップ11,1
2は支持部材内部でリードフレーム32に接触面積の小
さいボンディングワイヤ30で実装されており、発熱用
半導体チップ12から支持部への熱伝導損失が低減でき
、またセンサのハンドリングも容易であるためアセンブ
リ等の生産性にも優れる。
The semiconductor flow rate detection device of the present invention configured as described above includes a heating element 2, a temperature detection element 3,
Since semiconductors such as transistors and diffused resistors are used in 7, a general bipolar semiconductor process can be used, which is excellent in mass production, and since the heating element 2 and the substrate are made of the same material, silicon, there is no problem of thermal stress. The characteristics of the element can be obtained. In addition, the heat-generating semiconductor chip 12 is cantilever-supported at one end by a heat-insulating support member, and the heat-generating temperature detection element 3 is provided closer to the free end than the heat-generating element 2. Heat conduction loss to components can be reduced, and flow rate detection accuracy, responsiveness to flow rate fluctuations, and responsiveness after power is turned on are improved. In addition, since the substrate thickness of the heat generating semiconductor chip 12 is made thinner in the part where the heat generating element 2 is formed than in the part where the heat generating temperature detecting element 3 is formed, the response of the heat generating temperature detecting element 3 on the heat generating semiconductor chip 12 is It is possible to improve responsiveness by delaying the delay and providing resonance. Furthermore, since the heating element 2 is configured by connecting multiple transistors in parallel, the resistance around the emitter is reduced, the heat distribution (temperature) within the heating element 2 is made uniform, and the high current capacity and good performance are achieved. A heat generating transistor with high frequency characteristics can be realized. and semiconductor chip 11,1
2 is mounted on a lead frame 32 inside the support member using a bonding wire 30 with a small contact area, which reduces heat conduction loss from the heat generating semiconductor chip 12 to the support part, and also makes the sensor easy to handle. It also has excellent productivity.

【0039】実施例2.図6(a)(b)はこの発明の
実施例2に係わる発熱素子2と発熱温度検出素子3に拡
散抵抗を用いた発熱用半導体チップ12を示すもので、
(a)は平面図、(b)は模式断面図である。前記した
実施例1と同様な工程によりn形エピタキシャル層の島
20にp形拡散層22からなる拡散抵抗を形成しており
、表面アクセプタ濃度1024m−3前後、深さ数μm
、面積抵抗100〜200Ω/□、抵抗温度係数100
0〜3000ppm/℃の範囲にある。発熱温度検出素
子3の温度を拡散抵抗変化として検出し、この温度が一
定になるように発熱素子である拡散抵抗の加熱電流を制
御する構成となっている。発熱素子2および発熱温度検
出素子3の位置関係等は実施例1と同様であり、また同
様な効果を奏する。
Example 2. 6(a) and 6(b) show a heat generating semiconductor chip 12 in which diffused resistors are used for the heat generating element 2 and the heat generating temperature detecting element 3 according to the second embodiment of the present invention.
(a) is a plan view, and (b) is a schematic cross-sectional view. A diffused resistor consisting of a p-type diffusion layer 22 is formed on the island 20 of the n-type epitaxial layer by the same process as in Example 1 described above, and the surface acceptor concentration is around 1024 m-3 and the depth is several μm.
, area resistance 100-200Ω/□, resistance temperature coefficient 100
It is in the range of 0 to 3000 ppm/°C. The temperature of the heat generating temperature detecting element 3 is detected as a change in the diffused resistance, and the heating current of the diffused resistor which is the heat generating element is controlled so as to keep the temperature constant. The positional relationship between the heat generating element 2 and the heat generating temperature detecting element 3 is the same as in the first embodiment, and similar effects are achieved.

【0040】実施例3.図7(a)(b)はこの発明の
実施例3に係わる発熱用半導体チップを示すもので、(
a)は平面図、(b)は模式断面図である。この実施例
では発熱用半導体チップ12の発熱素子2と支持部との
間に例えば、単結晶シリコンよりも熱伝導率が1/50
以下となる酸化多孔質シリコン等の熱絶縁層28が形成
されており、これにより支持部への熱伝導損失を低減さ
せることができる。この多孔質酸化シリコンは窒化膜に
よる選択的マスキングの後、HF溶液中での陽極反応、
及び酸化反応によって形成できる。この熱絶縁層により
発熱素子2における発熱量に対する流体への熱伝達の割
合が増大し、流量感度が向上すると共に流量変動に対し
て良好な応答性が得られる。
Example 3. 7(a) and 7(b) show a heat generating semiconductor chip according to Embodiment 3 of the present invention.
(a) is a plan view, and (b) is a schematic cross-sectional view. In this embodiment, the heat conductivity between the heat generating element 2 of the heat generating semiconductor chip 12 and the supporting portion is 1/50 that of single crystal silicon, for example.
A thermal insulating layer 28 made of oxidized porous silicon or the like as described below is formed, thereby reducing heat conduction loss to the support portion. After selective masking with a nitride film, this porous silicon oxide undergoes an anodic reaction in an HF solution.
and can be formed by oxidation reactions. This thermal insulating layer increases the ratio of heat transfer to the fluid to the amount of heat generated in the heating element 2, improving flow sensitivity and providing good responsiveness to flow rate fluctuations.

【0041】実施例4.図8(a)〜(e)はこの発明
の実施例3に係わるP形基板の替わりに多結晶シリコン
基板を用いた発熱用半導体チップの製造方法を工程順に
示す模式断面図である。図8(a)に示すようにn形基
板29表面にまずn+ 埋め込み拡散層を形成し、表面
にエッチングマスク材として部分的に絶縁膜27を形成
する。その後上面よりエッチングを行い、表面にV形溝
を形成し、表面酸化により絶縁膜27を作成する(図8
b)。次に図8(c)に示すように厚い多結晶シリコン
6を酸化膜である絶縁膜27上に気相成長させる。さら
にウエハーを裏返しn形基板29表面に絶縁膜27が現
れるまで研磨して図8(d)に示されるような分離ポケ
ットを形成する。そのポケットの内に発熱素子2および
発熱温度検出素子3を実施例1と同様なマスク工程と拡
散工程により製作する(図8e)。
Example 4. FIGS. 8A to 8E are schematic cross-sectional views showing, in order of steps, a method of manufacturing a heat generating semiconductor chip using a polycrystalline silicon substrate instead of a P-type substrate according to Example 3 of the present invention. As shown in FIG. 8A, an n+ buried diffusion layer is first formed on the surface of the n-type substrate 29, and an insulating film 27 is partially formed on the surface as an etching mask material. After that, etching is performed from the top surface to form a V-shaped groove on the surface, and an insulating film 27 is created by surface oxidation (Fig. 8
b). Next, as shown in FIG. 8(c), a thick polycrystalline silicon 6 is grown in vapor phase on the insulating film 27, which is an oxide film. Furthermore, the wafer is turned over and polished until the insulating film 27 appears on the surface of the n-type substrate 29, thereby forming separation pockets as shown in FIG. 8(d). A heat generating element 2 and a heat generating temperature detecting element 3 are manufactured in the pocket by the same masking process and diffusion process as in Example 1 (FIG. 8e).

【0042】多結晶シリコン基板6の電気的特性は重要
ではなく、シリコン単結晶より熱伝導率が1/3程度で
あることを利用して機械的にウエハーを支持するのを主
な目的としている。発熱用半導体チップ12の基板に多
結晶シリコンを用いることにより発熱素子2から支持部
への熱伝導損失が低減し、流量感度が向上すると共に流
量変動に対して良好な応答性が得られる。
The electrical characteristics of the polycrystalline silicon substrate 6 are not important, and its main purpose is to mechanically support the wafer by utilizing the fact that its thermal conductivity is about 1/3 that of single crystal silicon. . By using polycrystalline silicon for the substrate of the heat generating semiconductor chip 12, heat conduction loss from the heat generating element 2 to the support portion is reduced, flow sensitivity is improved, and good responsiveness to flow rate fluctuations can be obtained.

【0043】実施例5.図9(a)(b)はこの発明の
実施例5に係わる発熱素子2と支持部との間に第2の発
熱素子9が形成された発熱用半導体チップ12を示すも
ので、(a)は平面図、(b)は模式断面図である。第
2の発熱素子9はp形拡散抵抗からなり、n形エピタキ
シャル層20の島内に形成されている。第2の発熱素子
9の動作回路について図10の電子回路図を用いて説明
する。トランジスタ67には発熱素子2と同等な電流が
流れ、第2の発熱素子である抵抗9においてジュール熱
で発熱する。第2の発熱素子9の温度は発熱素子2より
低く、流体温度より所定温度高くなるように設定される
。第2の発熱素子における発熱量PH2は数8式で表わ
される。
Example 5. 9(a) and 9(b) show a heat generating semiconductor chip 12 in which a second heat generating element 9 is formed between a heat generating element 2 and a support portion according to a fifth embodiment of the present invention. is a plan view, and (b) is a schematic cross-sectional view. The second heating element 9 is made of a p-type diffused resistor and is formed within an island of the n-type epitaxial layer 20. The operation circuit of the second heating element 9 will be explained using the electronic circuit diagram of FIG. 10. A current equivalent to that of the heating element 2 flows through the transistor 67, and heat is generated by Joule heat in the resistor 9, which is the second heating element. The temperature of the second heating element 9 is set to be lower than that of the heating element 2 and higher than the fluid temperature by a predetermined temperature. The amount of heat generated PH2 in the second heating element is expressed by Equation 8.

【0044】[0044]

【数8】[Math. 8]

【0045】ただしR9 は第2の発熱素子である拡散
抵抗9の抵抗値を示す。数7、数8式を比較して明かな
ように発熱素子2における発熱量PH に対する第2の
発熱素子9における発熱量PH2の比は流量が増大する
ほど大きくなる。一方、発熱用半導体チップ12の支持
部温度は図5(a)に示したように流量が増大するほど
低くなる。よって発熱素子2をコレクタ損失で発熱させ
、第2の発熱素子9を発熱用半導体チップの支持部に形
成し、ジュール熱で発熱させることによって支持部の温
度の流量依存性が大幅に低減し、流量感度が向上すると
共に流量変動に対して良好な応答性が得られる。
However, R9 represents the resistance value of the diffused resistor 9, which is the second heating element. As is clear from comparing Equations 7 and 8, the ratio of the amount of heat generated PH2 in the second heating element 9 to the amount of heat generated PH2 in the heating element 2 increases as the flow rate increases. On the other hand, the temperature of the support portion of the heat generating semiconductor chip 12 becomes lower as the flow rate increases, as shown in FIG. 5(a). Therefore, by causing the heating element 2 to generate heat due to collector loss, forming the second heating element 9 on the supporting portion of the heat generating semiconductor chip, and generating heat using Joule heat, the dependence of the temperature of the supporting portion on the flow rate can be significantly reduced. Flow rate sensitivity is improved and good responsiveness to flow rate fluctuations can be obtained.

【0046】なお第2の発熱素子9の拡散抵抗と吸気温
度検出用半導体チップ11上の吸気温度検出素子である
拡散抵抗とでブリッジ回路を構成し、公知である定温度
差制御を行うことによっても同様な効果を奏する。
[0046] By forming a bridge circuit with the diffused resistor of the second heating element 9 and the diffused resistor which is the intake air temperature detecting element on the semiconductor chip 11 for detecting the intake air temperature, and performing the known constant temperature difference control, has a similar effect.

【0047】実施例6.なお上記実施例ではチップ11
、12を台座33を介してベース31に接着材で固定し
たが、図11のこの発明に係わるセンシング部の他の実
施例を示す模式断面図の様にダイパッド36上に発熱用
半導体チップ12をダイボンドして、さらにワイヤボン
ディングしたのちにボンディング部をトランスファモー
ルドしてセンシング部を作成してもよい。
Example 6. Note that in the above embodiment, the chip 11
, 12 are fixed to the base 31 via the pedestal 33 with an adhesive. However, as shown in FIG. 11, which is a schematic cross-sectional view showing another embodiment of the sensing section according to the present invention, the heat generating semiconductor chip 12 is mounted on the die pad 36. The sensing portion may be created by performing die bonding, further wire bonding, and then transfer molding the bonding portion.

【0048】実施例7.また、図12のこの発明に係わ
るセンシング部のさらに他の実施例を示す模式断面図の
ように発熱用半導体チップ12とインナーリード32を
バンプ法によって接続固定する方法もある。発熱用半導
体チップ12のボンディングパッド26には写真製版技
術および電気メッキ法を用いてAuバンプ39が設けら
れており、TABテープはインナーリード32とポリイ
ミド樹脂からなるテープ37が接着材で貼り合わされて
いる。TABテープのインナーリード32に加熱したボ
ンディングツールを用いて全バンプを一括加圧してAu
/Sn合金により接合し、その後ボンディング部分とT
ABの一方端をトランスファーモールドにより成形封止
する。
Example 7. There is also a method of connecting and fixing the heat generating semiconductor chip 12 and the inner leads 32 by a bump method, as shown in FIG. 12, which is a schematic cross-sectional view showing still another embodiment of the sensing section according to the present invention. Au bumps 39 are provided on the bonding pads 26 of the heat generating semiconductor chip 12 using photolithography and electroplating, and the TAB tape is made by bonding inner leads 32 and a tape 37 made of polyimide resin with an adhesive. There is. All the bumps are pressed together using a heated bonding tool on the inner lead 32 of the TAB tape to bond the Au.
/Sn alloy, and then the bonding part and T
One end of AB is molded and sealed by transfer molding.

【0049】以上の様にTAB技術とトランスファモー
ルド技術を用いてセンシング部を作成することにより発
熱用半導体チップ12の支持強度をさらに高め、発熱用
半導体チップ12の支持材であるモールド材の厚さを薄
くでき、小形軽量化とともに製造の自動化も図れる。ま
たセンシング部の検出ダクト内へのアセンブリも容易と
なる。
By creating the sensing portion using TAB technology and transfer molding technology as described above, the supporting strength of the heat generating semiconductor chip 12 is further increased, and the thickness of the molding material that is the supporting material for the heat generating semiconductor chip 12 is reduced. It can be made thinner, smaller and lighter, and manufacturing can be automated. Furthermore, assembly of the sensing section into the detection duct becomes easy.

【0050】実施例8 なお上記実施例ではダクト40の外周上に設けたハウジ
ング内に電子回路44を設置したが、調整抵抗を除く電
子回路部分を集積化した半導体チップをベース31上に
設置して各半導体チップ間11、12とリードフレーム
32をワイヤボンディングで接続するか、あるいは電子
回路と吸気温度検出素子を発熱用半導体チップ上に集積
化することによって電子回路44は大幅に小形化でき、
耐ノイズ性が向上し、コスト低減も図れる。
Embodiment 8 In the above embodiment, the electronic circuit 44 was installed in the housing provided on the outer periphery of the duct 40, but a semiconductor chip in which the electronic circuit part except the adjustment resistor was integrated was installed on the base 31. The electronic circuit 44 can be significantly downsized by connecting the semiconductor chips 11, 12 and the lead frame 32 by wire bonding, or by integrating the electronic circuit and the intake air temperature detection element on the heat generating semiconductor chip.
Improves noise resistance and reduces costs.

【0051】[0051]

【発明の効果】以上のように、この発明の半導体式流量
検出装置は、シリコン基板上に半導体素子からなる発熱
温度検出素子および発熱素子を形成した発熱用半導体チ
ップをその一端部で断熱性支持部材により片持ち支持す
る構造としたので、発熱温度検出素子に発生する熱応力
は小さく、支持部への熱伝導損失を低減でき、流量検出
精度、流量変動に対する応答性と電源投入後の応答性が
向上するとともに振動等に対する耐久性も向上する。
As described above, the semiconductor type flow rate detection device of the present invention has a heat-generating semiconductor chip in which a heat-generating temperature detecting element and a heat-generating element made of a semiconductor element are formed on a silicon substrate, and is thermally supported at one end thereof. Since the structure is cantilever-supported by members, the thermal stress generated in the heat-generating temperature detection element is small, reducing heat conduction loss to the support part, improving flow rate detection accuracy, responsiveness to flow rate fluctuations, and responsiveness after power is turned on. As well as improving durability against vibrations and the like.

【0052】また、発熱用半導体チップ上に発熱素子と
発熱温度検出素子を近接して発熱用半導体チップの支持
部側に発熱素子を、自由端側に発熱温度検出素子を形成
したことにより、支持部材への熱伝導損失の流量による
変化が小さくなり、即ちチップの長手方向の温度分布の
流量に対する変化が小さくなり応答性が向上する。
Furthermore, by forming the heating element and the heating temperature detecting element on the heating semiconductor chip in close proximity to each other, the heating element is formed on the supporting portion side of the heating semiconductor chip, and the heating temperature detecting element is formed on the free end side of the heating semiconductor chip. The change in heat conduction loss to the member due to the flow rate is reduced, that is, the change in the temperature distribution in the longitudinal direction of the chip with respect to the flow rate is reduced, and responsiveness is improved.

【0053】さらに、発熱素子を形成した部分の発熱用
半導体チップの基板厚さを発熱温度検出素子を形成した
部分の基板厚さに比べて薄くすることで発熱素子の熱時
定数が温度検出素子のそれに比べて小さくなり、流量変
動に対する応答特性に共振性を与え、応答遅れを改善す
ることが可能になる。
Furthermore, by making the thickness of the substrate of the heating semiconductor chip in the portion where the heating element is formed thinner than the substrate thickness in the portion where the heating temperature detecting element is formed, the thermal time constant of the heating element is reduced to a value equal to that of the temperature detecting element. This makes it possible to give resonance to the response characteristics to flow rate fluctuations and improve response delays.

【0054】そして、発熱素子の支持部側に熱絶縁層を
配置させる、あるいは発熱用半導体チップの基板に多結
晶シリコンを用いる、または発熱素子の支持部側に別の
第2の発熱素子を設けることにより、発熱素子から支持
部への熱伝導損失を低減できる。これにより流量検出感
度が増大するとともに、流量変動に対する応答性が向上
する。また電子回路の電源投入後、発熱素子が所定の温
度に達して正確な流量信号が得られるまでの時間も短縮
される。
[0054] Then, a heat insulating layer is arranged on the support side of the heat generating element, polycrystalline silicon is used as the substrate of the heat generating semiconductor chip, or another second heat generating element is provided on the support side of the heat generating element. Thereby, heat conduction loss from the heating element to the support portion can be reduced. This increases flow rate detection sensitivity and improves responsiveness to flow rate fluctuations. Furthermore, the time required for the heating element to reach a predetermined temperature and to obtain an accurate flow rate signal after the electronic circuit is powered on is also shortened.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例1の半導体式流量検出装置に
係わる発熱用半導体チップの平面図および模式断面図で
ある。
FIG. 1 is a plan view and a schematic cross-sectional view of a heat generating semiconductor chip related to a semiconductor flow rate detection device according to a first embodiment of the present invention.

【図2】この発明の実施例1に係わるセンシング部の模
式断面図である。
FIG. 2 is a schematic cross-sectional view of a sensing section according to Example 1 of the present invention.

【図3】この発明の実施例1の半導体式流量検出装置の
側面図、及び断面図である。
FIG. 3 is a side view and a sectional view of a semiconductor flow rate detection device according to a first embodiment of the present invention.

【図4】この発明の実施例1に係わる電子回路図である
FIG. 4 is an electronic circuit diagram according to Embodiment 1 of the present invention.

【図5】この発明の実施例1に係わる発熱用半導体チッ
プの長手方向の温度分布を比較例とともに示す特性図で
ある。
FIG. 5 is a characteristic diagram showing the temperature distribution in the longitudinal direction of the heat generating semiconductor chip according to Example 1 of the present invention together with a comparative example.

【図6】この発明の実施例2に係わる発熱用半導体チッ
プの平面図および模式断面図である。
FIG. 6 is a plan view and a schematic cross-sectional view of a heat generating semiconductor chip according to Example 2 of the present invention.

【図7】この発明の実施例3に係わる発熱用半導体チッ
プの平面図および模式断面図である。
FIG. 7 is a plan view and a schematic cross-sectional view of a heat generating semiconductor chip according to Example 3 of the present invention.

【図8】この発明の実施例4に係わる発熱用半導体チッ
プの製造工程を順に示す模式断面図である。
FIG. 8 is a schematic cross-sectional view sequentially showing the manufacturing process of a heat generating semiconductor chip according to Example 4 of the present invention.

【図9】この発明の実施例5に係わる発熱用半導体チッ
プの平面図および模式断面図である。
FIG. 9 is a plan view and a schematic cross-sectional view of a heat generating semiconductor chip according to Example 5 of the present invention.

【図10】この発明の実施例5に係わる電子回路図であ
る。
FIG. 10 is an electronic circuit diagram according to a fifth embodiment of the present invention.

【図11】この発明の実施例6に係わる発熱用半導体チ
ップを実装したセンシング部の模式断面図である。
FIG. 11 is a schematic cross-sectional view of a sensing section in which a heat generating semiconductor chip according to a sixth embodiment of the present invention is mounted.

【図12】この発明の実施例7に係わる発熱用半導体チ
ップを実装したセンシング部の模式断面図である。
FIG. 12 is a schematic cross-sectional view of a sensing section in which a heat generating semiconductor chip according to a seventh embodiment of the present invention is mounted.

【図13】従来の半導体式流量検出装置のセンサ部の部
分断面斜視図である。
FIG. 13 is a partially sectional perspective view of a sensor section of a conventional semiconductor flow rate detection device.

【図14】従来の半導体式流量検出装置の半導体チップ
の平面図である。
FIG. 14 is a plan view of a semiconductor chip of a conventional semiconductor flow rate detection device.

【符号の説明】[Explanation of symbols]

2  発熱素子 3  発熱温度検出素子 6  多結晶シリコン基板 9  第2発熱素子 11  吸気温度検出用半導体チップ 12  発熱用半導体チップ 28  熱絶縁層 30  ボンディングワイヤ 31  ベース 32  リードフレーム 33  台座 34  キャップ 35  充填材 44  電子回路 2 Heating element 3 Heat generation temperature detection element 6 Polycrystalline silicon substrate 9 Second heating element 11 Semiconductor chip for intake air temperature detection 12 Semiconductor chip for heat generation 28 Thermal insulation layer 30 Bonding wire 31 Base 32 Lead frame 33 Pedestal 34 Cap 35 Filling material 44 Electronic circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  流路内に設置され発熱素子と発熱温度
検出素子が形成された発熱用半導体チップ、上記流路内
に設置され吸気温度検出素子が形成された吸気温度検出
用半導体チップ、及び上記発熱温度検出素子で検出され
る温度が上記吸気温度検出素子で検出される流体温度よ
りも一定温度高くなるように上記発熱素子の発熱量を制
御する定温度制御回路を備える半導体式流量検出装置に
おいて、少なくとも発熱用半導体チップをその一端部で
断熱性支持部材により支持固定したことを特徴とする半
導体式流量検出装置。
1. A heat generating semiconductor chip installed in a flow path and having a heat generating element and a heat generation temperature detection element formed thereon, a semiconductor chip for intake air temperature detection installed in the flow path and having an intake air temperature detection element formed thereon, and A semiconductor flow rate detection device comprising a constant temperature control circuit that controls the amount of heat generated by the heat generation element so that the temperature detected by the heat generation temperature detection element is a certain temperature higher than the fluid temperature detected by the intake air temperature detection element. A semiconductor flow rate detection device characterized in that at least one end of a heat generating semiconductor chip is supported and fixed by a heat insulating support member.
【請求項2】  発熱用半導体チップに発熱温度検出素
子を発熱素子よりも自由端側にこれと近接して設けたこ
とを特徴とする請求項第1項記載の半導体式流量検出装
置。
2. The semiconductor flow rate detection device according to claim 1, wherein the heat generation semiconductor chip is provided with a heat generation temperature detection element closer to the free end than the heat generation element.
【請求項3】  発熱用半導体チップの基板厚さを発熱
素子を形成した部分が発熱用温度検出素子を形成した部
分より薄くなるようにしたことを特徴とする請求項第1
項または第2項記載の半導体式流量検出装置。
3. The substrate thickness of the heat generating semiconductor chip is such that the portion where the heat generating element is formed is thinner than the portion where the heat generating temperature detecting element is formed.
3. The semiconductor flow rate detection device according to item 1 or 2.
【請求項4】  発熱素子と発熱用半導体チップの支持
部との間に熱絶縁層を形成したことを特徴とする請求項
第1項ないし第3項のいずれかに記載の半導体式流量検
出装置。
4. The semiconductor flow rate detection device according to claim 1, further comprising a heat insulating layer formed between the heat generating element and the support portion of the heat generating semiconductor chip. .
【請求項5】  発熱用半導体チップの基板に多結晶シ
リコンを用いたことを特徴とする請求項第1項ないし第
3項のいずれかに記載の半導体式流量検出装置。
5. The semiconductor flow rate detection device according to claim 1, wherein polycrystalline silicon is used for the substrate of the heat generating semiconductor chip.
【請求項6】  発熱用半導体チップにその支持部と発
熱素子との間に第2の発熱素子を形成し、第2の発熱素
子を上記発熱素子より低い温度で流体温度より所定温度
高くなるように電気的に加熱したことを特徴とする請求
項第1項ないし第5項のいずれかに記載の半導体式流量
検出装置。
6. A second heating element is formed in the heating semiconductor chip between its support portion and the heating element, and the second heating element is set at a temperature lower than the heating element and higher than the fluid temperature by a predetermined temperature. 6. The semiconductor flow rate detection device according to claim 1, wherein the semiconductor flow rate detection device is electrically heated to .
JP3145160A 1991-06-18 1991-06-18 Semiconductor type flow detector Expired - Fee Related JP2855885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3145160A JP2855885B2 (en) 1991-06-18 1991-06-18 Semiconductor type flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3145160A JP2855885B2 (en) 1991-06-18 1991-06-18 Semiconductor type flow detector

Publications (2)

Publication Number Publication Date
JPH04369480A true JPH04369480A (en) 1992-12-22
JP2855885B2 JP2855885B2 (en) 1999-02-10

Family

ID=15378818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3145160A Expired - Fee Related JP2855885B2 (en) 1991-06-18 1991-06-18 Semiconductor type flow detector

Country Status (1)

Country Link
JP (1) JP2855885B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030198A1 (en) * 2011-08-31 2013-03-07 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flow sensor for determining a flow parameter and method for determining said flow parameter
CN112797322A (en) * 2021-01-17 2021-05-14 袁军 Underground pipe detects with patrolling and examining robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030198A1 (en) * 2011-08-31 2013-03-07 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flow sensor for determining a flow parameter and method for determining said flow parameter
EP2869041A1 (en) * 2011-08-31 2015-05-06 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flow sensor for monitoring a flow parameter and method of determining the same
EP2869040A1 (en) * 2011-08-31 2015-05-06 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flow sensor for monitoring a flow parameter and method of determining the same
EP2869039A1 (en) * 2011-08-31 2015-05-06 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flow sensor for monitoring a flow parameter and method of determining the same
CN112797322A (en) * 2021-01-17 2021-05-14 袁军 Underground pipe detects with patrolling and examining robot

Also Published As

Publication number Publication date
JP2855885B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US4733559A (en) Thermal fluid flow sensing method and apparatus for sensing flow over a wide range of flow rates
US4744246A (en) Flow sensor on insulator
US4677850A (en) Semiconductor-type flow rate detecting apparatus
JP3583773B2 (en) Thermal air flow meter
US8336376B2 (en) Thermal flow meter
CA1314413C (en) Fluid flow detector
JP5857032B2 (en) Thermal flow meter
US4633578A (en) Miniature thermal fluid flow sensors and batch methods of making same
US4682496A (en) Flow rate detecting apparatus having semiconductor chips
US5827960A (en) Bi-directional mass air flow sensor having mutually-heated sensor elements
US6889545B2 (en) Flow rate sensor
JPH06105178B2 (en) Control and detection circuit for a mass airflow sensor
JPS6151419B2 (en)
US6935172B2 (en) Thermal type flow measuring device
US5351536A (en) Air flow rate detector
JPH0781892B2 (en) Semiconductor integrated circuit, method of manufacturing the same, and use of such circuit to provide anemometer
TWI408379B (en) Leadframe current sensor
US20070125169A1 (en) Thermal flowmeter of fluid
JPS601525A (en) Semiconductor type flow-rate detecting device
JP2682349B2 (en) Air flow meter and air flow detection method
JP2001208586A (en) Air flow rate-measuring device
JPH04369480A (en) Semiconductor flow rate detector
JP5492834B2 (en) Thermal flow meter
JPS59147221A (en) Semiconductor type flow rate detecting apparatus
JP3019784B2 (en) Fluid flow detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees