JPH04368463A - Power source - Google Patents

Power source

Info

Publication number
JPH04368463A
JPH04368463A JP14185791A JP14185791A JPH04368463A JP H04368463 A JPH04368463 A JP H04368463A JP 14185791 A JP14185791 A JP 14185791A JP 14185791 A JP14185791 A JP 14185791A JP H04368463 A JPH04368463 A JP H04368463A
Authority
JP
Japan
Prior art keywords
output
circuit
switch means
transformer
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14185791A
Other languages
Japanese (ja)
Inventor
Yoshikiyo Futagawa
二川 良清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14185791A priority Critical patent/JPH04368463A/en
Publication of JPH04368463A publication Critical patent/JPH04368463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To maintain supply of energy to a series resonance circuit with a high efficiency by interposing switch means between alternate switches of a full bridge and a DC input. CONSTITUTION:A resonance circuit has a series resonance of an output transformer(OT) 2 and a capacitor (CD) C4. Driving of the resonance circuit is executed by a full bridge having transistors(Tr) 4-7. The operation of alternate switches is executed by a circuit of an oscillator 12, a driving circuit 13 and a driving transformer 11. Currents during the operation of a diode D1, flow in a half cycle of a circuit of a DO D1, the Tr 4, the CD C4, the OT 2, the Tr 7 and the DO D1, and a half cycle of a circuit of the DO D1, the Tr 5, the OT 2, the CD C4, the Tr 6 and the DO D1. In the meantime, the charging energy of the CD C4 is converted to electromagnetic energy of the OT 2 to partly become an output energy. An error signal of an output Vo controls the output Vo by a feedback loop of an error detector 14, a photocoupler 15, a control circuit 16, a pulse transformer 10 and a Tr 3.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は商用電源より安定化した
直流を得る電源装置に係り、共振型をスイッチング作動
による電源装置の回路構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device that obtains a stabilized direct current from a commercial power source, and more particularly to a circuit configuration of a power supply device using resonance type switching operation.

【0002】0002

【従来の技術】図3は従来技術による共振型の電源回路
の実施例を示す。入力1は商用電力を整流平滑した直流
入力端子を表し、V1Nはその電圧を表す。C0はは平
滑コンデンサ、C1とC2は同容量で電圧V1Nをほぼ
半分に分割するコンデンサである。LとC3は並列共振
するコイルとコンデンサである。C4はコンデンサC1
とC2より容量が小さく、出力トランス2のリーク又は
励磁インダクタンスと直列共振するコンデンサである。
2. Description of the Related Art FIG. 3 shows an embodiment of a resonant power supply circuit according to the prior art. Input 1 represents a DC input terminal obtained by rectifying and smoothing commercial power, and V1N represents its voltage. C0 is a smoothing capacitor, and C1 and C2 are capacitors with the same capacity that divide the voltage V1N approximately in half. L and C3 are a coil and a capacitor that resonate in parallel. C4 is capacitor C1
This capacitor has a smaller capacitance than C2 and resonates in series with the leakage or excitation inductance of the output transformer 2.

【0003】コンデンサC3、コイルL、コンデンサC
4、トランス2よりなる総合インピダンス特性を示すの
が図4である。f1とf3が直列共振周波数、f2が並
列共振周波数を表す。
[0003] Capacitor C3, coil L, capacitor C
4. FIG. 4 shows the overall impedance characteristics of the transformer 2. f1 and f3 represent series resonant frequencies, and f2 represents parallel resonant frequencies.

【0004】図1の従来技術の作動周波数範囲fは、f
2<f<f3であり、30KHz〜数MHzである。
The operating frequency range f of the prior art in FIG.
2<f<f3, and the frequency is from 30 KHz to several MHz.

【0005】トランジスタTr1とTr2はハーフ・ブ
リッジ駆動を構成するもので、交互に導通する。3は整
流器でトランス2の2次巻線の誘起電圧を整流する。平
滑コンデンサC5で平滑して出力電圧Voを得る。4は
出力端子を表す。
Transistors Tr1 and Tr2 constitute a half-bridge drive and are alternately conductive. A rectifier 3 rectifies the induced voltage in the secondary winding of the transformer 2. The output voltage Vo is obtained by smoothing with a smoothing capacitor C5. 4 represents an output terminal.

【0006】誤差検出器5は出力電圧Voと基準値より
の誤差を検出するもので、誤差信号は1次側と2次側を
分離するフォトカプラ6に与える。VCO7は電圧制御
発振器で入力電圧と発振周波数が対応する様になってい
る。例えば、出力電圧Voが基準値より高い場合はフォ
トカプラの出力が低下して発振周波数を下げる。駆動回
路8はトランジスタTr1とTr2を低い周波数で駆動
する。図3の共振回路はインピダンスが高くなるので電
流が減る。この結果、出力トランス2の出力への転送エ
ネルギが減じて出力Voは低下する。この様にして、出
力Voを安定化する。
The error detector 5 detects an error between the output voltage Vo and a reference value, and provides an error signal to a photocoupler 6 that separates the primary side and the secondary side. The VCO 7 is a voltage controlled oscillator whose input voltage and oscillation frequency correspond to each other. For example, when the output voltage Vo is higher than the reference value, the output of the photocoupler is reduced and the oscillation frequency is lowered. The drive circuit 8 drives the transistors Tr1 and Tr2 at a low frequency. In the resonant circuit of FIG. 3, the impedance increases, so the current decreases. As a result, the energy transferred to the output of the output transformer 2 decreases, and the output Vo decreases. In this way, the output Vo is stabilized.

【0007】尚、V1Nは商用電源が100ボルト系で
は100〜140ボルト、220ボルト系では260〜
360ボルトである。出力Voは5〜50ボルト程度が
普通である。
[0007] V1N is 100 to 140 volts when the commercial power supply is 100 volts, and 260 to 140 volts when the commercial power supply is 220 volts.
It is 360 volts. The output Vo is normally about 5 to 50 volts.

【0008】以上の従来技術による特徴をまとめる。[0008] The features of the above conventional technology will be summarized.

【0009】1.トランジスタTr1とTr2は電流が
零でスイッチングするので、スイッチング損失が小さい
1. Since the transistors Tr1 and Tr2 switch with zero current, switching loss is small.

【0010】2.出力Voの安定化はVcO7の周波数
を変調して素のインピーダンスの周波数特性を利用して
いる。
2. The output Vo is stabilized by modulating the frequency of VcO7 and utilizing the frequency characteristics of the raw impedance.

【0011】全体として、本質的Pは制御電力だけの損
失で効率の高いものが得られる。以上が従来技術による
電源装置である。
[0011] Overall, high efficiency can be obtained with an essential P loss of only control power. The above is the power supply device according to the prior art.

【0012】0012

【発明が解決しようとする課題】本来スイッチング作動
の電源装置は高速化して、構成要素を小型化して効率の
向上と軽量化を計るものである。又、共振型を利用する
のはスイッチング素子の作動点を電圧又は電流を零で行
うことによりスイッチング損失の低減化と、急激な電流
変化によるスパイク及びリレギングを押えて電磁放射を
低減するものである。
Problems to be Solved by the Invention Originally, switching power supply devices are designed to be faster and have smaller components to improve efficiency and reduce weight. In addition, the resonance type is used to reduce switching loss by setting the operating point of the switching element to zero voltage or current, and to suppress spikes and relegging caused by sudden current changes, thereby reducing electromagnetic radiation. .

【0013】しかし、以上述べた従来技術は上記の目的
は達成しているが次の問題点を有する。
However, although the conventional techniques described above have achieved the above object, they have the following problems.

【0014】1.図3の作動周波数fは、f2<f<f
3であり、例えばf1<f<f2になると制御特性が逆
になり暴走する。従って、共振状態を監視する付加回路
が必要となり高価になる。
1. The operating frequency f in FIG. 3 is f2<f<f
3, and if, for example, f1<f<f2, the control characteristics will be reversed and a runaway will occur. Therefore, an additional circuit for monitoring the resonance condition is required and is expensive.

【0015】2.共振回路を形成するコンデンサとコイ
ルは充分な高周波特性と電流容量を必要とするがコンデ
ンサはC1、C2、C3、C4の4個とイングクタンス
は出力トランス2、コイルLの2個と構成要素が多過て
配線上の問題と高価になる。
2. The capacitors and coils that form the resonant circuit require sufficient high-frequency characteristics and current capacity, but the components are four capacitors, C1, C2, C3, and C4, and two inductances, output transformer 2 and coil L. Too many wiring problems and high costs.

【0016】3.1の暴走を避ける為には、Vco7の
周波数可変範囲が狭くなり軽負荷時に共振回路のインピ
ダンスの上昇が不充分で出力Voが上昇する場合があり
、ダミ負荷を必要となる。これでは本来の高効率が損な
われる。
In order to avoid runaway in 3.1, the frequency variable range of Vco7 is narrowed and the impedance of the resonant circuit may not rise sufficiently at light loads, causing the output Vo to rise, so a dummy load is required. . This impairs the originally high efficiency.

【0017】そこで、本発明はこの様な問題点を解決す
るもので、その目的は共振回路の構成要素数を低減して
、安価にして安全な制御特性を有して且つ高効率な電源
装置を提供することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to reduce the number of components of a resonant circuit to provide a low cost, safe control characteristic, and highly efficient power supply device. Our goal is to provide the following.

【0018】[0018]

【課題を解決するための手段】本発明の電源装置は、商
用電源を整流した直流入力をスイッチング制御して安定
化した直流出力を得る電源装置に於て、前記直流入力を
スイッチするスイッチ手段と、このスイッチ手段より電
力を受ける交互スイッチ手段と、この交互スイッチ手段
より励起される出力トランスを含む共振回路と、前記出
力トランスの2次巻線の誘起電圧を整流出力する出力手
段と、この出力手段の誤差信号を前記スイッチ手段へ帰
還する帰還手段よりなり、前記交互スイッチ手段は所定
周期で作動する電源装置を形成することにより、暴走の
除去と高効率にして安価且つ電磁放射を低減した特徴を
有するものである。
[Means for Solving the Problems] The power supply device of the present invention provides a power supply device that obtains a stabilized DC output by performing switching control on a DC input obtained by rectifying a commercial power source, and includes a switch means for switching the DC input. , an alternating switch means that receives electric power from the switch means, a resonant circuit including an output transformer excited by the alternating switch means, an output means that rectifies and outputs the induced voltage of the secondary winding of the output transformer, and the output transformer. The alternating switch means includes a feedback means for returning an error signal of the means to the switch means, and the alternating switch means forms a power supply device that operates at a predetermined cycle, thereby eliminating runaway, achieving high efficiency, low cost, and reducing electromagnetic radiation. It has the following.

【0019】[0019]

【実施例】図1は本発明の実施例に於る具体的な回路構
成を示す図である。図3と同一番号又は信号は同一の意
味を有するものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a specific circuit configuration in an embodiment of the present invention. The same numbers or signals as in FIG. 3 have the same meanings.

【0020】図1の共振回路は出力トランス2とコンデ
ンサC4の直列共振で示す。共振回路の駆動はトランジ
スタTr4とTr7、Tr5とTr6が交互に導通する
フール・ブリッジ構成して実行する。
The resonant circuit shown in FIG. 1 is represented by series resonance between the output transformer 2 and the capacitor C4. The resonant circuit is driven by forming a full bridge structure in which transistors Tr4 and Tr7 and transistors Tr5 and Tr6 are alternately conductive.

【0021】このスイッチング周波数は直列共振周波数
より低くしてスイッチング損失を低減する。直流入力V
1Nとフール・ブリッジの構成のトランジスタ(以下交
互スイッチと称する)間にトランジスタTr3を設けて
電力供給を制御する。
[0021] This switching frequency is set lower than the series resonant frequency to reduce switching loss. DC input V
A transistor Tr3 is provided between the 1N transistor and a transistor with a fool bridge configuration (hereinafter referred to as an alternating switch) to control power supply.

【0022】交互スイッチの作動は、発振器12→駆動
回路→駆動トランス11で実行し、ほぼ一定周期である
。この作動周波数は先述の30KHz〜数MHzで選択
する。
The operation of the alternating switch is performed by the oscillator 12 -> the drive circuit -> the drive transformer 11, and has a substantially constant cycle. This operating frequency is selected from the aforementioned 30 KHz to several MHz.

【0023】出力Voの誤差信号は誤差検出器14→フ
ォトカプラ15→制御回路16→パルストランス10→
トランジスタTr3の帰還ループで出力Voを制御する
The error signal of the output Vo is transmitted from the error detector 14→photocoupler 15→control circuit 16→pulse transformer 10→
The output Vo is controlled by the feedback loop of the transistor Tr3.

【0024】作動のタイミングと動作波形を図2で説明
する。図2(a)と(b)が交互スイッチの作動タイミ
ングを、(c)がトランジスタTr3の動作タイミング
を示し、やはり電流零近傍でON、OFFしてスイッチ
ング損失を低減する。それ故、図2で駆動回路13と制
御回路を関連付けてある。
The operation timing and operation waveforms will be explained with reference to FIG. 2(a) and 2(b) show the operating timing of the alternating switch, and FIG. 2(c) shows the operating timing of the transistor Tr3, which is also turned on and off near zero current to reduce switching loss. Therefore, the drive circuit 13 and the control circuit are associated in FIG.

【0025】トランジスタTr3のON、OFFは全負
荷ではほぼ100%ONで軽負荷ではONデコーティが
小さくする。従って、共振回路への電力供給を制御可能
となる故、暴走することはない。
The ON/OFF state of the transistor Tr3 is approximately 100% ON at full load, and the ON decoty is reduced at light load. Therefore, since the power supply to the resonant circuit can be controlled, runaway will not occur.

【0026】交互スイッチの作動周波数を変調しても制
御可能であるが、無負荷又は軽徴負荷の場合可聴周波数
となり出力トランス2が音源になる問題が発生する。
Control can be achieved by modulating the operating frequency of the alternating switch, but in the case of no load or light load, the frequency becomes audible, causing the problem that the output transformer 2 becomes a sound source.

【0027】従って、トランジスタTr3を設けて、出
力トランス2の機械的ストレスを可聴周波数以外のほぼ
同一周期で交互スイッチを作動させる。トランジスタT
r3は低周波でも音源とはならない。交互スイッチのみ
で実行すると、上記を避ける為にダミ負荷を付加して可
聴周波数動作にならない様にする為に効率が低下する。
Therefore, the transistor Tr3 is provided to alternately operate the mechanical stress of the output transformer 2 at substantially the same period at frequencies other than the audio frequency. transistor T
r3 does not become a sound source even at low frequencies. If the system is implemented using only alternating switches, efficiency will decrease because a dummy load is added to avoid the above problem and the system does not operate at an audible frequency.

【0028】図2(d)は共振回路のコンデンサC4の
電圧波形、(e)は電流波形を示す。
FIG. 2(d) shows the voltage waveform of capacitor C4 in the resonant circuit, and FIG. 2(e) shows the current waveform.

【0029】(f)は出力トランス2の2次巻線の誘起
電圧の整流波形と点線で出力Voを表す。この出力Vo
を超える部分で2次巻線に電流が流れる。この電流によ
り出力トランス2の磁束が変化して共振回路の電流・電
圧波形が影響されるが、サインウェーブ的のまま図示し
た。
(f) shows the rectified waveform of the induced voltage in the secondary winding of the output transformer 2 and the output Vo using a dotted line. This output Vo
Current flows through the secondary winding at the point where the current exceeds . This current changes the magnetic flux of the output transformer 2 and affects the current and voltage waveforms of the resonant circuit, but they are shown as sine waves.

【0030】ところで、本発明では共振回路の構成数は
低減したもののスイッチング素子であるトランジスタが
図3に比較して3個増加している。しかし、先述した特
性の厳しいコンデンサ、コイルに比較して安価ばかりで
なくスイッチング損失を小さく作動させる為に熱設計が
容易となり、かえって小型になる。又、実際は大電流が
流れるのでコンデンサ、コイル共に発熱があり熱設計に
留意する必要があり、半導体素子に置換した方が得策で
ある。
Incidentally, in the present invention, although the number of resonant circuits is reduced, the number of transistors serving as switching elements is increased by three compared to FIG. However, compared to the aforementioned capacitors and coils, which have strict characteristics, they are not only cheaper, but also operate with less switching loss, which facilitates thermal design and makes them more compact. In addition, since a large current flows in reality, both the capacitor and the coil generate heat, and it is necessary to pay attention to thermal design, so it is better to replace them with semiconductor elements.

【0031】図1のダイオードD1は、トランジスタT
r3がOFF時に共振電流を流す為である。
The diode D1 in FIG. 1 is connected to the transistor T
This is because a resonance current flows when r3 is OFF.

【0032】尚、図示してないが交互スイッチのトラン
ジスタTr4、Tr5、Tr6、Tr7は保護用ダイオ
ードが設けてある。
Although not shown, the alternating switch transistors Tr4, Tr5, Tr6, and Tr7 are provided with protective diodes.

【0033】ダイオードD1が作動中の電流は、ダイオ
ードD1→Tr4→コンデンサC4→出力トランス2→
Tr7→D1の半サイクルとD1→Tr5→出力トラン
ス2→コンデンサC4→Tr6→D1の半サイクルとの
サイクルになる。この間にコンデンサC4の充電エネル
ギーは出力トランス2の電磁エネルギに変換されて一部
は出力エネルギとなり、残りはループ抵抗損失と又逆方
向にコンデンサC4は充電され減衰しながらこのサイク
ルを操返す。尚、共振回路の変形は考えられるが直流分
は流れない様に構成する。
The current when the diode D1 is operating is as follows: diode D1 → Tr4 → capacitor C4 → output transformer 2 →
The cycle is a half cycle of Tr7→D1 and a half cycle of D1→Tr5→output transformer 2→capacitor C4→Tr6→D1. During this time, the charging energy of the capacitor C4 is converted into electromagnetic energy of the output transformer 2, and part of it becomes output energy, and the rest is due to loop resistance loss, and the capacitor C4 is charged in the opposite direction and repeats this cycle while attenuating. Although the resonant circuit may be modified, it is configured so that no direct current flows.

【0034】[0034]

【発明の効果】以上述べた様に本発明の構成によれば、
直列共振回路へのエネルギー供給をフール・ブリッジの
交互スイッチと、この交互スイッチと直流入力間にスイ
ッチ手段を介在させることにより、高効率を保持して共
振型の特徴を活して尚且つ安価になる効果は極めて大き
い。
[Effects of the Invention] As described above, according to the configuration of the present invention,
By using a Fool-bridge alternating switch to supply energy to the series resonant circuit, and by interposing a switching means between the alternating switch and the DC input, high efficiency is maintained, the characteristics of the resonant type are utilized, and the cost is reduced. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に於る具体的な回路構成を示す
図である。
FIG. 1 is a diagram showing a specific circuit configuration in an embodiment of the present invention.

【図2】図1の動作タイミングと各部動作電圧・電流波
形を示す図である。
FIG. 2 is a diagram showing the operation timing and operating voltage and current waveforms of each part in FIG. 1;

【図3】従来技術による実施例を示す図である。FIG. 3 is a diagram showing an embodiment according to the prior art.

【図4】図3に用いる共振回路の総合インピーダンス特
性を示す図である。
FIG. 4 is a diagram showing the overall impedance characteristics of the resonant circuit used in FIG. 3;

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  商用電源を整流した直流入力をスイッ
チング制御して安定化した直流出力を得る電源装置に於
て、前記直流入力をスイッチするスイッチ手段と、この
スイッチ手段より電力を受ける交互スイッチ手段と、こ
の交互スイッチ手段より励起される出力トランスを含む
共振回路と、前記出力トランスの2次巻線の誘起電圧を
整流出力する出力手段と、この出力手段の誤差信号を前
記スイッチ手段へ帰還する帰還手段よりなり、前記交互
スイッチ手段は所定周期で作動することを特徴とする電
源装置。
1. A power supply device that obtains a stabilized DC output by controlling switching of a DC input obtained by rectifying a commercial power supply, comprising a switch means for switching the DC input, and an alternating switch means for receiving power from the switch means. a resonant circuit including an output transformer excited by the alternating switch means, an output means for rectifying and outputting the induced voltage of the secondary winding of the output transformer, and an error signal of the output means being fed back to the switch means. A power supply device comprising a feedback means, wherein the alternating switch means operates at a predetermined cycle.
JP14185791A 1991-06-13 1991-06-13 Power source Pending JPH04368463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14185791A JPH04368463A (en) 1991-06-13 1991-06-13 Power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14185791A JPH04368463A (en) 1991-06-13 1991-06-13 Power source

Publications (1)

Publication Number Publication Date
JPH04368463A true JPH04368463A (en) 1992-12-21

Family

ID=15301784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14185791A Pending JPH04368463A (en) 1991-06-13 1991-06-13 Power source

Country Status (1)

Country Link
JP (1) JPH04368463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230124A (en) * 2005-02-18 2006-08-31 Nippon Denji Sokki Kk Power supply for magnetization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230124A (en) * 2005-02-18 2006-08-31 Nippon Denji Sokki Kk Power supply for magnetization
JP4667066B2 (en) * 2005-02-18 2011-04-06 日本電磁測器株式会社 Magnetizer power supply

Similar Documents

Publication Publication Date Title
US4677534A (en) Stabilizing power source apparatus
US6687137B1 (en) Resonant switching power supply circuit with voltage doubler output
US6587358B1 (en) Switching power supply circuit
EP0343855A2 (en) Zero voltage switching half bridge resonant converter
JPS59103300A (en) Power source for high frequency x-ray generator
JPH09247935A (en) Resonance converter having controlled inductor
WO1991000643A1 (en) Ac/dc conversion with reduced supply waveform distortion
JPH04364362A (en) Power supply circuit
US7158389B2 (en) Switching power supply circuit
US4930063A (en) Variable resonance regulator for power supply
US6301129B1 (en) Switching power supply circuit
JP3653075B2 (en) Switching power transmission device
JP2006523429A (en) Adaptive resonant switching power system
US5617305A (en) Current resonance type switching power supply circuit
US4812960A (en) Power feeding apparatus
KR100291042B1 (en) Electronic ballast for high-intensity discharge lamp
US5229930A (en) Welding inverter and method for controlling a welding inverter
WO2022091903A1 (en) Semiconductor relay device
JPH04368463A (en) Power source
JP4430188B2 (en) Resonant power supply
JP2000069750A (en) Current resonance converter
JP2001178126A (en) Switching power supply
EP3754826B1 (en) Operating device for an illuminant
JP4780430B2 (en) Discharge tube drive circuit
JPH11146645A (en) Power supply equipment