JPH0436800B2 - - Google Patents
Info
- Publication number
- JPH0436800B2 JPH0436800B2 JP21209888A JP21209888A JPH0436800B2 JP H0436800 B2 JPH0436800 B2 JP H0436800B2 JP 21209888 A JP21209888 A JP 21209888A JP 21209888 A JP21209888 A JP 21209888A JP H0436800 B2 JPH0436800 B2 JP H0436800B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- molded product
- change
- load
- compression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000006835 compression Effects 0.000 claims description 38
- 238000007906 compression Methods 0.000 claims description 38
- 238000000465 moulding Methods 0.000 claims description 32
- 239000000843 powder Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 17
- 239000004570 mortar (masonry) Substances 0.000 claims description 14
- 238000000748 compression moulding Methods 0.000 claims description 11
- 238000009702 powder compression Methods 0.000 claims description 11
- 235000004347 Perilla Nutrition 0.000 claims 1
- 244000124853 Perilla frutescens Species 0.000 claims 1
- 239000003826 tablet Substances 0.000 description 8
- 238000005303 weighing Methods 0.000 description 8
- 238000005070 sampling Methods 0.000 description 5
- 238000004260 weight control Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 102100029768 Histone-lysine N-methyltransferase SETD1A Human genes 0.000 description 2
- 101000865038 Homo sapiens Histone-lysine N-methyltransferase SETD1A Proteins 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- 101100002926 Arabidopsis thaliana ASHR3 gene Proteins 0.000 description 1
- 101100218322 Arabidopsis thaliana ATXR3 gene Proteins 0.000 description 1
- 101100456616 Arabidopsis thaliana MEA gene Proteins 0.000 description 1
- 101100043929 Arabidopsis thaliana SUVH2 gene Proteins 0.000 description 1
- 101100043943 Arabidopsis thaliana SUVR5 gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- 101100043931 Chlamydomonas reinhardtii SUVH3 gene Proteins 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 102100032742 Histone-lysine N-methyltransferase SETD2 Human genes 0.000 description 1
- 101100149326 Homo sapiens SETD2 gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- LZHSWRWIMQRTOP-UHFFFAOYSA-N N-(furan-2-ylmethyl)-3-[4-[methyl(propyl)amino]-6-(trifluoromethyl)pyrimidin-2-yl]sulfanylpropanamide Chemical compound CCCN(C)C1=NC(=NC(=C1)C(F)(F)F)SCCC(=O)NCC2=CC=CO2 LZHSWRWIMQRTOP-UHFFFAOYSA-N 0.000 description 1
- 101100533304 Plasmodium falciparum (isolate 3D7) SETVS gene Proteins 0.000 description 1
- 101150057295 SET3 gene Proteins 0.000 description 1
- 101150051720 SET5 gene Proteins 0.000 description 1
- 101100042374 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SET4 gene Proteins 0.000 description 1
- 101150117538 Set2 gene Proteins 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 101150009826 set6 gene Proteins 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229930195724 β-lactose Natural products 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/005—Control arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Description
[産業上の利用分野]
この発明は、圧縮成形時の圧縮力の変化を電気
信号に変換して設定機に入力し、その設定器に設
定された設定値(制御限界)と成形時の圧縮力の
変化とを比較し、その制御限界を超えた場合にそ
の超えた値にもとづき臼孔に充填される粉末量を
自動的に調節する回転式錠剤製造機等の回転式粉
末圧縮成形機の成形品の重量制御方法に関するも
のであり、更に詳しく言えば、そのような成形品
の重量制御方法において、室温や変化や成形機の
発熱によつて杆や圧縮ロール等の機器が膨張又は
収縮することにより発生する成形品の厚みのばら
つきや圧縮圧力の変化に影響されることのない回
転式粉末圧縮成形機の成形品の重量制御方法に関
するものである。
[従来の技術]
一般に、成形品の重量は、ホツパ内にある粉末
の密度やホツパよりフイードシユに供給される粉
末の量及び粉末の大小によつて変化するものであ
り、これらの粉末の物性等により均質な成形品を
連続的に作り出すことは困難である。
そこで、従来、特公昭45−16085号公報(特願
昭41−37865号)に開示されるごとく、圧縮成形
時に於ける圧縮ロール又はポンチに掛る荷重の変
化を電気的歪計によつて電気量の変化に変換し、
該電気量の限界以上の変化によつてリレー及び原
動機が作動するようにし、該原動機の作動によつ
て重量レールが上下に昇降するようにし、この重
量レールの昇降によつてこの上の下杵の高さを変
化させて下杵の高さによつて決定される臼の容積
を増減させ、これによつて粉末の臼への供給量を
調整すようにした粉末圧縮成形機に於ける成形品
の重量自動調整方法があり、また、特公昭57−
48319号公報(特開昭48−57889号)および特公昭
58−54920号公報(特開昭57−165200号)に開示
されるごとく、圧縮成形時の圧縮力を電気的信号
に変換し、予め制御限界が定められた多段の設定
器に入力して比較し、各設定器の制御限界に基づ
いて臼への粉末供給量を調節し、上記特公昭58−
54920号公報のものは、それらに加えて、秤量器
によりサンプリングした成形品の重量を基準重量
と比較して、設定器に入力する電気信号レベルを
変化させる等の粉末圧縮成形機における成形品の
重量調節方法がある。
[発明が解決しようとする課題]
このような従来技術にあつも、一応均質な成形
品は出来るのであるが、成形機の長時間の運転に
よる機械の発熱や粉末の圧縮成形時の発熱等によ
る温度変化により、上杵や下杵あるいは圧縮ロー
ル等が膨張または収縮し、そのために重量が変化
していないにもかかわらず圧縮成形時の圧縮力は
変化すると共に成形品の厚みが変化する。
即ち、温度上昇に伴つて、上杵や下杵の長さが
延びると共に圧縮ロールの径が増加して圧縮ロー
ル間隔が減少し、結局上杵と下杵との圧縮面の間
隔によつて決定される圧縮間隔が変化し、同量の
粉末を圧縮した場合にもその圧縮間隔の変化分だ
け圧縮力は変化すると共に成形品の厚みが変化す
る。
したがつて、この温度による圧縮圧力の変化に
より、上記圧縮力を測定することによりおこなう
重量制御は、実際の成形品の重量が変化していな
いにもかかわらず臼孔への粉末充填量を変化させ
てしまう結果成形品を重量誤差が発生すると共に
成形品の厚みも一定しないものであつた。
また、上記特公昭58−54920号公報のように、
秤量器を用いて、成形品をサンプリングして真の
成形品重量を測定し、その真の重量に基づいて電
気信号レベル(圧縮圧力の変化)を修正しようと
するものも、稼動するにしたがつて変化する温度
による影響を何ら考慮されておらず、正確な重量
制御ができないと共に成形品の厚みが一定になら
ないという問題点があつた。
以下に錠剤製造機における温度変化が圧縮圧力
(圧縮荷重)等におよぼす影響を実験値により説
明すれば、次の通りである。
表1は、杵径8mm、β乳糖98%、ステアリンサ
ンマグネシウム1%、タルク1%から成る粉末に
より、隅角平面状の錠剤を製造する場合に、粉末
充填深さ5.45mmとしたものを回数1とし、回数2
以後を0.05mmずつ順次下杵を上昇させて回数10が
5.00mmとし、その1回から10回までの各回毎に
50T(Tは錠剤数)を取り出し、その中のものを
10Tずつ3回測定して、それの1T当りの重量と
打錠圧力(圧縮成形圧力)との関係を示したもの
であり、これによると圧縮比2(充填量体積と成
形錠剤体積の比率)を回数1とした時の打錠圧力
が1340Kgであつた。
[Industrial Application Field] This invention converts the change in compression force during compression molding into an electrical signal and inputs it to a setting machine, and then compares the set value (control limit) set in the setting machine with the compression force during molding. A rotary powder compression molding machine such as a rotary tablet making machine that compares the change in force and automatically adjusts the amount of powder filled into the mortar hole based on the exceeded value if the control limit is exceeded. This relates to a weight control method for molded products, and more specifically, in such a weight control method for molded products, equipment such as rods and compression rolls expands or contracts due to changes in room temperature or heat generated by the molding machine. The present invention relates to a method for controlling the weight of a molded product in a rotary powder compression molding machine that is not affected by variations in the thickness of the molded product or changes in compression pressure that occur due to this. [Prior Art] Generally, the weight of a molded product changes depending on the density of powder in the hopper, the amount of powder supplied from the hopper to the feedstock, and the size of the powder, and the physical properties of these powders, etc. Therefore, it is difficult to continuously produce homogeneous molded products. Therefore, as disclosed in Japanese Patent Publication No. 45-16085 (Japanese Patent Application No. 41-37865), changes in the load applied to compression rolls or punches during compression molding have been measured using electrical strain meters. Convert to change of
A relay and a prime mover are activated by a change in the amount of electricity exceeding a limit, and the heavy rail is raised and lowered by the operation of the prime mover, and the lower punch above is caused to move up and down by the lifting and lowering of this heavy rail. Molding in a powder compression molding machine in which the volume of the mortar determined by the height of the lower punch is increased or decreased by changing the height of the lower punch, thereby adjusting the amount of powder supplied to the mortar. There is a method for automatically adjusting the weight of the product.
Publication No. 48319 (Japanese Unexamined Patent Publication No. 48-57889) and Tokuko Sho
As disclosed in Publication No. 58-54920 (Japanese Unexamined Patent Publication No. 57-165200), the compression force during compression molding is converted into an electrical signal, which is input into a multi-stage setting device with predetermined control limits for comparison. Then, the amount of powder supplied to the mortar is adjusted based on the control limit of each setting device, and the
In addition to the above, the method of Publication No. 54920 includes methods for controlling molded products in a powder compression molding machine, such as comparing the weight of a molded product sampled with a scale with a reference weight and changing the electrical signal level input to a setting device. There are ways to adjust the weight. [Problem to be solved by the invention] Although it is possible to produce a homogeneous molded product even with such conventional technology, it is possible to produce a molded product with a certain degree of homogeneity. Temperature changes cause the upper punch, lower punch, compression roll, etc. to expand or contract, and as a result, the compression force during compression molding changes and the thickness of the molded product changes even though the weight does not change. That is, as the temperature rises, the length of the upper and lower punches increases, the diameter of the compression roll increases, and the distance between the compression rolls decreases, which is ultimately determined by the distance between the compression surfaces of the upper and lower punches. The compression interval changes, and even when the same amount of powder is compressed, the compression force changes by the change in the compression interval, and the thickness of the molded product also changes. Therefore, due to the change in compression pressure due to this temperature, the weight control performed by measuring the compression force described above changes the amount of powder filled into the mortar hole even though the actual weight of the molded product does not change. As a result, weight errors occurred in the molded product, and the thickness of the molded product was also inconsistent. Also, as in the above-mentioned Japanese Patent Publication No. 58-54920,
A scale that samples the molded product to measure the true weight of the molded product and corrects the electrical signal level (change in compression pressure) based on the true weight also has problems in operation. However, no consideration was given to the effects of changing temperatures, and there were problems in that accurate weight control was not possible and the thickness of the molded product was not constant. The influence of temperature changes on compression pressure (compression load), etc. in a tablet manufacturing machine will be explained below using experimental values. Table 1 shows the number of times when the punch diameter is 8 mm and the powder filling depth is 5.45 mm when manufacturing corner planar tablets using powder consisting of 98% β-lactose, 1% stearin magnesium, and 1% talc. 1 and the number of times is 2
After that, raise the lower pestle in 0.05mm increments until 10 times.
5.00mm, and each time from 1st to 10th
Take out 50T (T is the number of tablets) and empty it.
The graph shows the relationship between the weight per 1T and tableting pressure (compression molding pressure) after measuring 10T each three times. According to this, the compression ratio is 2 (the ratio of the filled volume to the compressed tablet volume). The tableting pressure was 1340 kg when the number of times was 1.
【表】【table】
【表】【table】
【表】【table】
【表】
表3の説明
上ロールの下面と下ロールの上面の間を270mm
に固定する。
上杵と下杵の合計は266.7mmで上記270mmとの差
3.3mmは、圧縮成形後取り出した錠剤が膨張する
寸法を見込した値である。
熱膨張による圧縮圧力の変化を例示的に見る
と、H1=上杵の寸法差、H2=下杵の寸法差、H3
=上下ロール間の寸法差、h=1回分の充填深
さ、Kg=1回分の圧力差、圧縮比を2とした場
合、
圧力差=2Kg(H1+H2+H3)/h−Kg・H2/h=2
×50×(0.023+0.03+0.025)/0.05−50×0.03/0.05
=126Kg
表1においてたとえば、打錠圧力1030Kg、平均
重量202mgの時熱膨張にて上記126Kgの圧力増加と
なり、この圧力増加分を重量が増加したものとし
て重量調整の補正をしたとすると、197mgの重量
の錠剤となり、真の錠剤重量に変化がなく厚みだ
けが薄くなつたにもかかわらず、5mg不足の錠剤
を作ることとなる。
[課題を解決するための手段]
このような課題を解決するために、この発明に
よれば、粉末成型における圧縮成形時の圧縮力の
変化を荷重電気信号に変化して多段の設定器に入
力し、該設定器に設定された制御限界を超える上
記電気信号にもとづき臼孔に充填される粉末量を
調節する回転式粉末圧縮成形機の成形品の重量制
御方法において、成形品を秤量して適正品の基本
重量との変化を重量電気信号に変換し、該信号に
基づいて分量レールを調節して以後の成形品の重
量が正しく成る様にし、その時の成形荷重に基づ
き上記多段の設定器の設定値を設定し、成形品を
再度秤量して基本重量と比較しその重量変化が上
記重量変化と同一方向の場合は圧縮ロール高さを
調整するようにしたことを特徴とする回転式粉末
圧縮成形機の成形品の重量制御方法が提供され
る。
上記構成において、設定器に設定された設定値
は、圧縮力の変化である電気信号を適数回サンプ
リングして適正品の荷重標準偏差を算出し、該標
準偏差に基づき演算して多段の設定器の基準値と
し、その基準値に基づき各設定器の設定値を演算
決定されたものとすることができる。
このようにした場合は、設定器の設定値(制御
限界)の設定作業が、従来は試験的に圧縮成形し
た成形品の厚みと重量より良品とみなされた時の
圧縮荷重の電気信号から経験的に決定され、作業
者の高度に熟練した技術と時間を要していたのに
比較して、誰にでも短時間で自動的に決定するこ
とができるものである。
[作用]
上記の技術的手段は、次の様に作用する。
前述したように、杵や圧縮ロールの材質によつ
て温度変化に伴い一定の割合の伸縮が有ることが
わかる。
即ち、温度変化によつて、上杵と下杵との間隔
が変化し、それによつて成形時に生ずる圧縮圧力
は成形品の重量が正しい場合にも変化する。
そこで、通常の圧縮成形における荷重電気信号
を設定器に入力してその設定値と比較して行う重
量制御とは別に、適宜成形品をサンプリングして
成形品の重量を検出し重量電気信号とする。
そして、その成形品の重量が予め設定された適
正品の基本重量の電気信号と比較して、もし一定
量以上変化がある時は、その変化の電気信号に基
づいて、まず重量を修正すべく分量レールを調節
する。
次に、成形品の重量が補正された状態での成形
品の成形荷重に基づいて多段の設定器の設定値を
設定する。すなわち、その状態(粉末の物性等に
よる影響を含んだ状態)における重量適正成形品
を得るための設定値の修正を行う。
そして、成形品を再度サンプリングして秤量
し、基本重量と比較し、もしその重量変化が上記
重量変化と同一方向の場合は、粉末充填容積に変
化すなわち杵の伸縮等の温度変化に伴う影響が有
すると判断できると共に、その重量変化量によつ
て温度変化による影響の大小すなわち圧縮ロール
高さの必要調節量が判断できる。
[実施例]
この発明の実施例を図面について説明すれば、
4は成形金型である臼3が配設される臼取付盤
(回転式粉末圧縮成形機においては回転盤)であ
り、この臼3内に下杵5の上部が挿入されてお
り、その臼3内に粉末材料を充填し、上杵2と上
記下杵5とを上ロール1と下ロール6との加圧機
構にて上下に加圧し、臼3内の粉末を圧縮成形す
るようになつている。
7はロードセル等の荷重電気変換器であり、該
荷重電気変換器は、上ロール1あるいは下ロール
6のいずれか例えば上ロール1の支持体に接して
設けられており、その出力端は、増幅器等から成
る信号処理装置8に接続されて、粉末成形におけ
る圧縮荷重の変化を電気信号に変換する。
この信号処理装置8の出力端は、各段の設定器
10,11,12,13,14,15にそれぞれ
接続されていると共に、演算処理装置9に接続さ
れている。
この演算処理装置9は、任意又は定期あるいは
室内または成形機に配設された温度センサーによ
る温度変化に連動して例えばサンプリングされた
成形圧力の波高値の最大値を演算処理して標準偏
差を算出し、この標準偏差に基づいて設定器の基
準値を演算し、該基準値に基づいて各段の設定器
10,11,12,13,14,15の制御レベ
ルであるそれぞれの設定値を演算して決定する。
そして、演算処理装置9と各段の設定器10,
11,12,13,14,15とはそれぞれ
SET1,2,3,4,5,6として接続されて
おり、上記決定されたそれぞれの設定値は自動的
に各段の設定器10,11,12,13,14,
15に入力される。
21は圧縮成形された成形品の重量を測る秤量
器であり、該秤量器21は、上記演算処理装置9
に接続されており、所定時間毎等にサンプリング
された成形品の重量変化を重量電気信号に変換し
てその処理装置9に入力される。
そして、処理装置9に記憶された基本重量と比
較してその成形品の重量が所定量より多いか又は
少ない時は、その重量差を修正するために処理装
置9は分量レール調節信号を発すると共にその重
量が修正された成形品の成形荷重に基づいて各段
の設定器10,11,12,13,14,15の
設定値を設定する
そして、処理装置9は、定期的な秤量とは別に
再度成形品を秤量し、その重量変化と上記重量変
化とを比較し、同方向たとえば再び基本重量より
軽いと判断された時は圧縮ロールの昇降装置を作
動(軽い時はロール間隔を広げるように)するべ
く信号を発する。
勿論、秤量により基本重量内と判断されれば再
度秤量はしない。
各段の設定器を説明すれば、設定器10は、制
御限界域上限を設定するものであり、演算処理装
置9よりSET1として出力された設定値と信号
処理装置8からの成形による電気信号である出力
Pとを比較し、この出力Pが上記設定値を超えた
場合にOUT1を出力するものである。
設定器11は、上限排除レベルを設定するもの
であり、上記同様SET2として出力された設定
値と出力Pとを比較し、出力Pが上記設定値を超
えた場合にOUT2を出力し、この超えた場合が
別に定めた回数以上連続した場合にOUT3を出
力するものである。
設定器12は、上限側の制御開始を設定するも
のであり、上記同様SET3として出力された設
定値と出力Pとを比較し、出力Pが上記設定値を
超えて別に定めた回数連続した場合にOUT4を
出力するものである。
設定器13は、下限側の制御開始を設定するも
のであり、演算処理装置9よりSET4として出
力された設定値と信号処理装置からの成形による
電気信号である出力Pとを比較し、この出力Pが
上記設定値を超えて別に定めた回数連続した場合
にOUT5を出力するものである。
設定器14は、下限排除レベルを設定するもの
であり、上記同様SET5として出力された設定
値と出力Pとを比較し、出力Pが上記設定値を超
えた場合にOUT6を出力し、この超えた場合が
別に定めらた回数以上連続した場合にOUT7を
出力するものである。
設定器15は、制御限界域下限を設定するもの
であり、上記同様SET6として出力された設定
値と出力Pとを比較し、この出力Pが上記設定値
を超えた場合にはOUT8を出力するものである。
上記OUT1及びOUT8は、それぞれ機械停止
理由をメツセージ(表示)として出力すると共
に、機械を停止すべく機械制御系に出力するもの
である。
上記OUT3及びOUT7は、それぞれ機械停止
理由をメツセージ(表示)として出力すると共
に、機械を停止すべく機械制御系に出力するもの
である。
上記OUT2及びOUT6は、それぞれ成形品
(製品)排除理由をメツセージ(表示)として出
力すると共に、成形品を排除すべく機械制御系に
出力するものである。
上記OUT4及びOUT5は、それぞれ充填量調
節理由をメツセージ(表示)として出力すると共
に、臼3内に充填された粉末量を調節すべく下杵
5の高さを決める重量レール等の重量調整機構を
制御する充填量調節系に出力するものである。
上記演算処理装置9は、製品品種切換時等の稼
動前に任意にサンプリングを行うことは勿論、定
時間毎または定成形回数毎あるいは外部の任意な
信号等により、稼動中である成形圧縮中に逐次サ
ンプリングを行い、新たな状態の標準偏差を算出
して各段の設定器の設定値を自動的に設定し直す
ことができると共に、所定回数(回転式の場合は
1回転中の臼3の数)の平均荷重値16、最大荷
重値17、最小荷重値18、標準偏差19、変動
係数20、そして、図示しない秤量された成形品
重量、基本重量との変化量あるいは圧縮ロール調
節量等をデイスプレー表示あるいは記録して出力
できものである。
26は下ロール6の昇降装置であり、該装置2
6は、パルスモータ22、ウオーム23、ウオー
ムギヤー24、ねじ棒25から形成されており、
そのモータ22の回動により下ロール6を上下
し、上杵2と下杵5との圧縮間隔を変えるもので
ある。
なお、本発明は、上記実施例に限定されるもの
ではなく、例えば、秤量は成形品1個の単品でも
良いし複数個をまとめて秤量した偏差重量を計測
するものでもよく、また、所定時間毎サンプリン
グする秤量を総て2回行うようにして、初めの秤
量で成形品重量が正常な場合にも精度向上や確認
の為に再度秤量してもよい。
また、圧縮ロール高さを調節した場合は直ちに
設定器の設定値を元にもどすあるいは新たな成形
荷重に基づき設定値を設定してもよく任意であ
る。
更に、圧縮ロール高さの調節が必要と判断され
た場合にも室温や成形機温度の変化と比較してあ
る一定以上温度変化がある時のみ調節する等の確
認手段を付加することも任意である。
[発明の効果]
以上に説明したように本発明は、成形品の重量
制御方法において、温度変化により発生する成形
品の厚みのばらつき及び重量調節誤差をなくすこ
とができ、より高精度な成形品を提供することが
できる等の効果を有するものである。[Table] Explanation of Table 3 The distance between the lower surface of the upper roll and the upper surface of the lower roll is 270 mm.
Fixed to. The total of the upper and lower punches is 266.7mm, which is the difference from the above 270mm.
3.3 mm is a value that takes into account the expansion dimension of the tablet taken out after compression molding. Looking at the change in compression pressure due to thermal expansion as an example, H 1 = dimensional difference of the upper punch, H 2 = dimensional difference of the lower punch, H 3
= Dimensional difference between the upper and lower rolls, h = filling depth for one time, Kg = pressure difference for one time, when the compression ratio is 2, pressure difference = 2Kg (H 1 + H 2 + H 3 ) / h - Kg・H2 /h=2
×50×(0.023+0.03+0.025)/0.05−50×0.03/0.05
= 126Kg In Table 1, for example, when the tableting pressure is 1030Kg and the average weight is 202mg, the pressure will increase by 126Kg due to thermal expansion, and if this pressure increase is considered as an increase in weight and the weight adjustment is corrected, then 197mg. Even though the true tablet weight has not changed and only the thickness has become thinner, the resulting tablets are 5 mg less than the actual tablet weight. [Means for Solving the Problems] In order to solve such problems, according to the present invention, changes in compression force during compression molding in powder molding are converted into load electrical signals and input into a multistage setting device. In a method for controlling the weight of a molded product in a rotary powder compression molding machine, which adjusts the amount of powder filled into the mortar hole based on the electric signal exceeding the control limit set in the setting device, the method includes weighing the molded product. The change from the basic weight of the proper product is converted into a weight electrical signal, and the quantity rail is adjusted based on the signal so that the weight of subsequent molded products is correct, and the multistage setting device described above is adjusted based on the molding load at that time. , the molded product is weighed again and compared with the basic weight, and if the weight change is in the same direction as the weight change, the height of the compression roll is adjusted. A method for controlling the weight of a molded article in a compression molding machine is provided. In the above configuration, the setting value set in the setting device is determined by sampling the electric signal representing the change in compressive force a suitable number of times to calculate the load standard deviation of the appropriate product, and calculating the load standard deviation of the appropriate product based on the standard deviation. The setting value of each setting device can be calculated and determined based on the reference value of the setting device. In this case, the setting value (control limit) of the setting device was previously set using the electrical signal of the compressive load when the product was judged to be good based on the thickness and weight of the test compression molded product. This method can be automatically determined by anyone in a short period of time, compared to the previous method, which required highly skilled skills and time on the part of the operator. [Operation] The above technical means operates as follows. As mentioned above, it can be seen that depending on the material of the punch and compression roll, there is a certain degree of expansion and contraction as the temperature changes. That is, due to temperature changes, the distance between the upper and lower punches changes, and thereby the compression pressure generated during molding changes even when the weight of the molded product is correct. Therefore, in addition to the weight control that is performed by inputting the load electrical signal in normal compression molding into a setting device and comparing it with the set value, the molded product is sampled as appropriate and the weight of the molded product is detected and used as a weight electrical signal. . Then, if the weight of the molded product changes by more than a certain amount when compared with the electrical signal of the basic weight of the proper product set in advance, the weight should first be corrected based on the electrical signal of the change. Adjust portion rail. Next, the setting values of the multistage setting devices are set based on the molding load of the molded product with the weight of the molded product corrected. That is, the setting values are corrected to obtain a molded product with an appropriate weight in that state (a state including the influence of the physical properties of the powder, etc.). Then, sample the molded product again, weigh it, and compare it with the basic weight. If the weight change is in the same direction as the weight change above, there is a change in the powder filling volume, that is, an effect due to temperature changes such as expansion and contraction of the punch. It can be determined that there is a change in the weight, and the magnitude of the influence of temperature change, that is, the necessary adjustment amount of the compression roll height can be determined based on the amount of weight change. [Example] An example of the present invention will be described with reference to the drawings.
Reference numeral 4 denotes a mortar mounting board (rotary disc in a rotary powder compression molding machine) on which a mortar 3, which is a molding die, is installed; the upper part of a lower punch 5 is inserted into this mortar 3; 3 is filled with powder material, and the upper punch 2 and the lower punch 5 are pressurized vertically by the pressure mechanism of the upper roll 1 and the lower roll 6, and the powder in the mortar 3 is compressed and molded. ing. 7 is a load electric converter such as a load cell, and the load electric converter is provided in contact with either the upper roll 1 or the lower roll 6, for example, the support of the upper roll 1, and its output end is connected to an amplifier. It is connected to a signal processing device 8 consisting of, etc., and converts changes in compression load during powder compaction into electrical signals. The output end of the signal processing device 8 is connected to the setting devices 10, 11, 12, 13, 14, and 15 of each stage, respectively, and is also connected to the arithmetic processing device 9. This arithmetic processing device 9 calculates the standard deviation by processing the maximum value of the peak value of the sampled molding pressure, for example, in conjunction with the temperature change by a temperature sensor installed indoors or in the molding machine, either arbitrarily or periodically. Then, based on this standard deviation, calculate a reference value for the setting device, and based on the reference value, calculate each setting value, which is the control level of the setting devices 10, 11, 12, 13, 14, and 15 at each stage. and decide. Then, the arithmetic processing device 9 and the setting device 10 of each stage,
11, 12, 13, 14, 15 are respectively
They are connected as SET1, 2, 3, 4, 5, 6, and the respective set values determined above are automatically transmitted to the setters 10, 11, 12, 13, 14,
15 is input. Reference numeral 21 denotes a weighing device for measuring the weight of the compression-molded molded product, and the weighing device 21 is connected to the arithmetic processing device 9.
The weight change of the molded product sampled at predetermined time intervals is converted into a weight electrical signal and input to the processing device 9. When the weight of the molded product is greater or less than a predetermined amount compared to the basic weight stored in the processing device 9, the processing device 9 issues a quantity rail adjustment signal and outputs a quantity rail adjustment signal to correct the weight difference. The setting values of the setters 10, 11, 12, 13, 14, and 15 of each stage are set based on the molding load of the molded product whose weight has been corrected. Then, the processing device 9 Weigh the molded product again, compare the weight change with the weight change above, and operate the lifting device for the compression rolls in the same direction, for example, if it is judged to be lighter than the basic weight again (if it is lighter, increase the distance between the rolls). ). Of course, if it is determined by weighing that the weight is within the basic weight, the weight will not be weighed again. To explain the setting devices at each stage, the setting device 10 sets the upper limit of the control limit range, and uses the set value outputted as SET1 from the arithmetic processing device 9 and the electrical signal formed by the signal processing device 8. It compares a certain output P and outputs OUT1 when this output P exceeds the above set value. The setting device 11 is for setting the upper limit exclusion level, and compares the set value output as SET2 and the output P as described above, and outputs OUT2 when the output P exceeds the above set value. OUT3 is output when this occurs consecutively for a specified number of times or more. The setting device 12 is for setting the start of control on the upper limit side, and compares the set value outputted as SET3 and the output P as described above, and if the output P exceeds the above set value a separately determined number of times consecutively. This outputs OUT4. The setting device 13 sets the start of control on the lower limit side, and compares the set value outputted as SET4 from the arithmetic processing device 9 with the output P, which is an electric signal generated by shaping from the signal processing device, and sets this output. OUT5 is output when P exceeds the above set value for a separately determined number of consecutive times. The setting device 14 is for setting the lower limit rejection level, and compares the set value outputted as SET5 and the output P as described above, and outputs OUT6 when the output P exceeds the above set value. OUT7 is output when this occurs consecutively for a predetermined number of times or more. The setting device 15 is for setting the lower limit of the control limit range, and compares the set value outputted as SET6 with the output P as described above, and outputs OUT8 if this output P exceeds the above set value. It is something. The above-mentioned OUT1 and OUT8 output the reason for stopping the machine as a message (display), and also output to the machine control system to stop the machine. OUT3 and OUT7 output the reason for stopping the machine as a message (display), and also output to the machine control system to stop the machine. The above-mentioned OUT2 and OUT6 output the reason for rejecting the molded article (product) as a message (display), and also output to the machine control system to reject the molded article. The above-mentioned OUT4 and OUT5 output the reason for adjusting the filling amount as a message (display), and also control the weight adjustment mechanism such as a weight rail that determines the height of the lower pestle 5 in order to adjust the amount of powder filled in the mortar 3. It is output to the filling amount adjustment system to be controlled. The arithmetic processing unit 9 not only performs sampling at any time before operation, such as when switching product types, but also performs sampling at regular time intervals, at a fixed number of molding times, or during molding compression during operation based on an arbitrary external signal. It is possible to perform sequential sampling, calculate the standard deviation of the new state, and automatically reset the setting value of the setting device of each stage, and also to automatically reset the setting value of the setting device of each stage. The average load value 16, the maximum load value 17, the minimum load value 18, the standard deviation 19, the coefficient of variation 20, and the weight of the weighed molded product (not shown), the amount of change from the basic weight, the amount of adjustment of the compression roll, etc. It can be displayed on a display or recorded and output. 26 is a lifting device for the lower roll 6;
6 is formed from a pulse motor 22, a worm 23, a worm gear 24, and a threaded rod 25.
The lower roll 6 is moved up and down by the rotation of the motor 22, and the compression interval between the upper punch 2 and the lower punch 5 is changed. It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, the weighing may be carried out by weighing one molded product individually or by measuring the deviation weight of a plurality of molded products at once. Weighing for each sampling may be performed twice in total, and even if the weight of the molded product is normal in the first weighing, it may be weighed again for accuracy improvement or confirmation. Furthermore, when the compression roll height is adjusted, the setting value of the setting device may be returned to the original value immediately, or the setting value may be set based on a new molding load, which is optional. Furthermore, even if it is determined that adjustment of the compression roll height is necessary, it is optional to add a confirmation means such as adjusting only when there is a temperature change of more than a certain level compared to changes in room temperature or molding machine temperature. be. [Effects of the Invention] As explained above, the present invention can eliminate variations in the thickness of molded products and weight adjustment errors caused by temperature changes in a method for controlling the weight of molded products, and can produce molded products with higher precision. It has the effect of being able to provide the following.
図面はこの発明による回転式粉末圧縮成形機に
おける成形品の重量調節方法を示すものであり、
第1図は一実施例を示す説明図である。
図面において、1は上ロール、2は上杵、3は
臼、4は臼取付盤、5は下杵、6は下ロール、7
は荷重電気変換器、8は信号処理装置、9は演算
処理装置、10,11,12,13,14,15
は設定器、16は平均荷重値、17は最大荷重
値、18は最少荷重値、19は標準偏差、20は
変動係数、21は変換処理器、26は昇降装置を
示すものである。
The drawing shows a method for adjusting the weight of a molded product in a rotary powder compression molding machine according to the present invention.
FIG. 1 is an explanatory diagram showing one embodiment. In the drawing, 1 is the upper roll, 2 is the upper punch, 3 is the mortar, 4 is the mortar mounting plate, 5 is the lower punch, 6 is the lower roll, 7
8 is a signal processing device, 9 is an arithmetic processing device, 10, 11, 12, 13, 14, 15
16 is a setting device, 16 is an average load value, 17 is a maximum load value, 18 is a minimum load value, 19 is a standard deviation, 20 is a coefficient of variation, 21 is a conversion processor, and 26 is a lifting device.
Claims (1)
を荷重電気信号に変換して多段の設定器に入力
し、該設定器に設定された制御限界を超える上記
電気信号にもとづき臼孔に充填される粉末量を調
節する回転式粉末圧縮成形機の成形品の重量制御
方法において、成形品を秤量して適正品の基本重
量との変化を重量電気信号に変換し、該信号に基
づいて分量レールを調節して以後の成形器の重量
が正しく成る様にし、その時の成形荷重に基づき
上記多段の設定器の設定値を設定し、成形品を再
度秤量して基本重量と比較しその重量変化が上記
重量変化と同一方向の場合は圧縮ロール高さを調
節するようにしたことを特徴とする回転式粉末圧
縮成形機の成形品の重量制御方法。 2 粉末成形における圧縮成形時の圧縮力の変化
を荷重電気信号に変換し、該電気信号を適宜適数
回サンプリングをおこなつて荷重標準偏差を算出
し、該標準偏差に基づき演算して多段の設定器の
基準値とし、該算出された基準値に基づき多段の
設定器のそれぞれの設定値を演算決定することに
より設定し、その後の成形による荷重電気信号を
各設定値と比較することにより充填粉末量等を自
動制御する回転式粉末圧縮成形機の成形品の重量
制御方法において、成形品を秤量して適正品の基
本重量との変化を重量電気信号に変換し、該信号
に基づいて分量レールを調節して以後の成形品の
重量が正しく成る様にし、その時の成形荷重に基
づき上記多段の設定器の設定値を設定し、成形品
を再度秤量して基本重量と比較しその重量変化が
上記重量変化と同一方向の場合は圧縮ロール高さ
を調節するようにしたことを特徴とする回転式粉
末圧縮成形機の成形品の重量制御方法。[Claims] 1. Converting the change in compression force during compression molding in powder molding into a load electrical signal and inputting it to a multi-stage setting device, based on the electrical signal exceeding the control limit set in the setting device. In a method for controlling the weight of a molded product in a rotary powder compression molding machine that adjusts the amount of powder filled into a mortar hole, the molded product is weighed, the change from the basic weight of the proper product is converted into a weight electrical signal, and the signal is Adjust the quantity rail based on this to ensure that the weight of the subsequent molding machine is correct, set the setting value of the multi-stage setting device above based on the molding load at that time, weigh the molded product again, and compare it with the basic weight. A method for controlling the weight of a molded product in a rotary powder compression molding machine, characterized in that the height of the compression roll is adjusted when the weight change of the perilla is in the same direction as the weight change. 2. Convert the change in compressive force during compression molding in powder molding into a load electrical signal, sample the electrical signal appropriately several times to calculate the load standard deviation, and calculate the load standard deviation based on the standard deviation. The reference value of the setting device is set by calculating and determining each setting value of the multi-stage setting device based on the calculated reference value, and the filling is performed by comparing the load electric signal from subsequent molding with each setting value. In a method for controlling the weight of a molded product in a rotary powder compression molding machine that automatically controls the amount of powder, etc., the molded product is weighed, the change from the basic weight of the appropriate product is converted into a weight electrical signal, and the amount is determined based on the signal. Adjust the rail so that the weight of subsequent molded products is correct, set the setting value of the multistage setting device above based on the molding load at that time, weigh the molded product again, compare it with the basic weight, and check the weight change. A method for controlling the weight of a molded product in a rotary powder compression molding machine, characterized in that the height of the compression roll is adjusted when the weight change is in the same direction as the weight change.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21209888A JPH0259198A (en) | 1988-08-26 | 1988-08-26 | Weight control of compacted parts by rotary powder compacting machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21209888A JPH0259198A (en) | 1988-08-26 | 1988-08-26 | Weight control of compacted parts by rotary powder compacting machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0259198A JPH0259198A (en) | 1990-02-28 |
JPH0436800B2 true JPH0436800B2 (en) | 1992-06-17 |
Family
ID=16616847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21209888A Granted JPH0259198A (en) | 1988-08-26 | 1988-08-26 | Weight control of compacted parts by rotary powder compacting machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0259198A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2236274A2 (en) | 2009-04-04 | 2010-10-06 | Fette GmbH | Pressing station in a rotary press |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4802147B2 (en) * | 2007-06-25 | 2011-10-26 | トキコテクノ株式会社 | Fuel supply management device |
-
1988
- 1988-08-26 JP JP21209888A patent/JPH0259198A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2236274A2 (en) | 2009-04-04 | 2010-10-06 | Fette GmbH | Pressing station in a rotary press |
Also Published As
Publication number | Publication date |
---|---|
JPH0259198A (en) | 1990-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5043111A (en) | Process and apparatus for the manfuacture of dimensionally accurate die-formed parts | |
US5046241A (en) | Processes and devices for mechanically crimping terminals on conducting wires | |
Shotton et al. | The strength of compressed tablets: part I. The measurement of tablet strength and its relation to compression forces | |
US4216017A (en) | Method and equipment for sintering under pressure | |
US4452579A (en) | Apparatus for producing tablets | |
JPH0436800B2 (en) | ||
GB1216397A (en) | Improvements in or relating to tablet forming machines | |
JP2872286B2 (en) | Method and apparatus for controlling weight of molded product in powder compression molding machine | |
JPS6227920B2 (en) | ||
JPS63252700A (en) | Method for controlling weight of molding for rotary powder compression molding machine | |
JPH0356157B2 (en) | ||
JPS63194899A (en) | Method for automatically adjusting weight and thickness of forming product in rotary type powder compression forming machine | |
CA2021742C (en) | Method and apparatus for determining the filling capacity of tobacco | |
JPS6260137B2 (en) | ||
EP0715161A1 (en) | Method and apparatus for obtaining data on the strain stress relation of test pieces of green sand molds | |
JPH0313958B2 (en) | ||
JP2950901B2 (en) | Powder compression molding method and apparatus for evaluating powder compression molding characteristics | |
JPS6336880B2 (en) | ||
JPH0663797A (en) | Feed back regulating method in weight control for product of rotary tablet machine | |
JPS6230080B2 (en) | ||
SU1675054A1 (en) | Method for manufacturing tablets from powder materials | |
GB1399381A (en) | Tabletting methods and apparatus | |
JPH0516216U (en) | Ceramic automatic press molding equipment | |
JP2664129B2 (en) | hot press | |
KR102288854B1 (en) | Press apparatus for compression molding ceramic powder and ceramic manufacturing method using the same |