JPH04367762A - Control of film thickness of powder painting - Google Patents

Control of film thickness of powder painting

Info

Publication number
JPH04367762A
JPH04367762A JP16761291A JP16761291A JPH04367762A JP H04367762 A JPH04367762 A JP H04367762A JP 16761291 A JP16761291 A JP 16761291A JP 16761291 A JP16761291 A JP 16761291A JP H04367762 A JPH04367762 A JP H04367762A
Authority
JP
Japan
Prior art keywords
powder
coated
film thickness
electrode
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16761291A
Other languages
Japanese (ja)
Inventor
Yoshiki Takahashi
由樹 高橋
Yutaka Okubo
豊 大久保
Toyokazu Teramoto
寺本 豊和
Shunichi Sugiyama
峻一 杉山
Toyofumi Fuka
府賀 豊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16761291A priority Critical patent/JPH04367762A/en
Publication of JPH04367762A publication Critical patent/JPH04367762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To uniformly, simply and certainly control film thickness in powder painting. CONSTITUTION:An adhesive 3a is preliminarily applied to the surface of a steel plate 2a to be painted and a powder 1 having an m.p. higher than the baking temp. of the adhesive 3a is received in a storage tank 5 to be arranged between the surface of the steel plate 2a and the electrodes 4 arranged in opposed relation to the steel plate 2a and DC voltage is applied to the electrodes 4 to bond the powder 1 to the surface of the steel plate 2a. Subsequently, the steel plate 2a is heated to bake the powder 1 through the adhesive 3a to form a film. In this powder painting, the thickness of the film of the powder bonded to the surface of the steel plate 2a is controlled on the basis of the change of applied voltage, the change of the distance between the steel plate 2a and the electrodes 4, the change of the areas of the electrodes 4 and the change of the area of a painting window region.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、粉体塗装の分野にお
いて、粉粒体のもつ質感を塗装表面に醸し出すことがで
き、意匠性の高い塗装鋼板などを得ることのできる粉体
塗装における塗装膜厚の制御方法に関するものである。
[Industrial Application Field] This invention is applied in the field of powder coating, in which the texture of powder particles can be brought out on the painted surface, and it is possible to obtain coated steel sheets with high design quality. The present invention relates to a method for controlling film thickness.

【0002】0002

【従来の技術】被塗装材として、例えば塗装金属板は、
従来、屋根材、外壁材など、主に外装用に用いられてき
た。このため、材料性能として耐食性や耐候性など、主
に防錆機能が要求されていた。しかし、近年塗装板が内
装材として使われることが増え、アメニティ材料として
の性格が強く要請されるようになってきた。このため、
美観や触感が、塗装板に求められる機能として重要視さ
れるようになった。この中でも、質感を有する塗装材は
高級感を与え、心理的に落ち着きのある環境を提供する
ものとして歓迎されている材料の一つである。
[Prior Art] As a material to be painted, for example, a painted metal plate is
Traditionally, it has been mainly used for exterior purposes, such as roofing and exterior wall materials. For this reason, material properties such as corrosion resistance and weather resistance, primarily rust prevention functions, were required. However, in recent years, painted boards have been increasingly used as interior materials, and there has been a strong demand for their properties as amenity materials. For this reason,
Aesthetics and tactility have come to be considered important as functions required of painted boards. Among these, textured coating materials are one of the materials that are welcomed as they give a sense of luxury and provide a psychologically calming environment.

【0003】この質感を有する塗装面を得る方法として
は、基板である鋼板、アルミ板、プラスチック板などの
上に、低光沢塗料をスプレイ塗布することまたはロール
コートする方法や、静電粉体塗装によってゆず肌状の厚
い塗膜を得る方法や、また厚く塗布された塩化ビニル鋼
板の上より凹凸面の大きな工具を押し当てたりする方法
などが挙げられる。
[0003] Methods for obtaining a painted surface with this texture include spray coating or roll coating a low-gloss paint on a substrate such as a steel plate, aluminum plate, or plastic plate, or electrostatic powder coating. Examples include a method of obtaining a thick coating film with a peel-like coating, and a method of pressing a tool with a large uneven surface onto a thickly coated vinyl chloride steel plate.

【0004】この発明は、同一発明者によって既に提案
されている塗面凹凸を有する意匠の高い粉体塗装鋼板な
どを得るために被塗装材の一方の面にあらかじめ接着材
を塗布し、この接着材の焼付け温度よりも融点の高い粉
粒体を貯槽に収容し、被塗装材と対向させて配置されて
いる電極との間に粉粒体が収容された貯槽を配置し、こ
の電極に直流電圧を印加させることにより粉粒体を被塗
装材の一方の面に付着させ、次いで、被塗装材を乾燥炉
に導入し、前記被塗装材を加熱して前記接着剤を介して
被塗装材を焼付け、かくして塗膜を形成させることを特
徴とする粉体塗装方法において(図6参照)、従来問題
となっていた塗装膜厚のばらつきを改善する方法を提供
する。この方式においては、従来、被塗装材のラインス
ピードを変えることによって塗装膜厚を制御していた。
[0004] This invention has been proposed by the same inventor in order to obtain a powder-coated steel plate with a high design having an uneven coating surface. Powder and granular material having a melting point higher than the baking temperature of the material is stored in a storage tank, and the storage tank containing the powder and granular material is placed between an electrode that is placed facing the material to be coated, and a direct current is applied to this electrode. The powder and granules are attached to one side of the material to be coated by applying a voltage, and then the material to be coated is introduced into a drying oven, the material to be coated is heated, and the material to be coated is coated through the adhesive. In a powder coating method characterized by baking and thus forming a coating film (see FIG. 6), the present invention provides a method for improving the variation in coating film thickness, which has been a problem in the past. Conventionally, in this method, the coating film thickness was controlled by changing the line speed of the material to be coated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ラインスピードを変えることによって粉体塗装の膜厚、
即ち、付着量を制御する方法には下記に示す問題点を有
している。図6は、鋼板等の粉体塗装に関して、従来の
ラインスピードを変えることによって付着量を制御する
方法の模式図を示している。被塗装鋼板2aはアンコイ
ラー12から巻出され、鋼板洗浄用前処理装置15でク
リーニングされ、次いで、ロールコータ14によって接
着剤3を塗布される。そして、碍子7の上に乗せられ直
流電圧発生機10に接続された電極4の上には、上面が
開けられた貯槽6の中に粉粒体1が入れられている。帯
電した粉粒体1は、鋼板2aと電極4の間で生じる電界
によって接着剤3を塗布された鋼板2aの塗装目的面に
向かって飛翔し付着する。次いで、塗装された鋼板2a
は乾燥炉11に入れられ、加熱されて接着剤を介して焼
付けられる。かくして塗装を完了し、コイラー13に巻
き取られる。
[Problem to be solved by the invention] However, by changing the conventional line speed, the film thickness of powder coating can be adjusted.
That is, the method of controlling the amount of adhesion has the following problems. FIG. 6 shows a schematic diagram of a conventional method for controlling the amount of coating by changing the line speed regarding powder coating of steel plates and the like. The steel plate 2 a to be painted is unwound from the uncoiler 12 , cleaned by a steel plate cleaning pretreatment device 15 , and then coated with adhesive 3 by a roll coater 14 . On top of the electrode 4 placed on the insulator 7 and connected to the DC voltage generator 10, the powder 1 is placed in a storage tank 6 with an open top. The charged powder 1 flies toward and adheres to the surface of the steel plate 2a coated with the adhesive 3 due to the electric field generated between the steel plate 2a and the electrode 4. Next, the painted steel plate 2a
is placed in a drying oven 11, heated and baked through the adhesive. The coating is thus completed and the coiler 13 winds it up.

【0006】この様に、図6に示す粉粒体は静電気力に
よって鋼板面に付着する。この場合、時間の経過ととも
に粉体上面の位置が低下する。このために、塗布流量は
次第に低くなる。コイルコーティングの場合これを補正
するためにラインスピードを下げればよいが、同時に乾
燥炉11内の滞留時間も変わるため炉温の制御が必要に
なり、全体として複雑な対応が必要であった。また塗布
流量は粉粒体の種類によって変わるのでその都度ライン
スピードを設定する必要があり、これにともない炉温設
定、接着剤塗布条件も変えねばならない。このように、
図6に示す方式において、ラインスピードを変えること
によって付着量を制御する従来方法に変わる、簡便な塗
布膜厚の制御方法の開発が望まれていた。しかしながら
、かかる塗装膜厚の制御方法はまだ提案されていない。
In this way, the powder shown in FIG. 6 adheres to the surface of the steel plate due to electrostatic force. In this case, the position of the top surface of the powder decreases over time. For this reason, the coating flow rate becomes gradually lower. In the case of coil coating, this can be corrected by lowering the line speed, but at the same time, the residence time in the drying oven 11 also changes, making it necessary to control the oven temperature, which requires complicated measures overall. Furthermore, since the coating flow rate changes depending on the type of powder or granular material, it is necessary to set the line speed each time, and accordingly, the furnace temperature setting and adhesive coating conditions must also be changed. in this way,
In the method shown in FIG. 6, it has been desired to develop a simple method for controlling the coating film thickness, which can replace the conventional method of controlling the amount of coating by changing the line speed. However, such a method for controlling coating film thickness has not yet been proposed.

【0007】従って、この発明は、かかる事情に鑑みて
成されたものであって、均一な膜厚制御を簡便且つ確実
に行うことができる優れた塗装膜厚制御方法を提供する
ことを目的とする。
[0007] Therefore, the present invention was made in view of the above circumstances, and an object thereof is to provide an excellent coating film thickness control method that can easily and reliably control uniform film thickness. do.

【0008】[0008]

【課題を解決するための手段】この発明の要旨は、下記
の通りである。 (1)被塗装材の表面にあらかじめ接着材を塗布し、前
記接着材の焼付け温度よりも融点の高い粉粒体を貯槽に
収容し、前記被塗装材の表面と対向させて配置した電極
との間に前記粉粒体が収容された前記貯槽を配置し、前
記電極に直流電圧を印加することにより前記粉粒体を前
記被塗装材の一方の面に付着させ、次いで、前記粉粒体
を付着させた前記被塗装材を乾燥炉に導入して前記被塗
装材を加熱し、前記接着材を介して前記粉粒体を前記被
塗装材に焼付け、かくして、前記被塗装材の一方の面に
塗膜を形成させることを特徴とする粉体塗装の膜厚制御
方法において、印加電圧、および/または、前記被塗装
材と前記電極との間の距離を変化させることにより、前
記被塗装材の一方の面に付着させる前記粉粒体の塗装膜
厚を制御することを特徴とする粉体塗装の膜厚制御方法
。 (2)上記粉体塗装の膜厚制御方法において、前記電極
の面積を変化させることにより、前記被塗装材の一方の
面に付着させる前記粉粒体の塗装膜厚を制御することを
特徴とする粉体塗装の膜厚制御方法。 (3)上記粉体塗装の膜厚制御方法において、前記電極
に接して配置された前記粉粒体が収容された前記貯槽と
前記被塗装材との間に前記粉粒体を遮るための可動式遮
蔽板を設け、前記可動式遮蔽板によって前記粉粒体が付
着可能な塗装ウインドウ領域の面積を可変とし、そして
、前記塗装ウインドウ領域の面積を変化させることによ
り、前記被塗装材の一方の面に付着させる前記粉粒体の
塗装膜厚を制御することを特徴とする粉体塗装の膜厚制
御方法。 (4)(1)に記載の印加電圧、および/または、前記
被塗装材と前記電極との間の距離を変化させることによ
る塗装膜厚制御方法と、(2)に記載の電極面積を変化
させることによる塗装膜厚制御方法と、(3)に記載の
塗装ウインドウ領域の面積を変化させることによる塗装
膜厚制御方法とを組み合わせることにより、前記被塗装
材の表面に付着させる粉粒体の塗装膜厚を制御すること
を特徴とする粉体塗装膜厚制御方法。
[Means for Solving the Problems] The gist of the present invention is as follows. (1) An adhesive is applied to the surface of the material to be painted in advance, powder and granules having a melting point higher than the baking temperature of the adhesive are stored in a storage tank, and an electrode is placed facing the surface of the material to be painted. The storage tank containing the powder and granules is placed between them, and the powder and granules are applied to one surface of the material to be coated by applying a DC voltage to the electrodes. The to-be-painted material to which the paint has been adhered is introduced into a drying oven, the to-be-painted material is heated, and the powder and granules are baked onto the to-be-painted material via the adhesive, thus drying one of the to-be-painted materials. In a method for controlling the film thickness of powder coating, which is characterized by forming a coating film on a surface, by changing the applied voltage and/or the distance between the material to be coated and the electrode, A method for controlling the film thickness of powder coating, comprising controlling the coating film thickness of the powder particles to be adhered to one surface of a material. (2) The film thickness control method for powder coating described above is characterized in that the coating film thickness of the powder adhered to one surface of the material to be coated is controlled by changing the area of the electrode. A method for controlling the film thickness of powder coating. (3) In the powder coating film thickness control method described above, a movable member for blocking the powder and granules between the storage tank in which the powder and granules are placed in contact with the electrode and the material to be coated is provided. A type shielding plate is provided, and the area of the coating window area to which the powder particles can adhere is made variable by the movable shielding plate, and by changing the area of the coating window area, one side of the material to be coated is A method for controlling the film thickness of powder coating, the method comprising controlling the film thickness of the powder coating applied to a surface. (4) A coating film thickness control method by changing the applied voltage and/or the distance between the material to be coated and the electrode as described in (1), and changing the electrode area as described in (2). By combining the method of controlling the coating film thickness by changing the area of the coating window region described in (3), the method of controlling the coating film thickness by changing the area of the coating window region described in (3) can be used to A powder coating film thickness control method characterized by controlling the coating film thickness.

【0009】[0009]

【作用】この発明による静電方式による塗装膜厚hは、
塗装膜厚が粉粒体の塗布流量と被塗装材の電極部におけ
る滞留時間に支配されることを説明した図1に模式的に
示すように、粉粒体1の塗布流量数1と被塗装材2の電
極部4における滞留時間τに支配される。
[Operation] The coating film thickness h by the electrostatic method according to this invention is
As schematically shown in FIG. 1, which explains that the coating film thickness is controlled by the coating flow rate of the powder and the residence time of the material to be coated at the electrode part, It is governed by the residence time τ of the material 2 in the electrode section 4.

【0010】0010

【数1】[Math 1]

【0011】図2は電界強度E(電界強度E=極間電圧
V/被塗装材と電極との間の距離d)が粉粒体1の塗布
流量数2に与える様子を図示したものである。電界強度
Ecを超えると塗布流量数3は電界強度Eの増加にとも
なって増加する。
FIG. 2 illustrates how the electric field strength E (electric field strength E=electrode voltage V/distance d between the material to be coated and the electrode) affects the coating flow rate 2 of the powder 1. . When the electric field strength Ec is exceeded, the coating flow rate 3 increases as the electric field strength E increases.

【0012】0012

【数2】[Math 2]

【0013】[0013]

【数3】[Math 3]

【0014】更に、電界強度Eを高めると空気の絶縁破
壊が起こり火花放電が生じ、このため塗布流量は大きく
ばらつく。ここで、臨界電界強度Ecは被塗装材によっ
て異なるが、一般的には1×104  [V/m] 以
上2×106  [V/m] 以下の範囲内である。ま
た、火花放電が生じる電界強度Esは被塗装材と電極と
の間の距離dや雰囲気の気圧によって異なり、バッシェ
ン則に従う。
Furthermore, when the electric field strength E is increased, dielectric breakdown of the air occurs and spark discharge occurs, resulting in large variations in the coating flow rate. Here, the critical electric field strength Ec varies depending on the material to be coated, but is generally within a range of 1×10 4 [V/m] or more and 2×10 6 [V/m] or less. Further, the electric field strength Es at which spark discharge occurs varies depending on the distance d between the material to be coated and the electrode and the atmospheric pressure of the atmosphere, and follows Baschen's law.

【0015】粉粒体は電界中で帯電し、この帯電量をq
とすると下記〔1〕式で示されるクーロン力Fによって
、塗装目的表面に引き寄せられていく。 F=qE      ─〔1〕式。 粉粒体の塗布流量数4はクーロン力Fの増加にともなっ
て増え、塗布流量と電界強度の関係を示した図2はこれ
をよく裏付けている。ここで電界強度Eは前記の如く印
加電圧Vに比例し、極間距離dに反比例する。言い換え
ると電圧Vを変えることにより塗布流量数5を変えられ
、塗膜厚みhを変えられる。これは電極間距離dを変え
ても同様である。
[0015] Powder is charged in an electric field, and the amount of charge is q
Then, it is attracted to the surface to be painted by the Coulomb force F shown by the following equation [1]. F=qE ─ [1] Formula. The powder coating flow rate 4 increases as the Coulomb force F increases, and FIG. 2, which shows the relationship between the coating flow rate and electric field strength, clearly supports this fact. Here, the electric field strength E is proportional to the applied voltage V and inversely proportional to the inter-electrode distance d, as described above. In other words, by changing the voltage V, the coating flow rate 5 can be changed, and the coating film thickness h can be changed. This holds true even if the inter-electrode distance d is changed.

【0016】[0016]

【数4】[Math 4]

【0017】[0017]

【数5】[Math 5]

【0018】静電塗布部の滞留時間τが長いほど塗膜は
厚くなる。この滞留時間τは通板速度vに反比例し、電
極長lに比例する。つまり通板速度vが一定でも電極長
lを可変にすれば付着量が変えられる。図3はこの電極
長を可変にする方法を模式的に示したもので、電極4は
被塗装材2の進行方向に分割され必要に応じて電極毎に
通電または電気的に遮断される。これはまた塗装ウイン
ドウ領域を説明した図4に示すように、電極長を見かけ
上変えるべく被塗装材2と粉粒体1との間に、開口部が
可変になるウインドウ、即ち、被塗装材2の移動方向に
可動式の塗装ウインドウ遮蔽板5を設け、この塗装ウイ
ンドウ遮蔽板5によって塗装ウインドウ領域の面積を制
御してもよい。以上述べたように、この発明の方法によ
れば、従来問題であった塗布膜厚みの均一化が容易に実
現できる。
[0018] The longer the residence time τ in the electrostatic coating section, the thicker the coating film becomes. This residence time τ is inversely proportional to the sheet passing speed v and proportional to the electrode length l. In other words, even if the plate passing speed v is constant, the amount of adhesion can be changed by making the electrode length l variable. FIG. 3 schematically shows a method for making the electrode length variable. The electrode 4 is divided in the direction of movement of the material to be coated 2, and each electrode is energized or electrically interrupted as necessary. As shown in FIG. 4, which explains the coating window area, this is a window in which the opening is variable between the material 2 to be coated and the powder 1 in order to change the apparent length of the electrode. A movable painting window shielding plate 5 may be provided in the moving direction of the painting window 2, and the area of the painting window region may be controlled by this painting window shielding plate 5. As described above, according to the method of the present invention, it is possible to easily achieve uniform coating film thickness, which has been a problem in the past.

【0019】[0019]

【実施例】次に、この発明を実施例によって説明する。 この発明に係わる塗装膜厚制御の1実施例を図5に示す
。この実施例は印加電圧、鋼板と電極との間の距離、電
極面積、塗装ウインドウ領域の面積をそれぞれ変えるこ
とによって塗装膜厚を制御する方法である。この実施例
においては、被塗装材としてコイル状に巻きだしおよび
巻き取られる、鋼ストリップを使用した。図中、2aは
被塗装鋼板(鋼ストリップ)である。鋼板2aの表面に
は、予め塗布量、粘度、揮発分・不揮発分比が制御され
たポリエチレン系接着材3aが、17g/m2 塗布さ
れている。1aは粉粒体である。この実施例では、粉粒
体1aとして、導電性改善処理を施された、塗布前平均
粒径74μのポリウレタンビーズ1aを用いた。ポリウ
レタンビーズ1aは、電極4の上に置かれた上面が開け
られた貯槽6に入れられている。図3に示されるように
、鋼板2aの表面と対向させて配置された電極4は、鋼
板2aの進行方向に分割され、必要に応じてそれぞれが
独立に通電または電気的に遮断されることによって総合
の電極面積を変えられるようになっている。この電極4
とともに、貯槽6は上下方向に動かすことができ、鋼板
2aとの間の距離を変化させることが可能である。電極
4および貯槽6は碍子7に乗せられて固定されており、
これらの上下方向の移動はこれらを支えているコンクリ
ート性の基盤8の下に設けられた上下移動が可能な昇降
機9によって行われる。 10は電極4に接続された直流電圧発生器、5は鋼板2
aの移動方向に可動式の塗装ウインドウ領域の面積を変
化させることができる遮蔽板である。被塗装鋼板2a、
塗装ウインドウ領域遮蔽板5は、接地されている。
[Example] Next, the present invention will be explained by referring to an example. An embodiment of coating film thickness control according to the present invention is shown in FIG. This embodiment is a method of controlling the coating film thickness by changing the applied voltage, the distance between the steel plate and the electrode, the electrode area, and the area of the coating window area. In this example, a steel strip was used as the material to be coated, which was unwound and wound into a coil. In the figure, 2a is a steel plate (steel strip) to be painted. On the surface of the steel plate 2a, a polyethylene adhesive 3a whose coating amount, viscosity, and volatile/nonvolatile content ratio are controlled in advance is applied at 17 g/m2. 1a is a granular material. In this example, polyurethane beads 1a having an average particle diameter of 74 μm before coating and which had been subjected to conductivity improvement treatment were used as the powder 1a. Polyurethane beads 1a are placed in an open-topped reservoir 6 placed on top of an electrode 4. As shown in FIG. 3, the electrode 4 disposed facing the surface of the steel plate 2a is divided in the direction of movement of the steel plate 2a, and each can be independently energized or electrically interrupted as necessary. The total electrode area can be changed. This electrode 4
At the same time, the storage tank 6 can be moved in the vertical direction, and the distance between it and the steel plate 2a can be changed. The electrode 4 and the storage tank 6 are mounted and fixed on an insulator 7,
These vertical movements are performed by an elevator 9 that is movable up and down and is provided under a concrete base 8 that supports them. 10 is a DC voltage generator connected to the electrode 4, 5 is a steel plate 2
This is a shielding plate that can change the area of a movable painting window area in the moving direction of a. Painted steel plate 2a,
The painted window area shielding plate 5 is grounded.

【0020】図5に示す設備によって、下記の工程によ
って、鋼板2aの粉体塗装を実施した。即ち、鋼板2a
をアンコイラー12から巻出し、鋼板洗浄用前処理装置
15でクリーニングし、次いで、ロールコータ14によ
って鋼板2aの表面にあらかじめ接着材3aを塗布し、
次いで電極4の上に置かれた貯槽6の中に入れられてい
る粉粒体1aを、電極4に直流電圧を印加して鋼板2a
と電極4の間で生じる電界によって帯電させて接着剤3
aが塗布された鋼板2aの塗装目的面に向かって飛翔さ
せて付着させた。このとき、印加電圧、鋼板2aと電極
4との間の距離、電極面積、塗装ウインドウ領域の面積
をそれぞれ変えることにより、鋼板2aの表面に付着さ
せる粉粒体1aの塗装膜厚を制御した。次いで、塗装さ
れた鋼板2aを乾燥炉11に入れて鋼板2aを加熱し、
接着剤を介して粉粒体1aを鋼板2aに焼付けて塗装を
完了し、コイラー13に巻き取った。そして、このよう
にして塗装された鋼板の表面に形成された膜の厚さを測
定した。その膜厚測定結果(μ)を表1に示す。さらに
、この実施例における、印加電圧V(Kv) 、鋼板と
電極との間の距離d(mm)、電極面積S(m2 ) 
および塗装ウインドウ面積(m2 )を表1に併せて示
す。
Powder coating of the steel plate 2a was carried out using the equipment shown in FIG. 5 through the following steps. That is, the steel plate 2a
is uncoiled from the uncoiler 12, cleaned by the steel plate cleaning pretreatment device 15, and then an adhesive 3a is applied in advance to the surface of the steel plate 2a by the roll coater 14,
Next, the powder 1a placed in the storage tank 6 placed on the electrode 4 is transferred to the steel plate 2a by applying a DC voltage to the electrode 4.
The adhesive 3 is charged by the electric field generated between the electrode 4 and the
It was made to adhere by flying toward the target surface of the steel plate 2a coated with a. At this time, the coating film thickness of the powder 1a adhered to the surface of the steel plate 2a was controlled by changing the applied voltage, the distance between the steel plate 2a and the electrode 4, the electrode area, and the area of the coating window area. Next, the painted steel plate 2a is placed in a drying oven 11, and the steel plate 2a is heated.
The powder 1a was baked onto the steel plate 2a via an adhesive to complete the coating, and the steel plate 2a was wound up into a coiler 13. Then, the thickness of the film formed on the surface of the steel plate coated in this manner was measured. Table 1 shows the film thickness measurement results (μ). Furthermore, in this example, the applied voltage V (Kv), the distance d (mm) between the steel plate and the electrode, and the electrode area S (m2)
and the painted window area (m2) are also shown in Table 1.

【0021】[0021]

【表1】[Table 1]

【0022】表1に示すように、条件No1、No2か
ら、電界強度E(電界強度E=印加電圧V/鋼板と電極
との間の距離d)を大きくすれば厚膜となることが分か
る。 但し電界強度Eは鋼板と電極との間の距離に対応した限
界値があり、その限界値よりも電界強度Eを大きくする
と火花放電が起こり塗装面に粉体付着不足、美観欠陥が
生じる。条件No1、No3から、同一電界強度でも鋼
板と電極との間の距離dを大きくした方が多少厚膜とな
ることが分かる。これは、鋼板と電極との間の距離dを
大きくした方が粉粒体の塗装面への到達速度が大きくな
り、接着剤面により深く埋め込まれ多くの粉粒体が塗着
可能になるためである。条件No1、No4から、電極
面積を大きくすれば供給される粉体量が増えるため厚膜
となり、電極面積を小さくすれば供給される粉体量が減
るため薄膜となることが分かる。塗装ウインドウ領域に
ついても同様に、条件No1、No5から、塗装ウイン
ドウ領域の面積を大きくすれば厚膜となり、塗装ウイン
ドウ領域の面積を小さくすれば薄膜となることがわかる
。この実施例から、塗装膜厚は印加電圧、鋼板と電極と
の間の距離、電極面積、塗装ウインドウ領域の面積をそ
れぞれ変えることによって制御できることが分かる。
As shown in Table 1, it can be seen from conditions No. 1 and No. 2 that a thicker film can be obtained by increasing the electric field strength E (electric field strength E=applied voltage V/distance d between the steel plate and the electrode). However, the electric field strength E has a limit value corresponding to the distance between the steel plate and the electrode, and if the electric field strength E is made larger than the limit value, spark discharge occurs, resulting in insufficient powder adhesion and aesthetic defects on the painted surface. From conditions No. 1 and No. 3, it can be seen that even with the same electric field strength, increasing the distance d between the steel plate and the electrode results in a somewhat thicker film. This is because the larger the distance d between the steel plate and the electrode, the faster the powder particles reach the painted surface, and the more particles can be embedded deeper into the adhesive surface, allowing more powder particles to be coated. It is. From conditions No. 1 and No. 4, it can be seen that if the electrode area is increased, the amount of powder supplied increases, resulting in a thick film, and if the electrode area is decreased, the amount of powder supplied is reduced, resulting in a thin film. Similarly, regarding the painting window area, it can be seen from conditions No. 1 and No. 5 that increasing the area of the painting window area results in a thick film, and decreasing the area of the painting window area results in a thin film. This example shows that the coating film thickness can be controlled by varying the applied voltage, the distance between the steel plate and the electrode, the electrode area, and the area of the coating window region.

【0023】また、切板状の鋼板については、塗装目的
面でない鋼板の面を電磁石等の手段により支持し、接着
剤を塗布し、静電塗装を行い、その後、切板鋼板を反転
させ、電磁石等の支持から切り離し、塗装面を上にして
塗装されていない面を下にして、回転している搬送ロー
ラーの上に乗せて、乾燥炉に入れることにより、鋼スト
リップと同様に塗装を完了することができる。
[0023] Regarding a cut steel plate, the surface of the steel plate that is not the surface to be painted is supported by means such as an electromagnet, adhesive is applied, electrostatic painting is performed, and then the cut steel plate is turned over. The coating is completed in the same way as steel strip by separating it from the support such as an electromagnet, placing it on a rotating conveyor roller with the painted side up and the unpainted side down, and placing it in a drying oven. can do.

【0024】[0024]

【発明の効果】以上説明したように、この発明によれば
、粉体塗装において塗装膜厚制御を行う方法を、(1)
印加電圧、および/または、被塗装材と電極間の距離、
(2)電極面積、(3)塗装ウインドウ領域の面積、(
4)更に、これら4条件の組合せを、それぞれ変化させ
て塗装膜厚制御を行う方法としたので、従来のラインス
ピードを変化させて行う方法よりも塗装膜厚の制御が確
実に容易に行え、しかも均一な膜厚が得られる。
[Effects of the Invention] As explained above, according to the present invention, a method for controlling coating film thickness in powder coating can be achieved by (1)
Applied voltage and/or distance between the material to be coated and the electrode,
(2) Electrode area, (3) Painted window area area, (
4) Furthermore, since we have adopted a method of controlling the coating film thickness by varying the combination of these four conditions, the coating film thickness can be controlled more reliably and easily than the conventional method of varying the line speed. Moreover, a uniform film thickness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】塗装膜厚が粉粒体の塗布流量と被塗装材の電極
部における滞留時間に支配されることを説明した図
[Figure 1] A diagram explaining that the coating film thickness is controlled by the coating flow rate of powder and the residence time of the material to be coated at the electrode section.

【図
2】塗布流量と電界強度の関係を示した図
[Figure 2] Diagram showing the relationship between coating flow rate and electric field strength

【図3】被塗
装材の進行方向に分割され必要に応じてそれぞれが独立
に通電または電気的に遮断されることによって総合の電
極面積のかえられる電極を示した図
[Figure 3] Diagram showing an electrode that is divided in the direction of movement of the material to be coated and the total electrode area can be changed by individually energizing or electrically cutting off each part as necessary.

【図4】塗装ウイン
ドウ領域を説明した図
[Figure 4] Diagram explaining the painting window area

【図5】この発明に係わる1実施
例を示す塗装の模式図
[Figure 5] Schematic diagram of painting showing one embodiment of the present invention

【図6】従来のラインスピードを
変化させて塗装膜厚を制御する粉体塗装の模式図
[Figure 6] Schematic diagram of conventional powder coating in which coating film thickness is controlled by changing line speed

【符号の説明】[Explanation of symbols]

1  粉粒体 1a  ポリウレタンビーズ 2  被塗装材 2a  被塗装鋼板 3  接着材 3a  ポリエチレン系接着剤 4  電極 5  塗装ウインドウ遮蔽板 6  貯槽 7  碍子 8  基盤 9  昇降機 10  直流電圧発生機 11  乾燥炉 12  アンコイラー 13  コイラー 14  接着塗布ロールコータ 15  鋼板洗浄用前処理装置。 1 Powder material 1a Polyurethane beads 2 Material to be painted 2a Steel plate to be painted 3 Adhesive material 3a Polyethylene adhesive 4 Electrode 5 Painted window shielding board 6 Storage tank 7 Insulator 8. Foundation 9 Elevator 10 DC voltage generator 11 Drying oven 12 Uncoiler 13 Coiler 14 Adhesive application roll coater 15 Pre-treatment equipment for steel plate cleaning.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  被塗装材の表面にあらかじめ接着材を
塗布し、前記接着材の焼付け温度よりも融点の高い粉粒
体を貯槽に収容し、前記被塗装材の表面と対向させて配
置した電極との間に前記粉粒体が収容された前記貯槽を
配置し、前記電極に直流電圧を印加することにより前記
粉粒体を前記被塗装材の一方の面に付着させ、次いで、
前記粉粒体を付着させた前記被塗装材を乾燥炉に導入し
て前記被塗装材を加熱し、前記接着材を介して前記粉粒
体を前記被塗装材に焼付け、かくして、前記被塗装材の
一方の面に塗膜を形成させることを特徴とする粉体塗装
の膜厚制御方法において、印加電圧、および/または、
前記被塗装材と前記電極との間の距離を変化させること
により、前記被塗装材の一方の面に付着させる前記粉粒
体の塗装膜厚を制御することを特徴とする粉体塗装の膜
厚制御方法。
Claim 1: An adhesive is applied in advance to the surface of the material to be painted, and a granular material having a melting point higher than the baking temperature of the adhesive is stored in a storage tank and placed opposite to the surface of the material to be painted. The storage tank containing the granular material is arranged between the electrode and the granular material is attached to one surface of the material to be coated by applying a DC voltage to the electrode, and then,
The material to be coated to which the powder and granules are attached is introduced into a drying oven, the material to be coated is heated, and the powder and granules are baked onto the material to be coated via the adhesive, thus, the material to be coated is heated. In a powder coating film thickness control method characterized by forming a coating film on one side of a material, the applied voltage and/or
A powder coating film characterized in that the thickness of the coating film of the powder particles attached to one surface of the material to be coated is controlled by changing the distance between the material to be coated and the electrode. Thickness control method.
【請求項2】  被塗装材の表面にあらかじめ接着材を
塗布し、前記接着材の焼付け温度よりも融点の高い粉粒
体を貯槽に収容し、前記被塗装材の表面と対向させて配
置した電極との間に前記粉粒体が収容された貯槽を配置
し、前記電極に直流電圧を印加することにより前記粉粒
体を前記被塗装材の一方の面に付着させ、次いで、前記
粉粒体を付着させた前記被塗装材を乾燥炉に導入して前
記被塗装材を加熱し、前記接着材を介して前記粉粒体を
前記被塗装材に焼付け、かくして、前記被塗装材の一方
の面に塗膜を形成させることを特徴とする粉体塗装の膜
厚制御方法において、前記電極の面積を変化させること
により、前記被塗装材の一方の面に付着させる前記粉粒
体の塗装膜厚を制御することを特徴とする粉体塗装の膜
厚制御方法。
2. An adhesive is applied in advance to the surface of the material to be painted, and powder and granules having a melting point higher than the baking temperature of the adhesive are stored in a storage tank and placed opposite to the surface of the material to be painted. A storage tank containing the powder and granules is arranged between the electrode and the powder is applied to one side of the material to be coated by applying a DC voltage to the electrode, and then the powder The material to be coated with the body attached thereto is introduced into a drying oven, the material to be coated is heated, the powder and granules are baked onto the material to be coated via the adhesive, and one side of the material to be coated is heated. In the method for controlling the film thickness of powder coating, which is characterized in that a coating film is formed on the surface of the coating material, the powder coating is applied to one surface of the material to be coated by changing the area of the electrode. A powder coating film thickness control method characterized by controlling the film thickness.
【請求項3】  被塗装材の表面にあらかじめ接着材を
塗布し、前記接着材の焼付け温度よりも融点の高い粉粒
体を貯槽に収容し、前記被塗装材の表面と対向させて配
置した電極との間に前記粉粒体が収容された貯槽を配置
し、前記電極に直流電圧を印加することにより前記粉粒
体を前記被塗装材の一方の面に付着させ、次いで、前記
前記粉粒体を付着させた前記被塗装材を乾燥炉に導入し
て前記被塗装材を加熱し、前記接着材を介して前記粉粒
体を前記被塗装材に焼付け、かくして、前記被塗装材の
一方の面に塗膜を形成させることを特徴とする粉体塗装
の膜厚制御方法において、前記電極に接して配置された
前記貯槽と前記被塗装材との間に前記粉粒体を遮るため
の可動式遮蔽板を設け、前記可動式遮蔽板によって前記
粉粒体が付着可能な塗装ウインドウ領域の面積を可変と
し、そして、前記塗装ウインドウ領域の面積を変化させ
ることにより、前記被塗装材の一方の面に付着させる前
記粉粒体の塗装膜厚を制御することを特徴とする粉体塗
装の膜厚制御方法。
3. An adhesive is applied in advance to the surface of the material to be painted, and powder and granules having a melting point higher than the baking temperature of the adhesive are stored in a storage tank and placed opposite to the surface of the material to be painted. A storage tank containing the powder is placed between the electrode and the powder is applied to one surface of the material to be coated by applying a DC voltage to the electrode. The material to be coated with the granules attached is introduced into a drying oven, the material to be coated is heated, and the powder and granules are baked onto the material to be coated via the adhesive, thus drying the material to be coated. In a powder coating film thickness control method characterized in that a coating film is formed on one surface, the powder coating is blocked between the storage tank disposed in contact with the electrode and the material to be coated. A movable shielding plate is provided, the area of the coating window area to which the powder particles can adhere is made variable by the movable shielding plate, and by changing the area of the coating window area, the area of the coating window area is changed. A method for controlling the film thickness of powder coating, comprising controlling the coating film thickness of the powder and granular material adhered to one surface.
【請求項4】  請求項1記載の印加電圧、および/ま
たは、被塗装材と電極との間の距離を変化させることに
よる膜厚制御方法と、請求項2記載の電極面積を変化さ
せることによる膜厚制御方法と、請求項3記載の塗装ウ
インドウ領域の面積を変化させることによる塗装膜厚制
御方法とを組み合わせることにより、前記被塗装材の表
面に付着させる粉粒体の塗装膜厚を制御することを特徴
とする粉体塗装の膜厚制御方法。
4. A film thickness control method by changing the applied voltage and/or the distance between the material to be coated and the electrode according to claim 1, and by changing the electrode area according to claim 2. By combining the film thickness control method and the coating film thickness control method by changing the area of the coating window region according to claim 3, the coating film thickness of the powder particles attached to the surface of the material to be coated is controlled. A method for controlling film thickness of powder coating.
【請求項5】  前記被塗装材が、ストリップ金属板、
または、切板状の金属板である請求項1、2、3または
4記載の粉体塗装の膜厚制御方法。
5. The material to be coated is a strip metal plate,
The method for controlling film thickness of powder coating according to claim 1, 2, 3 or 4, wherein the metal plate is a cut plate-like metal plate.
【請求項6】  前記被塗装材と前記電極との間におけ
る、印加電圧を前記被塗装材と前記電極との間の距離で
除して求めた値である電界強度が、1×104  [V
/m] 以上2×106  [V/m]以下の範囲内で
あることを特徴とする請求項1、2、3、4または5記
載の粉体塗装の膜厚制御方法。
6. An electric field strength between the material to be coated and the electrode, which is a value obtained by dividing the applied voltage by the distance between the material to be coated and the electrode, is 1×104 [V
6. The method for controlling film thickness of powder coating according to claim 1, 2, 3, 4, or 5, wherein the film thickness is within a range of 2×10 6 [V/m] or more and 2×10 6 [V/m] or less.
JP16761291A 1991-06-12 1991-06-12 Control of film thickness of powder painting Pending JPH04367762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16761291A JPH04367762A (en) 1991-06-12 1991-06-12 Control of film thickness of powder painting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16761291A JPH04367762A (en) 1991-06-12 1991-06-12 Control of film thickness of powder painting

Publications (1)

Publication Number Publication Date
JPH04367762A true JPH04367762A (en) 1992-12-21

Family

ID=15853014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16761291A Pending JPH04367762A (en) 1991-06-12 1991-06-12 Control of film thickness of powder painting

Country Status (1)

Country Link
JP (1) JPH04367762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175657A (en) * 2005-12-28 2007-07-12 Kao Corp Powder granule sprinkling method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175657A (en) * 2005-12-28 2007-07-12 Kao Corp Powder granule sprinkling method and device
JP4644117B2 (en) * 2005-12-28 2011-03-02 花王株式会社 Powder and particle dispersion method and apparatus

Similar Documents

Publication Publication Date Title
EP1295648B1 (en) Two-tone coating method
KR100253547B1 (en) Continuous melt-coating method and apparatus
EP3077121B1 (en) Method for applying thin coating on large area surface
JPS54139839A (en) Pulverizing method for spangles of galvanized steel sheet
JPH04367762A (en) Control of film thickness of powder painting
US2632716A (en) Method of coating articles
JP3362230B2 (en) Electrostatic powder coating equipment
JP2001212479A (en) Electrostatic coating device and electrostatic coating method
JP2002177826A (en) Electrostatic powder coater
JP2013000708A (en) Powder coating device
JPS6258792B2 (en)
JP4870373B2 (en) Corona charging electrostatic powder coating method
JPS61234970A (en) Method for automatically coating automobile body
JPH08173858A (en) Electrostatic coating method of powder coating material and booth therefor
JPH03249963A (en) Method and equipment for coating electrostatic powder
JPH09290211A (en) Production of color patterned vinyl chloride laminated metallic plate
JPS5884076A (en) Powder electrostatic coater
JPS629388B2 (en)
JPS6012091B2 (en) Micron Oiler oil spot prevention device
JPH05212321A (en) Powder painting equipment
WO2016189610A1 (en) Abnormal approach detection method for electrostatic spray gun, electrostatic painting method, and electrostatic painting device
JP2018140364A (en) Film thickness control method by use of electric field and film formation device
JPH0318504B2 (en)
JP2000015146A (en) Device and method for coating flat plate material
JPS5916823B2 (en) Rotary atomization electrostatic coating method