JPH04367530A - Glass optical element producing device - Google Patents

Glass optical element producing device

Info

Publication number
JPH04367530A
JPH04367530A JP17066091A JP17066091A JPH04367530A JP H04367530 A JPH04367530 A JP H04367530A JP 17066091 A JP17066091 A JP 17066091A JP 17066091 A JP17066091 A JP 17066091A JP H04367530 A JPH04367530 A JP H04367530A
Authority
JP
Japan
Prior art keywords
mold
molding
forming
gas
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17066091A
Other languages
Japanese (ja)
Inventor
Masahiro Katashiro
雅浩 片白
Takeshi Kawamata
川俣 健
Hajime Ichikawa
市川 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP17066091A priority Critical patent/JPH04367530A/en
Publication of JPH04367530A publication Critical patent/JPH04367530A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
    • C03B40/027Apparatus for applying lubricants to glass shaping moulds or tools
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To dispense with the exchange of a frequently used mold having a boron nitride film on the forming face and the modification of the forming face. CONSTITUTION:Upper mold 1 and lower mold 2 in which forming faces 1a and 2a are opposed are arranged in a vessel 3, which is constituted so as to be hermetically sealable. An antenna for high-frequency wave 6 is arranged around the upper mold 1 and lower mold 2. When boron nitride film of the forming faces 1a and 2a is released by forming of glass optical element and shape and surface roughness of the mold become worse, nitrogen gas and boron chloride gas are introduced into the vessel 3 and plasma is generated from the antenna for high-frequency wave 6 in closed state and boron nitride film is deposited on the forming face and used for forming in the next stage as such.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は加熱軟化されたガラス素
材を押圧して所望形状のガラス光学素子を成形する製造
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing apparatus for molding a glass optical element into a desired shape by pressing a heated and softened glass material.

【0002】0002

【従来の技術】ガラス光学素子の製造では加熱軟化され
たガラス素材を成形型内で押圧して製造することが従来
より行われているが、かかる製造に使用される成形型の
成形面としては、軟化したガラス素材が融着することの
ない離型性が必要となっている。この離型性はプリフォ
ームを行わない成形の場合、ガラス素材の粘度が低いと
ころから特に要求されている。かかる離型性を付与する
ため、従来では特公昭61−317号公報に記載される
ように、窒化ホウ素(BN)を主成分とした成形型が使
用されている。BNが六方晶で、しかもC軸方向にゆる
やかに結合しているため、成形したガラス光学素子の成
形時にBNが極く薄くずつ剥がれる性質を有しているた
めである。
[Prior Art] Glass optical elements have traditionally been manufactured by pressing a heat-softened glass material in a mold, but the molding surface of the mold used for such manufacturing is , mold releasability that prevents softened glass materials from fusing is required. This mold releasability is especially required in the case of molding without preforming since the viscosity of the glass material is low. In order to provide such mold releasability, a mold containing boron nitride (BN) as a main component has conventionally been used, as described in Japanese Patent Publication No. 61-317. This is because BN has a hexagonal crystal structure and is loosely bonded in the C-axis direction, so that BN has the property of being peeled off very thinly during molding of a molded glass optical element.

【0003】0003

【発明が解決しようとする課題】ところが離型時にBN
の剥離を伴うことは、それが極く薄い場合であっても型
の成形面の形状が粗さが変化するため、経時的に成形面
の精度が劣化する。このため高精度な形状や粗さが要求
されるガラス光学素子に対しては、使用可能なライフサ
イクルが短くなっており、高々100回程度の使用にし
か耐えることができない問題がある。従って、従来では
ライフサイクルの経過毎に成形型を製造装置から取り外
して、成形面を加工修正したり、新たな成形型と交換し
ており、面倒な作業が必要となっていた。
[Problem to be solved by the invention] However, when releasing the mold, BN
Even when peeling is extremely thin, the shape of the molding surface of the mold changes in roughness, and the accuracy of the molding surface deteriorates over time. For this reason, glass optical elements that require highly accurate shapes and roughness have a short usable life cycle, with the problem that they can withstand only about 100 uses at most. Therefore, in the past, the mold had to be removed from the manufacturing equipment every time the life cycle progressed, and the molding surface had to be processed and corrected, or the mold had to be replaced with a new mold, which required troublesome work.

【0004】本発明は上記事情を考慮してなされたもの
であり、BNを主成分として構成した高精度な成形面で
あっても、その加工修正や、成形型の交換を不要として
長期間使用することができるガラス光学素子製造装置を
提供することを目的とする。
[0004] The present invention has been made in consideration of the above circumstances, and even with a high-precision molded surface mainly composed of BN, it can be used for a long period of time without the need for processing corrections or replacement of molds. An object of the present invention is to provide a glass optical element manufacturing apparatus that can perform the following steps.

【0005】[0005]

【課題を解決するための手段および作用】本発明のガラ
ス光学素子製造装置は、加熱されたガラス素材を成形す
る成形面を有した成形型と、この成形型を収納する密閉
可能な容器と、この容器の密閉状態で前記成形型の成形
面に窒化ホウ素膜を形成する成膜手段とを備えているこ
とを特徴とする。
Means and Effects for Solving the Problems The glass optical element manufacturing apparatus of the present invention comprises: a mold having a molding surface for molding a heated glass material; a sealable container housing the mold; The method is characterized by comprising a film forming means for forming a boron nitride film on the molding surface of the mold while the container is in a sealed state.

【0006】図1は本発明の基本構成を示し、成形面1
a,2aが対向する上型1および下型2からなる成形型
と、上型1および下型2を収納する容器3と、上型1,
下型2の成形面1a,2aに窒化ホウ素を形成する成膜
手段としての高周波用アンテナ6とを備えている。ここ
で容器3は排気口4と、チッ素ガス(Nガス)とホウ素
ガス(Bガス)を有した反応ガスを導入するためのガス
導入口5を有し、これらの排気口ガス4および導入口5
を閉じることにより、内部が密閉状態となる。一方、高
周波用アンテナ6は高周波電力の供給により容器3内に
プラズマを発生させ、BガスおよびNガスを分解して原
子化あるいはイオン化する。この原子化あるいはイオン
化したBおよびNはBN薄膜となって上型1および下型
2の成形面1a,2aに堆積する。この場合、プラズム
の発生は容器3の一部を開孔し、この開孔部から容器3
内部にマイクロ波を供給する構成とすることもできる。
FIG. 1 shows the basic configuration of the present invention, in which a molding surface 1
A mold consisting of an upper mold 1 and a lower mold 2 facing each other, a container 3 that stores the upper mold 1 and the lower mold 2, and the upper mold 1,
A high frequency antenna 6 is provided as a film forming means for forming boron nitride on the molding surfaces 1a and 2a of the lower mold 2. Here, the container 3 has an exhaust port 4 and a gas inlet 5 for introducing a reaction gas containing nitrogen gas (N gas) and boron gas (B gas). Mouth 5
By closing, the inside becomes airtight. On the other hand, the high-frequency antenna 6 generates plasma in the container 3 by supplying high-frequency power, and decomposes the B gas and the N gas to atomize or ionize them. The atomized or ionized B and N become a BN thin film and are deposited on the molding surfaces 1a and 2a of the upper mold 1 and the lower mold 2. In this case, plasma is generated by opening a part of the container 3 and passing through the opening into the container 3.
It can also be configured to supply microwaves inside.

【0007】図2は成膜手段の別の構成を示し、上型1
、下型2が筒状のスリーブ体7内に挿入されており、こ
のスリーブ体7の外側に高周波用アンテナ6が設けられ
ている。スリーブ体7はBNを主成分とした焼結体によ
り形成され、このスリーブ体7内で上型1または下型2
が摺動する。また、上型1の成形面1aおよび下型2の
成形面2aとの間に位置するスリーブ体7の側面にはガ
ス導入孔8が形成されている。このガス導入孔8からス
リーブ体7内部に不活性ガスあるいはN2 ガスを導入
した状態で高周波用アンテナ6に高周波電力を供給する
ことによりスリーブ体7内にプラズマを発生させること
ができる。そして、発生したプラズマ中の正イオンによ
りスリーブ体7のBNがスパッタされるため、成形面1
a,2aにBN膜を堆積させることができる。なお、図
1,図2における上型1,下型2は超硬合金、炭素ケイ
素のような耐熱性、高強度の基材を使用することができ
る。
FIG. 2 shows another configuration of the film forming means, in which the upper mold 1
, a lower mold 2 is inserted into a cylindrical sleeve body 7, and a high frequency antenna 6 is provided on the outside of this sleeve body 7. The sleeve body 7 is formed of a sintered body mainly composed of BN, and the upper mold 1 or the lower mold 2 is inserted into the sleeve body 7.
slides. Further, a gas introduction hole 8 is formed in the side surface of the sleeve body 7 located between the molding surface 1a of the upper mold 1 and the molding surface 2a of the lower mold 2. Plasma can be generated within the sleeve body 7 by supplying high frequency power to the high frequency antenna 6 while inert gas or N2 gas is introduced into the sleeve body 7 through the gas introduction hole 8. Then, since the BN of the sleeve body 7 is sputtered by the positive ions in the generated plasma, the molding surface 1
A BN film can be deposited on a and 2a. Note that the upper mold 1 and lower mold 2 in FIGS. 1 and 2 may be made of a heat-resistant, high-strength base material such as cemented carbide or carbon silicon.

【0008】成膜手段により成膜されるBN膜の膜厚は
、高精度のガラス光学素子成形の場合、1μm〜0.0
1μm程度が良好である。BN膜の膜厚がこの範囲以上
ではBN膜本来の強度が支配的となって、型としての所
定の必要強度が得られない一方、以下の場合にはBN膜
の成膜頻度が多くなるためである。従って、BN膜の成
膜は1回の成形で、型の成形面1a,2aの表面粗度が
どの程度悪化するかを参考にして所定の成形数毎に行う
のが好ましい。例えば、1回の成形で10Å程度の精度
悪化があり、要求される表面粗度が0.1μm以下であ
れば100回毎に成膜する必要がある。この成膜によっ
て凹部となったところが埋められ成形面の平坦な表面を
再現することができる。なお、このような構成の容器3
はガラス素材を加熱軟化する加熱部および成形されたガ
ラス光学素子を冷却・アニールする冷却部(いずれも図
示省略)の間に設置されるものである。
[0008] The thickness of the BN film formed by the film forming means is 1 μm to 0.0 μm in the case of high-precision glass optical element molding.
A thickness of about 1 μm is good. If the thickness of the BN film exceeds this range, the inherent strength of the BN film becomes dominant and the required strength for the mold cannot be obtained, while in the following cases, the frequency of BN film deposition increases. It is. Therefore, it is preferable to form the BN film in one molding process, and to perform it every predetermined number of moldings, with reference to how much the surface roughness of the molding surfaces 1a and 2a of the mold deteriorates. For example, there is a deterioration in accuracy of about 10 Å in one molding process, and if the required surface roughness is 0.1 μm or less, it is necessary to form a film every 100 times. This film formation fills in the concave portions, making it possible to reproduce a flat molding surface. In addition, the container 3 having such a configuration
is installed between a heating section that heats and softens the glass material and a cooling section that cools and anneals the formed glass optical element (both not shown).

【0009】上記構成において、加熱部で軟化させられ
たガラス素材はあらかじめBN膜が成形面に成膜された
型上に供給される。そして、所定時間の押圧によりガラ
ス光学素子を成形した後、離型し、冷却部に搬送し、所
定時間の冷却の後取り出す。このサイクルを所定の回数
(例えば100回)繰り返したあと、容器3内にホウ素
と窒素を含むガスを成形時に用いるガスの排気の後、所
定圧力導入する。高周波電力またはマイクロ波電力を供
給してプラズマを発生させ、BN膜を型の成形面上に堆
積させる。所定時間の後、電力供給、ガス導入を止め、
反応ガスを排気して通常の成形で使用するガスを再供給
する。そして、再び成形のサイクルを繰り返す。以上の
ように所定の回数成形を繰り返した後、型はそのままで
成形型の成形面にBN膜を成膜するサイクルを繰り返す
In the above structure, the glass material softened in the heating section is supplied onto a mold on which a BN film has been previously formed on the molding surface. After molding the glass optical element by pressing for a predetermined time, it is released from the mold, transported to a cooling section, and taken out after being cooled for a predetermined time. After repeating this cycle a predetermined number of times (for example, 100 times), a gas containing boron and nitrogen is introduced into the container 3 at a predetermined pressure after exhausting the gas used during molding. Plasma is generated by supplying high frequency power or microwave power, and a BN film is deposited on the molding surface of the mold. After a predetermined period of time, power supply and gas introduction are stopped.
The reaction gas is exhausted and the gas used in normal molding is resupplied. Then, the molding cycle is repeated again. After repeating the molding a predetermined number of times as described above, the cycle of forming a BN film on the molding surface of the mold is repeated with the mold as it is.

【0010】0010

【実施例1】図3は本発明の実施例1を示し、加熱部1
0,成形部11,冷却部12の順で連設されている。加
熱部10は炭化珪素などからなるヒータ13が内部に配
設され、常用上限温度1300℃程度となっている。ガ
ラス素材はサイアロン製胴型に載置されてこの加熱部1
0内に導入されることにより加熱され、加熱後には、搬
入アームにより、成形部11に移送される。14は加熱
部10と成形部11との境界部分に設けられた開閉自在
な搬入口シャッタである。
[Embodiment 1] FIG. 3 shows embodiment 1 of the present invention, in which the heating section 1
0, the molding section 11, and the cooling section 12 are arranged in succession in this order. The heating unit 10 has a heater 13 made of silicon carbide or the like disposed therein, and has a normal upper limit temperature of about 1300°C. The glass material is placed on a sialon body mold and heated in this heating section 1.
After being heated, the material is transferred to the molding section 11 by a carry-in arm. Reference numeral 14 denotes an entrance shutter that is provided at the boundary between the heating section 10 and the molding section 11 and is openable and closable.

【0011】成形部11は密閉可能な容器内に上型15
,下型16が対向配置されて構成される。上型15,下
型16は超硬合金を基材しており、その成形面15a,
16aには厚さ0.1μmのBN膜が成膜されている。 上型15,下型16はそれぞれリング状のヒータ29,
28が設けられており、ガラス素材の種類に合わせた温
度に加熱される。図示例において、上型15が固定され
る一方、下型16が加圧機構20に連結されて上下動し
、その上動によりガラス素材の押圧を行う。また、上型
15,下型16の周囲にはコイル状の高周波用アンテナ
21が各型15,16と10mm離間されて設けられて
いる。このアンテナ21は成形部11外方に設けられた
マッチングボックス17および高周波電源18に接続さ
れている。19は成形部11内のガスを排気するための
油圧系の排気ポンプ、22は成形部11と冷却部12と
を連通および遮断する排出用シャッタ、30は成形部1
1内の圧力を検出する真空計である。さらに、成形部1
1にはガス導入パイプ24が挿入されており、このガス
導入パイプ24はN2 ガスボンベ26およびBClガ
スボンベ27に切替えバルブ25を介して接続されてい
る。
The molding section 11 has an upper mold 15 in a sealable container.
, and the lower molds 16 are arranged to face each other. The upper mold 15 and the lower mold 16 are made of cemented carbide as a base material, and their molding surfaces 15a,
A BN film with a thickness of 0.1 μm is formed on the layer 16a. The upper mold 15 and the lower mold 16 each have a ring-shaped heater 29,
28, which is heated to a temperature that matches the type of glass material. In the illustrated example, the upper mold 15 is fixed, while the lower mold 16 is connected to a pressure mechanism 20 and moves up and down, and its upward movement presses the glass material. Further, a coil-shaped high frequency antenna 21 is provided around the upper mold 15 and lower mold 16 with a distance of 10 mm from each mold 15 and 16. This antenna 21 is connected to a matching box 17 and a high frequency power source 18 provided outside the molded part 11. 19 is a hydraulic exhaust pump for exhausting the gas in the molding section 11; 22 is an exhaust shutter that communicates and blocks the molding section 11 and the cooling section 12; 30 is the molding section 1;
This is a vacuum gauge that detects the pressure inside 1. Furthermore, the molding part 1
A gas introduction pipe 24 is inserted into 1, and this gas introduction pipe 24 is connected to an N2 gas cylinder 26 and a BCl gas cylinder 27 via a switching valve 25.

【0012】冷却部12は炭化珪素などからなるヒータ
23が内部に設けられ、約200℃に保たれている。成
形部11で成形されたガラス光学素子は搬出アームによ
りこの冷却部12内に導入され、所定時間冷却後、冷却
部12から取り出される。
A heater 23 made of silicon carbide or the like is provided inside the cooling section 12, and the temperature is maintained at about 200.degree. The glass optical element molded in the molding section 11 is introduced into the cooling section 12 by a carry-out arm, and is taken out from the cooling section 12 after being cooled for a predetermined period of time.

【0013】次に実施例1の作動を説明する。ガラス素
材としてSF11の光学ガラスを用い、半径10mmの
球状に鏡面加工した。また、上型15,下型16は共に
直径22mm,長さ50mmであり、上型15の成形面
15aは半径30mm,下型16の成形面16aは半径
100mmの凹面に鏡面加工した。まず、ガラス素材を
約700℃雰囲気の加熱部10内で1分加熱して、成形
部11の下型16上に移送した。上型15,下型16は
550℃に加熱されており、総荷重100kgfの圧力
で10秒間成形した。このとき、成形部11内は1気圧
のN2 ガスで満たされている。成形されたガラスは冷
却部12に移送され、1mm間保持された後、取り出さ
れる。以上のサイクルを100回繰り返した後、成膜工
程を行った。まず、切替えバルブ25により、BClガ
スを成形部11内に10cc/min供給し、約1分経
過させて、成形部11内のガス割合を平衡状態とする。 この状態で高周波電力を500W投入してアンテナ21
からプラズマを発生させる。17分間成膜した後、切替
えバルブ25をN2 ガスボンベ26側にしてBClガ
スの供給を止め電力供給を止める。この条件下で膜厚0
.05μmのBN膜を成膜することができた。そして、
この成膜の後、再び成形のサイクルを行った。
Next, the operation of the first embodiment will be explained. SF11 optical glass was used as the glass material and mirror-finished into a spherical shape with a radius of 10 mm. The upper mold 15 and the lower mold 16 both have a diameter of 22 mm and a length of 50 mm, and the molding surface 15a of the upper mold 15 is mirror-finished to have a concave radius of 30 mm, and the molding surface 16a of the lower mold 16 has a radius of 100 mm. First, the glass material was heated for 1 minute in the heating section 10 in an atmosphere of about 700.degree. C., and then transferred onto the lower die 16 of the forming section 11. The upper mold 15 and the lower mold 16 were heated to 550° C., and molding was carried out for 10 seconds under a pressure of a total load of 100 kgf. At this time, the inside of the molding section 11 is filled with N2 gas at 1 atmosphere. The molded glass is transferred to the cooling section 12, held for 1 mm, and then taken out. After repeating the above cycle 100 times, a film forming process was performed. First, BCl gas is supplied into the molding section 11 at 10 cc/min using the switching valve 25, and after about 1 minute, the gas ratio in the molding section 11 is brought into equilibrium. In this state, 500W of high frequency power is applied to the antenna 21.
Generate plasma from. After forming a film for 17 minutes, the switching valve 25 is turned to the N2 gas cylinder 26 side to stop the supply of BCl gas and the power supply. Under these conditions, the film thickness is 0.
.. A BN film with a thickness of 0.05 μm could be formed. and,
After this film formation, the molding cycle was performed again.

【0014】以上のような工程で合計5000回の成形
を行ったところ、成形されたガラス光学素子は高精度を
維持していた。また、焼付きは全く発生しなかった。な
お、実施例1ではプラズマの発生に高周波を用いたが、
アンテナ等を取り除いて、専用の穴からマイクロ波を導
入してもよい。また、型15,16の基材は炭化珪素な
どの高強度セラミックス,モリブデン(Mo)などの高
融点金属でもよい。さらには、成形されるガラス素材の
種類はこの例に限定されるものではない。
When molding was performed a total of 5,000 times in the above steps, the molded glass optical element maintained high precision. Further, no burn-in occurred at all. In addition, in Example 1, high frequency was used to generate plasma, but
The antenna may be removed and microwaves may be introduced through a dedicated hole. Further, the base materials of the molds 15 and 16 may be high-strength ceramics such as silicon carbide, or high-melting point metals such as molybdenum (Mo). Furthermore, the type of glass material to be molded is not limited to this example.

【0015】[0015]

【実施例2】図4は本発明の実施例2を示し、実施例1
と同一の要素は同一の符号で対応させてある。また、こ
の実施例2では成形部11だけを図示し、加熱部および
冷却部は省略してある。この実施例2では容器31内に
設けられる上型15,下型16がスリーブ体32内に挿
入されている。スリーブ体32はBN焼結体により筒状
に成形されていると共に、その外側には高周波用アンテ
ナ21がコイル状に設けられている。なお、スリーブ体
32にはガラス素材導入用の導入孔33および成形され
たガラス光学素子の取り出し用の取り出し孔34が形成
されている。これら導入孔33および取り出し孔34は
BN膜成膜時のガスをスリーブ体32内に導入するため
にも使用される。
[Example 2] FIG. 4 shows Example 2 of the present invention, and Example 1
Elements that are the same as ``are'' corresponded to by the same reference numerals. Further, in this second embodiment, only the molding section 11 is illustrated, and the heating section and cooling section are omitted. In this second embodiment, an upper mold 15 and a lower mold 16 provided in a container 31 are inserted into a sleeve body 32. The sleeve body 32 is formed into a cylindrical shape from a BN sintered body, and the high frequency antenna 21 is provided in a coil shape on the outside thereof. Note that the sleeve body 32 is formed with an introduction hole 33 for introducing a glass material and an extraction hole 34 for taking out a molded glass optical element. These introduction holes 33 and extraction holes 34 are also used to introduce gas into the sleeve body 32 during BN film formation.

【0016】上記構成において、上型15,下型16の
基材として、炭化珪素焼結体を使用し、その成形面15
a,16aに厚さ0.5μmのBN膜を成膜する。また
、上型15,下型16は共に直径12mm、長さ30m
mであり、上型15の成形面15aは半径20mm,下
型16の成形面16aは半径60mmの凹面を鏡面加工
してある。スリーブ体32は内径12mm,外径22m
m,長さ100mmであり、アンテナ21はこのスリー
ブ体32から10mm離間してある。ガラス素材として
BK7の光学ガラスを用い、このガラスブロックから外
径10mm,厚さ5mmの円盤状となるように切り出し
た。まず、ガラス素材を加熱部で約900℃、1分間加
熱し、下型16上に移送する。そして、600℃に加熱
された型15,16間に総荷重30kgfの圧力で12
秒間成形する。このとき成形部11の容器31内は5×
10−2TorrのN2 ガスで満たされている。成形
されたガラスは冷却部に移送され、1分間保持された後
取り出される。以上のサイクルを100回繰り返した後
成膜工程を行う。
In the above structure, a silicon carbide sintered body is used as the base material of the upper mold 15 and the lower mold 16, and the molding surface 15
A BN film with a thickness of 0.5 μm is formed on a and 16a. Also, both the upper mold 15 and the lower mold 16 have a diameter of 12 mm and a length of 30 m.
The molding surface 15a of the upper mold 15 has a radius of 20 mm, and the molding surface 16a of the lower mold 16 has a concave surface mirror-finished with a radius of 60 mm. The sleeve body 32 has an inner diameter of 12 mm and an outer diameter of 22 m.
m, and the length is 100 mm, and the antenna 21 is spaced apart from the sleeve body 32 by 10 mm. BK7 optical glass was used as the glass material, and a disk shape with an outer diameter of 10 mm and a thickness of 5 mm was cut from this glass block. First, the glass material is heated at about 900° C. for 1 minute in a heating section, and then transferred onto the lower mold 16. Then, the molds 15 and 16 heated to 600°C are heated to 12 cm with a total load of 30 kgf.
Shape for seconds. At this time, the inside of the container 31 of the molding section 11 is 5×
It is filled with N2 gas at 10-2 Torr. The molded glass is transferred to a cooling section, held for one minute, and then taken out. After repeating the above cycle 100 times, a film forming process is performed.

【0017】成膜工程では容器内の圧力はそのままで、
高周波電力を700W投入してプラズマを発生させる。 20分間成膜したあと電力投入を止める。これにより0
.3mm厚のBN膜を成形面に成膜させることができた
。そして、この成膜の後、再び成形のサイクルを行った
。以上のような工程で合計5000回の成形を行った。 もちろんこの間、型を取り外したり交換することはなか
った。しかも、成形されたガラス光学素子は高精度を維
持していた。また焼付きは全く発生しなかった。なお、
この実施例においても、型基材は実施例1と同様に耐熱
性、高湿強度に優れていれば限定されるものではない。 ガラス素材についてもこの例に限定されない。さらに、
N2 ガスに替えて不活性ガス等の非反応性のガスであ
っても良い。
During the film forming process, the pressure inside the container remains the same;
Plasma is generated by applying 700 W of high frequency power. After forming a film for 20 minutes, power is turned off. This results in 0
.. A 3 mm thick BN film could be formed on the molding surface. After this film formation, the molding cycle was performed again. Molding was performed a total of 5,000 times through the steps described above. Of course, the mold was not removed or replaced during this time. Moreover, the molded glass optical element maintained high precision. Further, no seizure occurred at all. In addition,
In this example as well, the mold base material is not limited as long as it has excellent heat resistance and high-humidity strength as in Example 1. The glass material is not limited to this example either. moreover,
Non-reactive gas such as an inert gas may be used instead of N2 gas.

【0018】[0018]

【発明の効果】本発明は、型の成形面にBN膜を成膜さ
せる成膜機構を具備したので、型を取りはずしたり、交
換することなく長期に渡ってBNを成形面とした型を使
用することができる。よって高精度な形状を有するガラ
ス素子を安価に供給できる。
[Effects of the Invention] Since the present invention is equipped with a film forming mechanism that forms a BN film on the molding surface of the mold, the mold with the BN molding surface can be used for a long period of time without removing or replacing the mold. can do. Therefore, a glass element having a highly accurate shape can be supplied at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の基本構成を示す断面図。FIG. 1 is a sectional view showing the basic configuration of the present invention.

【図2】本発明の別の基本構成を示す断面図。FIG. 2 is a sectional view showing another basic configuration of the present invention.

【図3】本発明の実施例1の断面図。FIG. 3 is a sectional view of Example 1 of the present invention.

【図4】本発明の実施例2の断面図。FIG. 4 is a sectional view of Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1  上型 2  下型 3  容器 6  高周波用アンテナ 1 Upper mold 2 Lower mold 3 Container 6 High frequency antenna

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加熱されたガラス素材を成形する成形
面を有した成形型と、この成形型を収納する密閉可能な
容器と、この容器の密閉状態で前記成形型の成形面に窒
化ホウ素膜を形成する成膜手段とを備えていることを特
徴とするガラス光学素子製造装置。
1. A mold having a molding surface for molding a heated glass material, a sealable container housing the mold, and a boron nitride film on the molding surface of the mold when the container is sealed. 1. A glass optical element manufacturing apparatus comprising: a film forming means for forming a glass optical element.
JP17066091A 1991-06-14 1991-06-14 Glass optical element producing device Withdrawn JPH04367530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17066091A JPH04367530A (en) 1991-06-14 1991-06-14 Glass optical element producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17066091A JPH04367530A (en) 1991-06-14 1991-06-14 Glass optical element producing device

Publications (1)

Publication Number Publication Date
JPH04367530A true JPH04367530A (en) 1992-12-18

Family

ID=15909010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17066091A Withdrawn JPH04367530A (en) 1991-06-14 1991-06-14 Glass optical element producing device

Country Status (1)

Country Link
JP (1) JPH04367530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798207A1 (en) * 2004-07-01 2007-06-20 Nihon Yamamura Glass Co. Ltd. Method for manufacturing mold having baked lubricant releasing agent layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798207A1 (en) * 2004-07-01 2007-06-20 Nihon Yamamura Glass Co. Ltd. Method for manufacturing mold having baked lubricant releasing agent layer
EP1798207A4 (en) * 2004-07-01 2007-09-26 Nihon Yamamura Glass Co Ltd Method for manufacturing mold having baked lubricant releasing agent layer

Similar Documents

Publication Publication Date Title
CN107117802B (en) Glass forming die and method for manufacturing curved glass
JP3821878B2 (en) Release film forming method
JPH04367530A (en) Glass optical element producing device
US20060261241A1 (en) Mold for forming optical lens and method for manufacturing such mold
TW200811067A (en) Press-molding apparatus
JP3157943B2 (en) Method and apparatus for modifying surface of substrate
JPH04154634A (en) Mold for optical element formation and its production
JPH0316923A (en) Composite mold for forming optical part and production thereof
JP4455963B2 (en) Molded body manufacturing apparatus and manufacturing method
JPH04154633A (en) Mold for optical element formation and its production
JP2723139B2 (en) Optical element molding method and molding apparatus
JP2505897B2 (en) Mold for optical element molding
JP3149148B2 (en) Optical element molding method
JP2612627B2 (en) Mold for optical element molding
JP2571290B2 (en) Mold for optical element molding
JP2612621B2 (en) Mold for optical element molding
JP2000211931A (en) Positioning jig for molding optical element and its production and molding of optical element
JP2830969B2 (en) Optical element molding die and method of manufacturing the same
JPH0329012B2 (en)
JPH0874032A (en) Hard carbon film coated member and its production
JPH07315853A (en) Method for forming glass lens
JPH0380736B2 (en)
JPH09202624A (en) Holding conveyance tool or shell mold for glass material and its production
JPH03187928A (en) Mold for forming optical element
JP4732096B2 (en) Mold press molding apparatus and method for manufacturing molded body

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903