JPH0436741B2 - - Google Patents

Info

Publication number
JPH0436741B2
JPH0436741B2 JP58037978A JP3797883A JPH0436741B2 JP H0436741 B2 JPH0436741 B2 JP H0436741B2 JP 58037978 A JP58037978 A JP 58037978A JP 3797883 A JP3797883 A JP 3797883A JP H0436741 B2 JPH0436741 B2 JP H0436741B2
Authority
JP
Japan
Prior art keywords
resin
sulfate solution
nickel
nickel sulfate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58037978A
Other languages
Japanese (ja)
Other versions
JPS59162950A (en
Inventor
Masafumi Morya
Kazuo Hosoda
Tomio Imachi
Makoto Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP58037978A priority Critical patent/JPS59162950A/en
Publication of JPS59162950A publication Critical patent/JPS59162950A/en
Publication of JPH0436741B2 publication Critical patent/JPH0436741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は油脂の水素添加工程で使用したニツケ
ル触媒を硫酸ニツケル溶液とし、キレート樹脂ま
たは、キレート樹脂と吸着剤を組み合わせたもの
で処理し、ニツケル触媒溶液中に含有する不純物
を除去し、湿式法によりニツケル触媒とする、ニ
ツケル触媒を再生する方法に関するものである。 現在ニツケル触媒は、水素添加工程で使用する
もつとも一般的な触媒であり、油脂産業を始め多
くの産業にて使用されている。しかしながら、使
用後のニツケル触媒には、鉄、亜鉛、および銅な
どの金属や、リン化合物、イオウ化合物などの不
純物が混入し、そのままでは使用後のニツケル触
媒を再使用することが不可能である。 そこで、使用後のニツケル触媒は低価格で売却
処分するか、あるいは使用後のニツケル触媒に硫
酸を加えて加熱し硫酸ニツケル溶液とし、その後
サラシ粉、次亜塩素酸ソーダまたは過酸化水素水
などの酸化剤で酸化処理し、さらにアルカリを添
加して不純物である金属を、金属水酸化物として
除去する処分方法が採用されている。 しかしながら、金属水酸化物として除去する処
理方法では、鉄、亜鉛および銅などの不純物が低
濃度まで除去できず、処理後の硫酸ニツケル溶液
を後処理してニツケル触媒としても、その触媒能
力が未使用のニツケル触媒と比較して劣るため、
使用量が増大するなどの欠点がある。 そこで本発明者らはこれらの欠点を解決すべく
鋭意研究したところ、使用したニツケル触媒に硫
酸を加えて加熱して得られた硫酸ニツケル溶液を
キレート樹脂で処理することにより鉄、亜鉛、お
よび銅などの不純物をほぼ完全に吸着除去できる
ことを見い出した。 また、硫酸ニツケル溶液中に不純物として、イ
オウ化合物やリン化合物を多く含有する場合に
は、キレート樹脂で処理する前かあるいは後に、
吸着剤として活性白土、活性アルミナ、活性炭、
骨炭などの無機吸着剤、または多孔性高分子吸着
剤を使用して処理することにより、不純物をほぼ
完全に吸着除去できることを見出した。 さらに、キレート樹脂または、キレート樹脂と
吸着剤を組み合わせて処理して得られる硫酸ニツ
ケル溶液を従来法により後処理し、再生したニツ
ケル触媒は、市販品のニツケル触媒とほぼ同等の
触媒性能を有しており、水素添加工程の触媒とし
て充分使用できることを確認した。なお触媒とし
ての性能試験は、活性と選択性を求めることによ
り行つた。 また従来法により後処理の方法としては、湿式
法が挙げられる。その方法としては、硫酸ニツケ
ル溶液にケイソウ土またはアルミナなどの担体と
炭酸ナトリウムを加え、生成した沈殿物を固液分
離し、水洗後、乾燥、還元工程を経てニツケル触
媒を得る方法である。 本発明によつて鉄、亜鉛、および銅などを不純
物を吸着したキレート樹脂は、酸またはアルカリ
で容易に再生され、再び硫酸ニツケル溶液の処理
に使用できる。 本発明におけるキレート樹脂とは、官能基とし
てイミノジ酢酸基、イミノプロピオン酸基、イミ
ノジプロピオン酸基、アミノアルキレンリン酸
基、ジチオカルバミン酸着などのうち少なくとも
一種を有し、樹脂母体として、スチレン−ジビニ
ルベンゼン共重合体樹脂、フエノール樹脂、エポ
キシ樹脂、アクリル樹脂、塩化ビニル樹脂、塩化
ビニリデン樹脂、尿素樹脂の群のいずれか一種よ
りなるキレート樹脂である。これらのキレート樹
脂は常法に従つて製造されたものを用いることが
できる。例えば、スチレン−ジビニルベンゼンを
樹脂母体とするキレート樹脂としては、その芳香
核をクロロメチル化後、イミノジ酢酸、イミノプ
ロピオン酸またはイミノジピロピオン酸を反応
し、それぞれ対応する官能基を導入したキレート
樹脂、クロロメチル化した樹脂にポリアルキレン
ポリアミンを反応し、次いでホルムアルデヒド、
パラホルムアルデヒド、トリオキサン等のアルキ
ル化剤と、亜リン酸、トリハロゲン化リン等のリ
ン酸化剤を反応してアミノアルキレンホスホン酸
基を導入したキレート樹脂、クロロメチル化した
樹脂にポリアルキレンポリアミンを反応し、次い
でアルカリ金属の水酸化物の存在下に二硫化炭素
を反応してジチオカルバミン酸基を導入したキレ
ート樹脂等が挙げられる。フエノール樹脂、尿素
樹脂を樹脂母体とするキレート樹脂としては、イ
ミノジ酢酸、イミノプロピオン酸、イミノジプロ
ピオン酸、ポリアルキレンポリアミンにアルキル
化剤とリン酸化剤とを反応して得られるアミノア
ルキレンホスホン酸基を有する化合物、ポリアル
キレンポリアミンに水酸化ナトリウムの存在下二
硫化炭素を反応してジチオカルバミン酸基を導入
した化合物等と、アルデヒド類及びフエノール類
又はアルデヒド類、フエノール類及び尿素とを縮
合して得られるそれぞれ対応する官能基及び樹脂
母体を有するキレート樹脂が挙げられる。エポキ
シ樹脂を樹脂母体とするキレート樹脂としては、
イミノジ酢酸、イミノプロピオン酸、イミノジプ
ロピオン酸、アミノアルキレンホスホン酸基を有
するポリアルキレンポリアミン化合物、ジチオカ
ルバミン酸基を有するポリアルキレンポリアミン
化合物等と、エチレンジアミン、ジエチレントリ
アミン等の架橋剤及びビスエポキシド化合物を反
応して得られるキレート樹脂等が挙げられる。ア
クリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹
脂を樹脂母体とするキレート樹脂としては、アク
リル樹脂、塩化ビニル樹脂又は塩化ビニリデン樹
脂にポリアルキレンポリアミンを反応し、次いで
モノクロル酢酸、モノクロルプロピオン酸、アル
キル化剤とリン酸化剤、水酸化ナトリウムと二硫
化炭素等とを反応し、それぞれ対応した樹脂母
体、官能基を有するキレート樹脂が挙げられる。 また、本発明における吸着剤のうちで、多孔性
高分子吸着剤とは、活性基として、−CO2−、−
NO2、−OH、−NH2、−COOH、−SH、−SO3H、
などのうち少なくとも一種を有するもの、あるい
は上記の活性基を有しないものであり、樹脂母体
として、スチレン−ジビニルベンゼン共重合体樹
脂、フエノール樹脂、エポキシ樹脂、アクリル樹
脂、塩化ビニル樹脂、塩化ビニリデン樹脂、尿素
樹脂の群のいずれか一種からなる多孔性高分子吸
着剤である。 本発明における硫酸ニツケル溶液のキレート樹
脂または、キレート樹脂と吸着剤の組み合わせに
より処理方法としては、容器内で行うバツチ法
や、キレート樹脂または吸着剤を樹脂塔に充填し
た後、上向流または下向流で硫酸ニツケル溶液を
通液する一過方式または循環方式によるカラム法
などがあるがこれらに限定されることはない。 本発明にて硫酸ニツケル溶液を処理する際、従
来の不純物としての金属を除去する方法を、前処
理として用い、その処理液を本発明におけるキレ
ート樹脂または、キレート樹脂と吸着剤を組み合
わせて処理することも可能である。このように従
来法と本発明を併用して行えば、あらかじめ不純
物としての金属の含有量を少なくすることができ
るため、キレート樹脂に対する負荷を低減するこ
とができ、本発明のみの場合よりも、より経済的
である。 以下、実施例により本発明を詳細に説明する。 実施例 1 大豆油の水素添加工程で使用したニツケル触媒
を、硫酸と共に加熱し、硫酸ニツケル溶液を得
た。次に官能基として、イミノジ酢酸基を有し、
フエノール−ホルマリン樹脂を母体とするキレー
ト樹脂1および活性炭1を別々に2塔のカラ
ム(内径80mmφ)に充填した後、上記の不純物を
含んだ硫酸ニツケル溶液(Niとして4.5%含有し
ている)を、キレート樹脂、活性炭の順に、通液
速度SV3(1塔当り)下向流にて通液した。不純
物を含んだ硫酸ニツケル溶液の水質を表−1に示
し、キレート樹脂処理液の水質を表−2に、活性
炭処理液の水質を表−3に示す。 通液倍率60/−Rまでの活性炭処理液を回
収し、後処理としてこの溶液にケイソウ土と炭酸
ナトリウムを添加し、生成した沈殿物を固液分離
し、得られた固形分を水洗、乾燥、還元工程を経
て再生ニツケルを得た。 炭酸ナトリウムを添加して得られた沈殿物の組
成を表−4に示す。この再生して得られたニツケ
ル触媒と新しいニツケル触媒の性能試験を活性お
よび選択性を求めることにより行つた。結果を表
−5に示す。表−5より再生したニツケル触媒は
(実施例1)新しいニツケル触媒に比較して、ほ
ぼ同等の性能を有している。 なお、ニツケル触媒の活性はA.O.C.S.試験法
TZ−1a−78に準拠し、ニツケル触媒の標準品を
用いてIV135の大豆油を60分間でIV80に水素添加
する条件を求め、それと同一の条件下にニツケル
触媒再生品で水素添加を行つてIVの低下度
(ΔIV)を測定し、両者のIVの低下度の比を求め
て再生したニツケル触媒の活性とした。 再生したニツケル触媒の活性=ΔIV/(135−
80)を求めた。 ニツケル触媒の選択性はA.O.C.S.試験法TZ 1a
−79に準拠して大豆油の水素添加反応を行い、リ
ノール酸基への水素添加速度とオレイン酸基への
水素添加速度との比(SR)を求めたもので、SR
値が大きいほどオレイン酸基よりもリノール酸基
に対する水素添加速度が早く、構成脂肪酸として
オレイン酸を高純度に含有する油脂が得られるこ
とを表す。
In the present invention, the nickel catalyst used in the hydrogenation process of oils and fats is made into a nickel sulfate solution, treated with a chelate resin or a combination of a chelate resin and an adsorbent, and impurities contained in the nickel catalyst solution are removed. This invention relates to a method for regenerating a nickel catalyst. Nickel catalysts are currently one of the most common catalysts used in hydrogenation processes, and are used in many industries including the oil and fat industry. However, used nickel catalysts are contaminated with metals such as iron, zinc, and copper, as well as impurities such as phosphorus compounds and sulfur compounds, making it impossible to reuse them as they are. . Therefore, the used nickel catalyst is either sold or disposed of at a low price, or the used nickel catalyst is heated with sulfuric acid to make a nickel sulfate solution, and then mixed with sulfuric acid powder, sodium hypochlorite, hydrogen peroxide, etc. A disposal method has been adopted in which impurity metals are removed as metal hydroxides by oxidizing with an oxidizing agent and then adding an alkali. However, the treatment method that removes metal hydroxides cannot remove impurities such as iron, zinc, and copper to low concentrations, and even if the treated nickel sulfate solution is post-treated as a nickel catalyst, its catalytic ability is still insufficient. Because it is inferior to the nickel catalyst used,
There are disadvantages such as increased usage. Therefore, the present inventors conducted intensive research to solve these drawbacks, and found that by adding sulfuric acid to the nickel catalyst used and heating it, the resulting nickel sulfate solution was treated with a chelate resin to produce iron, zinc, and copper. It was discovered that impurities such as can be almost completely adsorbed and removed. In addition, if the nickel sulfate solution contains a large amount of sulfur compounds or phosphorus compounds as impurities, either before or after treatment with the chelate resin,
Activated clay, activated alumina, activated carbon, as adsorbents
It has been found that impurities can be almost completely adsorbed and removed by treatment using an inorganic adsorbent such as bone char or a porous polymer adsorbent. Furthermore, the regenerated nickel catalyst obtained by post-treating the nickel sulfate solution obtained by treating a chelate resin or a combination of a chelate resin and an adsorbent using a conventional method has a catalytic performance almost equivalent to that of a commercially available nickel catalyst. It was confirmed that the catalyst could be used satisfactorily as a catalyst in the hydrogenation process. The performance test as a catalyst was conducted by determining activity and selectivity. Furthermore, examples of conventional post-treatment methods include wet methods. The method is to add a carrier such as diatomaceous earth or alumina and sodium carbonate to a nickel sulfate solution, separate the resulting precipitate into solid and liquid, wash it with water, and then undergo a drying and reduction process to obtain a nickel catalyst. The chelate resin that has adsorbed impurities such as iron, zinc, and copper according to the present invention can be easily regenerated with acid or alkali and used again to treat nickel sulfate solution. The chelate resin in the present invention has at least one of iminodiacetic acid group, iminopropionic acid group, iminodipropionic acid group, aminoalkylene phosphate group, dithiocarbamate group, etc. as a functional group, and has styrene- It is a chelate resin made from any one of the group consisting of divinylbenzene copolymer resin, phenolic resin, epoxy resin, acrylic resin, vinyl chloride resin, vinylidene chloride resin, and urea resin. These chelate resins can be those produced according to conventional methods. For example, as a chelate resin using styrene-divinylbenzene as a resin base, after chloromethylating its aromatic nucleus, a chelate resin is produced by reacting with iminodiacetic acid, iminopropionic acid, or iminodipyropionic acid to introduce the corresponding functional group. Resin, chloromethylated resin is reacted with polyalkylene polyamine, then formaldehyde,
Chelate resins that introduce aminoalkylenephosphonic acid groups by reacting alkylating agents such as paraformaldehyde and trioxane with phosphorylating agents such as phosphorous acid and phosphorus trihalide, and reacting polyalkylene polyamines with chloromethylated resins. Examples include chelate resins in which dithiocarbamic acid groups are introduced by reacting carbon disulfide in the presence of an alkali metal hydroxide. Chelate resins using phenolic resins and urea resins as resin bases include aminoalkylene phosphonic acid groups obtained by reacting iminodiacetic acid, iminopropionic acid, iminodipropionic acid, and polyalkylene polyamines with alkylating agents and phosphorylating agents. A compound obtained by condensing a compound having a dithiocarbamic acid group by reacting a polyalkylene polyamine with carbon disulfide in the presence of sodium hydroxide, and aldehydes and phenols or aldehydes, phenols and urea. Examples include chelate resins having corresponding functional groups and resin matrix. As a chelate resin that uses epoxy resin as a resin base,
Iminodiacetic acid, iminopropionic acid, iminodipropionic acid, a polyalkylene polyamine compound having an aminoalkylene phosphonic acid group, a polyalkylene polyamine compound having a dithiocarbamate group, etc. are reacted with a crosslinking agent such as ethylenediamine, diethylenetriamine, etc., and a bisepoxide compound. Examples include chelate resins obtained by As a chelate resin using acrylic resin, vinyl chloride resin, or vinylidene chloride resin as a resin base, acrylic resin, vinyl chloride resin, or vinylidene chloride resin is reacted with a polyalkylene polyamine, and then monochloroacetic acid, monochloropropionic acid, and an alkylating agent are used. Examples include chelate resins made by reacting a phosphorylating agent, sodium hydroxide, carbon disulfide, etc., and having corresponding resin bases and functional groups. Moreover, among the adsorbents in the present invention, the porous polymer adsorbents have −CO 2 −, − as active groups.
NO2 , -OH, -NH2 , -COOH, -SH, -SO3H ,
or not have any of the above active groups, and the resin base includes styrene-divinylbenzene copolymer resin, phenol resin, epoxy resin, acrylic resin, vinyl chloride resin, vinylidene chloride resin. , a porous polymeric adsorbent made of any one of the group of urea resins. In the present invention, the nickel sulfate solution can be treated using a chelate resin or a combination of a chelate resin and an adsorbent, such as a batch method in a container, an upward flow or a downward flow after filling a resin column with the chelate resin or adsorbent. Examples include, but are not limited to, a column method using a one-time method or a circulation method in which a nickel sulfate solution is passed through in a countercurrent flow. When treating the nickel sulfate solution in the present invention, a conventional method for removing metals as impurities is used as a pretreatment, and the treated solution is treated with the chelate resin of the present invention or a combination of the chelate resin and an adsorbent. It is also possible. If the conventional method and the present invention are used together in this way, the content of metal as an impurity can be reduced in advance, so the load on the chelate resin can be reduced, compared to the case of the present invention alone. More economical. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 A nickel catalyst used in the soybean oil hydrogenation step was heated with sulfuric acid to obtain a nickel sulfate solution. Next, it has an iminodiacetic acid group as a functional group,
After separately filling two columns (inner diameter 80 mmφ) with chelate resin 1 having a phenol-formalin resin as a matrix and activated carbon 1, a nickel sulfate solution containing the above impurities (containing 4.5% Ni) was added. , chelate resin, and activated carbon were passed in this order at a flow rate of SV3 (per tower) in a downward flow. Table 1 shows the water quality of the impurity-containing nickel sulfate solution, Table 2 shows the water quality of the chelate resin treatment solution, and Table 3 shows the water quality of the activated carbon treatment solution. The activated carbon treatment solution with a liquid flow rate of up to 60/-R is collected, diatomaceous earth and sodium carbonate are added to this solution as post-treatment, the resulting precipitate is separated into solid and liquid, and the resulting solid content is washed with water and dried. , Regenerated nickel was obtained through a reduction process. Table 4 shows the composition of the precipitate obtained by adding sodium carbonate. Performance tests were conducted on the regenerated nickel catalyst and the new nickel catalyst to determine their activity and selectivity. The results are shown in Table-5. From Table 5, the regenerated nickel catalyst (Example 1) has almost the same performance as the new nickel catalyst. The activity of the nickel catalyst is determined using the AOCS test method.
In accordance with TZ-1a-78, conditions were determined to hydrogenate IV135 soybean oil to IV80 in 60 minutes using a standard nickel catalyst, and hydrogenation was performed using a regenerated nickel catalyst under the same conditions. The degree of decrease in IV (ΔIV) was measured, and the ratio of both degrees of decrease in IV was determined, which was determined as the activity of the regenerated nickel catalyst. Activity of regenerated nickel catalyst = ΔIV/(135−
80). Selectivity of nickel catalyst is determined by AOCS test method TZ 1a
-79, the hydrogenation reaction of soybean oil was carried out, and the ratio (SR) of the hydrogenation rate to linoleic acid groups and the hydrogenation rate to oleic acid groups was determined.
The larger the value, the faster the hydrogenation rate for linoleic acid groups than for oleic acid groups, indicating that an oil or fat containing highly purified oleic acid as a constituent fatty acid can be obtained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 比較例 1 実施例1と同様にして硫酸と加熱して得られた
硫酸ニツケル溶液にサラシ粉0.7%添加し、50℃
加熱下で2時間撹拌処理した。次に苛性ソーダ水
溶液を添加しPH5とし、2時間撹拌処理後、生成
した沈殿物を固液分離した。得られた硫酸ニツケ
ル溶液を実施例1と同様な方法で後処理し、再生
ニツケル触媒を得た。 アルカリ処理後の硫酸ニツケル溶液にケイソウ
土と炭酸ナトリウムを添加し、生成した沈殿物の
組成を表−4に示し、また精製したニツケル触媒
の性能試験結果を表−5に示す。 実施例 2 魚油の水素添加工程で使用したニツケル触媒を
硫酸と加熱して硫酸ニツケル水溶液を得た。次に
官能基としてアミノメチルリン酸基を有し、スチ
レン−ジビニルベンゼン共重合体樹脂を母体とす
るキレート樹脂3をカラム(内径120mmφ)に
充填した後、上記の不純物を含んだ硫酸ニツケル
溶液(Niとして4.1%含有している)を250、通
液速度SV2上向流で循環処理した。次にキレート
樹脂処理で得られた硫酸ニツケルに活性アルミナ
を1%添加し、1時間撹拌処理した後、固液分離
した。キレート樹脂処理前の硫酸ニツケル溶液お
よび同処理後の硫酸ニツケルの水質を表−6に示
す。 次に処理後の硫酸ニツケル溶液を実施例1に述
べた同じ方法で、後処理を行い、再生ニツケル触
媒を得た。
[Table] Comparative Example 1 Added 0.7% Sarashi powder to a nickel sulfate solution obtained by heating with sulfuric acid in the same manner as in Example 1, and heated at 50°C.
The mixture was stirred under heating for 2 hours. Next, a caustic soda aqueous solution was added to adjust the pH to 5, and after stirring for 2 hours, the resulting precipitate was separated into solid and liquid. The obtained nickel sulfate solution was post-treated in the same manner as in Example 1 to obtain a regenerated nickel catalyst. Table 4 shows the composition of the precipitate produced by adding diatomaceous earth and sodium carbonate to the alkali-treated nickel sulfate solution, and Table 5 shows the performance test results of the purified nickel catalyst. Example 2 The nickel catalyst used in the fish oil hydrogenation process was heated with sulfuric acid to obtain an aqueous nickel sulfate solution. Next, a column (inner diameter 120 mmφ) was filled with a chelate resin 3 having an aminomethyl phosphate group as a functional group and having a styrene-divinylbenzene copolymer resin as its base material, and then a nickel sulfate solution containing the above impurities ( (containing 4.1% Ni) was circulated at a flow rate of SV2 upward flow. Next, 1% activated alumina was added to the nickel sulfate obtained by the chelate resin treatment, and the mixture was stirred for 1 hour, followed by solid-liquid separation. Table 6 shows the water quality of the nickel sulfate solution before the chelate resin treatment and the nickel sulfate solution after the same treatment. Next, the treated nickel sulfate solution was post-treated in the same manner as described in Example 1 to obtain a regenerated nickel catalyst.

【表】 実施例 3 パーム油の水素添加工程で使用したニツケル触
媒に硫酸を加えて加熱し、硫酸ニツケル溶液
(Niとして4.7%含有している)を得た。次にイミ
ノプロピオン酸基を有し、エポキシ樹脂を母体と
したキレート樹脂を硫酸ニツケル溶液中に5%添
加し、反応容器内で2時間撹拌処理した。得られ
た硫酸ニツケル溶液を実施例1に述べた同じ方法
で後処理を行い、再生ニツケル触媒を得た。 実施例 4 ナタネ油の水素添加工程で使用したニツケル触
媒を硫酸と加熱して硫酸ニツケル溶液(Niとし
て4.6%含有する)を得た。次にジチオカルバミ
ン酸基を有し、レゾルシン−ホルマリン樹脂を母
体としたキレート樹脂3および内部表面積560
m2/gを有するスチレン−ジビニルベンゼン共重
合体樹脂を母体とした高分子吸着剤3を2塔の
カラム(内径120mmφ)にそれぞれ充填した後、
高分子吸着剤、キレート樹脂の順に上記の不純物
を含む硫酸ニツケル溶液を通液速度SV5下向流に
て通液した。通液倍率80/−Rまでの流出し
た硫酸ニツケル溶液を実施例1と同じ方法で後処
理を行い、再生ニツケル触媒を得た。 実施例 5 実施例2、3および4で得られた再生ニツケル
触媒を使用し、大豆油の水素添加反応試験を行
い、各触媒の活性および選択性を求めた。結果を
表−7に示す。
[Table] Example 3 Sulfuric acid was added to the nickel catalyst used in the palm oil hydrogenation process and heated to obtain a nickel sulfate solution (containing 4.7% Ni). Next, 5% of a chelate resin having an iminopropionic acid group and using an epoxy resin as a matrix was added to the nickel sulfate solution, and the mixture was stirred in the reaction vessel for 2 hours. The resulting nickel sulfate solution was post-treated in the same manner as described in Example 1 to obtain a regenerated nickel catalyst. Example 4 The nickel catalyst used in the rapeseed oil hydrogenation step was heated with sulfuric acid to obtain a nickel sulfate solution (containing 4.6% Ni). Next, a chelate resin 3 having a dithiocarbamic acid group and having a resorcinol-formalin resin as a matrix and an internal surface area of 560
After filling two columns (inner diameter 120 mmφ) with the polymer adsorbent 3 based on a styrene-divinylbenzene copolymer resin with m 2 /g,
The nickel sulfate solution containing the above impurities was passed through the polymer adsorbent and the chelate resin in this order at a flow rate of SV5 in a downward flow. The nickel sulfate solution that flowed out to a liquid flow rate of 80/-R was post-treated in the same manner as in Example 1 to obtain a regenerated nickel catalyst. Example 5 Using the regenerated nickel catalysts obtained in Examples 2, 3, and 4, a soybean oil hydrogenation reaction test was conducted to determine the activity and selectivity of each catalyst. The results are shown in Table-7.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 油脂の水素添加工程で使用されたニツケル触
媒に、硫酸を加えて硫酸ニツケル溶液とし、官能
基としてイミノジ酢酸基、イミノプロピオン酸
基、イミノジプロピオン酸基、アミノアルキレン
リン酸基、ジチオカルバミン酸基のうち少なくと
も一種を有し、樹脂母体として、スチレン−ジビ
ニルベンゼン共重合体樹脂、フエノール樹脂、エ
ポキシ樹脂、アクリル樹脂、塩化ビニル樹脂、塩
化ビニリデン樹脂、尿素樹脂の群のいずれか一種
よりなるキレート樹脂または、該キレート樹脂と
吸着剤を組み合わせたもので処理して、硫酸ニツ
ケル溶液中の不純物を除去し、次いで処理した硫
酸ニツケル溶液にケイソウ土もしくはアルミナお
よび炭酸ナトリウムを加え、生成した沈殿物を固
液分離し、水洗後、乾燥、還元してニツケル触媒
とすることを特徴とする、ニツケル触媒を再生す
る方法。
1. Sulfuric acid is added to the nickel catalyst used in the hydrogenation process of fats and oils to make a nickel sulfate solution, and the functional groups are iminodiacetic acid group, iminopropionic acid group, iminodipropionic acid group, aminoalkylene phosphate group, and dithiocarbamate group. A chelate resin comprising at least one of the following, and whose resin base is any one of the group consisting of styrene-divinylbenzene copolymer resin, phenol resin, epoxy resin, acrylic resin, vinyl chloride resin, vinylidene chloride resin, and urea resin. Alternatively, impurities in the nickel sulfate solution can be removed by treatment with a combination of the chelating resin and adsorbent, and then diatomaceous earth or alumina and sodium carbonate are added to the treated nickel sulfate solution to solidify the resulting precipitate. A method for regenerating a nickel catalyst, which is characterized by liquid separation, washing with water, drying, and reduction to obtain a nickel catalyst.
JP58037978A 1983-03-08 1983-03-08 Regeneration of nickel catalyst Granted JPS59162950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037978A JPS59162950A (en) 1983-03-08 1983-03-08 Regeneration of nickel catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037978A JPS59162950A (en) 1983-03-08 1983-03-08 Regeneration of nickel catalyst

Publications (2)

Publication Number Publication Date
JPS59162950A JPS59162950A (en) 1984-09-13
JPH0436741B2 true JPH0436741B2 (en) 1992-06-17

Family

ID=12512652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037978A Granted JPS59162950A (en) 1983-03-08 1983-03-08 Regeneration of nickel catalyst

Country Status (1)

Country Link
JP (1) JPS59162950A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677085A (en) * 1985-09-30 1987-06-30 Amoco Corporation Process for removing metals from spent catalyst
JPH11128830A (en) * 1997-10-30 1999-05-18 Nkk Corp Surface treated steel sheet excellent in corrosion resistance
CN109092264B (en) * 2018-08-30 2021-06-15 西安工程大学 Preparation method of solid decolorizing agent

Also Published As

Publication number Publication date
JPS59162950A (en) 1984-09-13

Similar Documents

Publication Publication Date Title
CN107002168B (en) A kind of METAL EXTRACTION method of the leaching simultaneously in hygrometric state solid and absorption
CN1129482C (en) Prepn. art and application of monodisperse ion exchange agent contg. chelate functional group
RU1831508C (en) Method of extraction of noble metals from alkaline cyan solutions
US3700592A (en) Process for the removal and recovery of mineral pollutants from water
US2653089A (en) Recovery of heavy metals
CN1178969C (en) Process for preparing monodisperse cross-linked bead polymer having thiourea group, and use thereof
US3207577A (en) Method for the recovery of copper from a slurry containing the same
US4009101A (en) Recycle treatment of waste water from nickel plating
CN105148866A (en) Synthesis method for orange peel cellulose-based transition metal positive ion surface imprinted polymer
JPS60191021A (en) Collection of uranium
JPH0436741B2 (en)
TWI748288B (en) Methods for extraction and recovery of au, pt, re, ru, rh and pd from aqueous acidic solutions and chelating fibers used therefor
CN1639360A (en) Method for the separation of zinc and a second metal which does not form an anionic complex in the presence of chloride ions
EP0493589B1 (en) Catalytic destruction of sulfur-oxygen anions
JP2010043344A (en) Apparatus and method for recovering metal
Chanda et al. Removal and recovery of thiocyanate by ligand sorption on polymer-bound ferric ion
JP2007326023A (en) Method for treating liquid waste and/or washing water from electroless nickel plating bath
JPH11207365A (en) Treatment of selenium-containing waste water
JP3784940B2 (en) Method for removing arsenic in copper electrolyte
JP3981318B2 (en) Treatment method of electroless nickel plating aging solution
CN1175550A (en) Method for refining waste sulfuric acid from alkylation
RU2201980C2 (en) Method of extraction of noble metals from solutions of their salts (versions)
US3043867A (en) Method for the purification of aminocarboxylic acids
US2081309A (en) Process for treating oils
JPS5855838B2 (en) Method for removing ammonia nitrogen from wastewater