JPH043671B2 - - Google Patents

Info

Publication number
JPH043671B2
JPH043671B2 JP59134450A JP13445084A JPH043671B2 JP H043671 B2 JPH043671 B2 JP H043671B2 JP 59134450 A JP59134450 A JP 59134450A JP 13445084 A JP13445084 A JP 13445084A JP H043671 B2 JPH043671 B2 JP H043671B2
Authority
JP
Japan
Prior art keywords
region
gate
gate electrode
voltage
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59134450A
Other languages
Japanese (ja)
Other versions
JPS6114764A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59134450A priority Critical patent/JPS6114764A/en
Publication of JPS6114764A publication Critical patent/JPS6114764A/en
Publication of JPH043671B2 publication Critical patent/JPH043671B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果トランジスタ、
特にゲートの電気的絶縁破壊を防止する保護用ダ
イオードを内蔵する絶縁ゲート型電界効果トラン
ジスタに関するものである。絶縁ゲート型電界効
果トランジスタはその構造上、ゲートに高電圧が
印加されるとゲート絶縁膜が破壊することがあ
る。この絶縁破壊現象はゲートに故意に高電圧を
印加した場合に限らず、静電気の帯電でも生じ
る。そこで、絶縁破壊を防止する為の保護用ダイ
オードが内蔵されているものがある。第1図は従
来の保護用ダイオードを内蔵した絶縁ゲート型電
界効果トランジスタをしめす断面構造図である。
第1図で1はP型の半導体基体であり、いわゆる
nチヤネルMOSFETの例である。ゲート電極1
0はオーミツク用金属12と配線金属により保護
用ダイオードのオーミツク電極14に接続され
る。保護用ダイオードの接合部はP+領域の4及
びn+領域の5で形成される。このP+n+接合の降
伏電圧はゲートの絶縁破壊電圧以下でなければ意
味をなさず、また通常ゲートに印加される電圧範
囲例えば0〜20V以上でないとトランジスターと
しての動作ができなくなる。P+n+接合の降伏電
圧は不純物濃度あるいは接合の深さに関係する。
従来のP+領域4の不純物濃度を制御し、あるい
は拡散によりP+及びn+領域が横方向に伸び互い
にぶつかり合つた時の不純物濃度が最適となるよ
うに領域4及び5の間隔を選ぶ等の方法で降伏電
圧が制御されていた。前記のように第1図のよう
な従来の絶縁ゲート型電界効果トランジスタでは
次の欠点を有していた。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an insulated gate field effect transistor,
In particular, the present invention relates to an insulated gate field effect transistor having a built-in protection diode for preventing electrical breakdown of the gate. Due to the structure of an insulated gate field effect transistor, when a high voltage is applied to the gate, the gate insulating film may be destroyed. This dielectric breakdown phenomenon occurs not only when a high voltage is intentionally applied to the gate, but also when static electricity is charged. Therefore, some devices have a built-in protection diode to prevent dielectric breakdown. FIG. 1 is a cross-sectional structural diagram showing a conventional insulated gate field effect transistor incorporating a protection diode.
In FIG. 1, 1 is a P-type semiconductor substrate, which is an example of a so-called n-channel MOSFET. Gate electrode 1
0 is connected to the ohmic electrode 14 of the protection diode through the ohmic metal 12 and wiring metal. The protection diode junction is formed by 4 in the P + region and 5 in the N + region. The breakdown voltage of this P + n + junction is meaningless unless it is below the dielectric breakdown voltage of the gate, and it cannot operate as a transistor unless it is within the voltage range normally applied to the gate, for example 0 to 20 V or higher. The breakdown voltage of a P + n + junction is related to the impurity concentration or the junction depth.
The impurity concentration of the conventional P + region 4 can be controlled, or the spacing between regions 4 and 5 can be selected so that the impurity concentration is optimal when the P + and n + regions extend laterally and collide with each other due to diffusion. The breakdown voltage was controlled using the following method. As mentioned above, the conventional insulated gate field effect transistor as shown in FIG. 1 has the following drawbacks.

(1) P+領域4の形成が必要で工程数が多くなる。(1) It is necessary to form the P + region 4, which increases the number of steps.

(2) P+領域4の不純物濃度制御が必要で高度な
技術が必要な為、高価となり、又歩留も低下さ
せる。
(2) Since it is necessary to control the impurity concentration of the P + region 4 and requires advanced technology, it becomes expensive and also reduces the yield.

(3) ゲート絶縁耐圧はゲート絶縁膜6の膜厚に依
存する為、膜厚をかえた機種毎に領域4の形成
条件をかえる必要が生じる。
(3) Since the gate dielectric breakdown voltage depends on the thickness of the gate insulating film 6, it is necessary to change the conditions for forming the region 4 for each model with a different film thickness.

本発明は前記の従来型の欠点を解決した絶縁ゲ
ート型電界効果トランジスタの新規な構造を提供
するものであり、構造及び製造工程を簡単化で
き、安価で高信頼度の絶縁ゲート型電界効果トラ
ンジスタを得ることができる。
The present invention provides a novel structure of an insulated gate field effect transistor that solves the above-mentioned drawbacks of the conventional type, and provides an inexpensive and highly reliable insulated gate field effect transistor that can simplify the structure and manufacturing process. can be obtained.

以下図面を用いて本発明を詳述する。 The present invention will be explained in detail below using the drawings.

実施例 1 第2図は本発明の一例を示す断面構造図であ
り、第3図a〜dはその概略製造工程を示すもの
である。第3図aは周知の方法例えば、熱酸化−
写真処理−エツチングで周辺部に選択的に酸化膜
を形成した状態を示している。bは酸化膜の形成
されてなかつた部分に周知の方法でゲート酸化膜
を形成したところである。cはゲート電極10及
び本発明の特長である保護用ダイオード領域上に
絶縁膜を介して電気伝導膜を積層した第2ゲート
電極16を形成したものである。
Example 1 FIG. 2 is a cross-sectional structural diagram showing an example of the present invention, and FIGS. 3 a to 3 d schematically show the manufacturing process thereof. Figure 3a shows well-known methods such as thermal oxidation.
This shows a state in which an oxide film is selectively formed in the peripheral area by photo-etching. b shows a gate oxide film formed by a well-known method on a portion where no oxide film was formed. 1. In c, a second gate electrode 16 is formed by laminating an electrically conductive film via an insulating film on the gate electrode 10 and a protective diode region, which is a feature of the present invention.

本実施例では通常のCVD法でポリシリコンを
全面に形成し、しかる後通常の写真処理とエツチ
ングで形成した。このポリシリコンをマスクとし
てゲート酸化膜をエツチングで除去し、しかる後
通常の方法例えばPOCl3による気相拡散法でドレ
イン2、ソース3及び保護用ダイオードのn+
域5を形成する。このとき、ポリシリコン中にも
リンが拡散され、ポリシリコンの抵抗値はゲート
用電気伝導膜として十分な抵抗値に下る。その後
通常の方法でオーミツク電極用金属例えばAlを
形成すると第2図のごとくなる。ゲート電極12
と保護用ダイオードの電極14とは特に図示して
いないが、表面上でAl配線により結合させてお
くと良い。ソース電極13は第2ゲート電極16
に電気的に結合させておくことが必要である。
In this example, polysilicon was formed on the entire surface by a conventional CVD method, and then by conventional photo processing and etching. Using this polysilicon as a mask, the gate oxide film is removed by etching, and then a drain 2, a source 3, and an n + region 5 of a protective diode are formed by a conventional method, for example, a vapor phase diffusion method using POCl 3 . At this time, phosphorus is also diffused into the polysilicon, and the resistance value of the polysilicon falls to a resistance value sufficient for use as an electrically conductive film for a gate. After that, an ohmic electrode metal such as Al is formed by a conventional method, and the result is as shown in FIG. Gate electrode 12
Although not particularly shown, and the electrode 14 of the protection diode are preferably connected to each other on the surface by Al wiring. The source electrode 13 is the second gate electrode 16
It is necessary to electrically couple the

本実施例では絶縁膜6(ゲート酸化膜)の厚さ
を100nmとしソースを基体1と短絡させた状態で
ソース・保護用ダイオード間に電圧を印加し、保
護用ダイオードの降伏電圧を調べたところ約35V
であつた。ゲート絶縁膜6の耐圧は50V以上ある
ことが別途確認されており、またこの種の電界効
果トランジスタのゲート印加電圧は0〜20Vの範
囲であり、保護用ダイオードの降伏電圧としては
最適であることが確認された。また、ゲート酸化
膜厚さを80nm及び200nmとしたとき、絶縁耐圧
はそれぞれ40V以上及び100V以上であるのに対
し、保護用ダイオードの降伏電圧はそれぞれ約
32V及び40Vと自動的に変化することが確認でき
た。さらにそれぞれの場合の降伏電圧はP型基体
1の不純物濃度には無関係で第2ゲート電極16
下の絶縁膜6′の厚みのみに関係することが確認
された。例えば絶縁膜6′(酸化膜)厚を120nm
一定とし、P型基体1の不純物濃度を約5×1015
cm-3から2×1014cm-3まで変えて実験したところ
降伏電圧はいずれも約36Vで一定であつた。降伏
電圧について上述のごとき現象が生じる理由につ
いては次のことが推定される。第4図はこれを説
明する為、第2図の保護用ダイオード部分を拡大
したものである。ソース・ゲート間に電圧が印加
されると保護用ダイオードは逆バイアスされるこ
とになり17で示す空乏層が形成される。空乏層
のひろがり幅はプレナ接合の為、表面近傍で狭く
なるが、第2ゲート電極16のある側Aでは16
がソースとされている為アース電位となり、空乏
層のひろがりを押える。その為、第2ゲート電極
16のない場合Bよりはるかに空乏層が狭くな
り、より低い電圧で降伏が生じる。この第2ゲー
ト電極が空乏層のひろがりを押える効果は基体1
の不純物濃度ではなくMOSFETのゲート電極に
よるチヤネル形成と同様絶縁膜即ち酸化膜厚によ
り決定される。本発明の現象は上記理由にもとづ
いていると考えられる。第2ゲート電極16は保
護用ダイオードのPN接合を表面に露出する部分
全体をおおつても良いが、PN接合は1ケ所でも
弱い所があればその部分から降伏が生じる。従つ
て第2ゲート電極16は一部に形成されてあれば
良い。
In this example, the thickness of the insulating film 6 (gate oxide film) was 100 nm, and a voltage was applied between the source and the protection diode with the source short-circuited to the substrate 1, and the breakdown voltage of the protection diode was investigated. Approximately 35V
It was hot. It has been separately confirmed that the withstand voltage of the gate insulating film 6 is 50 V or more, and the gate applied voltage of this type of field effect transistor is in the range of 0 to 20 V, which is optimal as the breakdown voltage of the protective diode. was confirmed. Furthermore, when the gate oxide film thickness is 80 nm and 200 nm, the dielectric breakdown voltage is 40 V or more and 100 V or more, respectively, whereas the breakdown voltage of the protective diode is approximately
It was confirmed that the voltage automatically changed to 32V and 40V. Furthermore, the breakdown voltage in each case is independent of the impurity concentration of the P-type substrate 1 and is independent of the impurity concentration of the second gate electrode 16.
It was confirmed that this is related only to the thickness of the underlying insulating film 6'. For example, the thickness of the insulating film 6′ (oxide film) is 120 nm.
The impurity concentration of the P-type substrate 1 is approximately 5×10 15
When the voltage was varied from cm -3 to 2×10 14 cm -3 in experiments, the breakdown voltage remained constant at about 36V. The reason why the above-mentioned phenomenon occurs regarding the breakdown voltage is presumed to be as follows. In order to explain this, FIG. 4 is an enlarged view of the protective diode portion of FIG. 2. When a voltage is applied between the source and the gate, the protective diode is reverse biased and a depletion layer shown at 17 is formed. The width of the depletion layer is narrower near the surface due to the planar junction, but on the side A where the second gate electrode 16 is located, the width of the depletion layer is 16
Since it is used as a source, it becomes a ground potential and suppresses the expansion of the depletion layer. Therefore, the depletion layer becomes much narrower than in case B without the second gate electrode 16, and breakdown occurs at a lower voltage. The effect of this second gate electrode on suppressing the expansion of the depletion layer is that
It is determined not by the impurity concentration but by the thickness of the insulating film, that is, the oxide film, similar to the channel formation by the MOSFET gate electrode. It is believed that the phenomenon of the present invention is based on the above reasons. The second gate electrode 16 may cover the entire exposed surface of the PN junction of the protection diode, but if the PN junction has even one weak spot, breakdown will occur from that spot. Therefore, the second gate electrode 16 only needs to be formed in a portion.

実施例 2 縦型MOSFET(以下VDMOSと略す)に適用
した例を第5図に示す。VDMOSは、実施例1の
基体領域1に相当する部分が拡散層で形成され、
チヤネル形成に必要な低濃度基体領域1と高耐圧
化とオーミツク性を良くする為の高濃度で深い拡
散領域18よりなる。従来法で保護用ダイオード
を形成した場合、高濃度領域18内にダイオード
用n+領域を形成したのではダイオードの降伏電
圧が低すぎ(通常5〜8V)、低濃度のP形領域1
内に形成するのみでは逆に降伏電圧が高くなりす
ぎて役に立たなくなる(通常50〜100V)。本発明
は低濃度のP型領域1内にn+領域5を形成する
とともに第2ゲート電極16をもうけることで実
施例1と同様最適降伏電圧を得ることができた。
Example 2 An example of application to a vertical MOSFET (hereinafter abbreviated as VDMOS) is shown in FIG. In the VDMOS, a portion corresponding to the base region 1 of Example 1 is formed of a diffusion layer,
It consists of a low concentration base region 1 necessary for channel formation and a high concentration and deep diffusion region 18 for increasing the breakdown voltage and improving the ohmic properties. When a protection diode is formed using the conventional method, the breakdown voltage of the diode is too low (usually 5 to 8 V) if the n + region for the diode is formed within the high concentration region 18, and the low concentration P-type region 1
If only the voltage is formed inside the capacitor, the breakdown voltage will become too high to be useful (usually 50 to 100 V). In the present invention, by forming the n + region 5 in the lightly doped P-type region 1 and providing the second gate electrode 16, it was possible to obtain the optimum breakdown voltage as in Example 1.

以上P型基体領域1を用いたnチヤネル型につ
いて説明したが、n型基体を用いたPチヤネル型
に対しても適用されることが当然である。即ちい
づれの場合も均等な導電型の変換は本発明の範囲
に含まれる。
Although the explanation has been given above regarding the n-channel type using the P-type substrate region 1, it is natural that the present invention is also applied to the P-channel type using the n-type substrate. That is, in either case, equivalent conductivity type conversion is included within the scope of the present invention.

以上のごとく本発明の絶縁ゲート型電界効果ト
ランジスタはゲートの電気的絶縁破壊を有効に防
止するごとく、保護用ダイオードを内蔵せしめ、
構造及び製造工程を単純化し、安価で信頼度の高
いものを提供でき、産業上極めて効果大なるもの
である。
As described above, the insulated gate field effect transistor of the present invention has a built-in protective diode to effectively prevent electrical breakdown of the gate.
The structure and manufacturing process are simplified, and a product with high reliability can be provided at low cost, which is extremely effective in industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の絶縁ゲート電界効果トランジス
タの断面構造図、第2図及び第5図は本発明の実
施例の断面構造図、第3図は第2図の実施例のた
めの製造工程図、第4図は第2図の保護用ダイオ
ード部分の拡大構造図である。1は半導体基体、
2はドレイン領域、3はソース領域、4は保護用
ダイオードの基体と同一導電型領域、5は保護用
ダイオードの基体と逆導電型領域、6は主ゲート
絶縁膜、6′は第2ゲート絶縁膜、7,8及び9
はパシベーシヨン用絶縁膜、10は主ゲート電
極、11,12,13,14及び15はオーミツ
ク用金属、16は第2ゲート電極、17は空乏
層、18は高濃度領域である。
FIG. 1 is a cross-sectional structural diagram of a conventional insulated gate field effect transistor, FIGS. 2 and 5 are cross-sectional structural diagrams of an embodiment of the present invention, and FIG. 3 is a manufacturing process diagram for the embodiment of FIG. 2. , FIG. 4 is an enlarged structural diagram of the protective diode portion of FIG. 2. 1 is a semiconductor substrate;
2 is a drain region, 3 is a source region, 4 is a region of the same conductivity type as the substrate of the protection diode, 5 is a region of opposite conductivity type to the substrate of the protection diode, 6 is a main gate insulating film, and 6' is a second gate insulator. Membranes, 7, 8 and 9
10 is a passivation insulating film, 10 is a main gate electrode, 11, 12, 13, 14 and 15 are ohmic metals, 16 is a second gate electrode, 17 is a depletion layer, and 18 is a high concentration region.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体の一表面に同一導電型からなるソ
ース、ドレイン及び保護用ダイオードの領域を形
成し、該保護用ダイオード領域のPN接合が該一
表面に露出する部分の少くとも一部を絶縁膜上に
積層した電気伝導膜からなる第2ゲート電極でお
おい、且つ、該第2ゲート電極を該ソース領域と
電気的に接続したことを特徴とする絶縁ゲート型
電界効果トランジスタ。
1. A source, a drain, and a protective diode region of the same conductivity type are formed on one surface of a semiconductor substrate, and at least a part of the portion of the protective diode region where the PN junction is exposed on the one surface is covered with an insulating film. 1. An insulated gate field effect transistor comprising: a second gate electrode made of an electrically conductive film laminated on the substrate; and the second gate electrode is electrically connected to the source region.
JP59134450A 1984-06-29 1984-06-29 Insulated gate field effect transistor Granted JPS6114764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134450A JPS6114764A (en) 1984-06-29 1984-06-29 Insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134450A JPS6114764A (en) 1984-06-29 1984-06-29 Insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JPS6114764A JPS6114764A (en) 1986-01-22
JPH043671B2 true JPH043671B2 (en) 1992-01-23

Family

ID=15128628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134450A Granted JPS6114764A (en) 1984-06-29 1984-06-29 Insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS6114764A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044124B4 (en) 2005-09-15 2010-11-25 Texas Instruments Deutschland Gmbh A method of fabricating an integrated circuit with gate self-protection, and integrated circuit with gate self-protection

Also Published As

Publication number Publication date
JPS6114764A (en) 1986-01-22

Similar Documents

Publication Publication Date Title
US11107912B2 (en) Trench gate semiconductor device with dummy gate electrode and manufacturing method of the same
US4831424A (en) Insulated gate semiconductor device with back-to-back diodes
JP2968222B2 (en) Semiconductor device and method for preparing silicon wafer
US6232163B1 (en) Method of forming a semiconductor diode with depleted polysilicon gate structure
US4990976A (en) Semiconductor device including a field effect transistor having a protective diode between source and drain thereof
JPH0230584B2 (en)
JPH06310726A (en) Protective diode for transistor
US5077590A (en) High voltage semiconductor device
US5703389A (en) Vertical IGFET configuration having low on-resistance and method
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3590207B2 (en) MOS capacitor
US4430663A (en) Prevention of surface channels in silicon semiconductor devices
US5714783A (en) Field-effect transistor
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP3099917B2 (en) Field effect transistor
JPH043671B2 (en)
US5962898A (en) Field-effect transistor
JPH02110976A (en) Insulated-gate semiconductor device
JP3217552B2 (en) Horizontal high voltage semiconductor device
JPS6290964A (en) Protection structure of integrated circuit
JPH0328836B2 (en)
JP2629426B2 (en) Semiconductor device having double diffusion type MISFET and method of manufacturing the same
JP2973583B2 (en) Semiconductor device
JP2682231B2 (en) Semiconductor device
JP3435171B2 (en) High voltage semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term