JPH04364681A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH04364681A
JPH04364681A JP3139920A JP13992091A JPH04364681A JP H04364681 A JPH04364681 A JP H04364681A JP 3139920 A JP3139920 A JP 3139920A JP 13992091 A JP13992091 A JP 13992091A JP H04364681 A JPH04364681 A JP H04364681A
Authority
JP
Japan
Prior art keywords
solid
accumulation operation
amount
accumulation
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3139920A
Other languages
Japanese (ja)
Inventor
Yasutoshi Yamamoto
靖利 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3139920A priority Critical patent/JPH04364681A/en
Publication of JPH04364681A publication Critical patent/JPH04364681A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a range in an output level in which the SN ratio of a standard output level is improved and gradation is reproduced with respect to the solid-state image pickup device used for a video camera. CONSTITUTION:A charge stored and photoelectric-converted at a photoelectric conversion element 8 for a time of N/(N+1) of one field period is given to a charge transfer gate 9 and read to a vertical charge transfer section 10 from the photoelectric conversion element 8 by using a read pulse. An output charge Qs is saturated by an incident luminous quantity A and the output charge remains Qs at a luminous quantity more than the luminous quantity A. A 2nd storage operation is immediately started after the charge is read by a 1st storage operation. The charge is subjected to photoelectric conversion for a time of N/(N+1) of one field period by the 2nd storage operation and the charge stored in the photoelectric conversion element 8 is read to the vertical charge transfer section 10 from the photoelectric conversion element 8 by using a read pulse given to the charge transfer gate 9. Since the storage time in the 2nd storage operation is 1/N in comparison with the time in the 1st storage operation, an incident luminous quantity B at saturation is the luminous quantity being a multiple of N of the saturation incident luminous quantity A in the 1st storage operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はビデオカメラなどに用い
られる固体撮像装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device used in video cameras and the like.

【0002】0002

【従来の技術】近年、ビデオカメラなどに用いられる固
体撮像装置は性能が向上され放送用カメラにも用いられ
るようになってきている。
2. Description of the Related Art In recent years, solid-state imaging devices used in video cameras and the like have improved in performance and are now being used in broadcast cameras.

【0003】以下図面を参照しながら、従来の固体撮像
装置の一例について説明する。(図3)は従来の固体撮
像装置の構造を示す構造図である。(図3)において、
1は光電変換素子、2は電荷転送ゲート、3は垂直電荷
転送部、4は電荷蓄積部、5は水平電荷転送部、6は出
力段、7は出力端子である。光電変換素子1に入射した
入射光は光電変換されて信号電荷となり1フィールドの
期間光電変換素子1内に蓄積される。
An example of a conventional solid-state imaging device will be described below with reference to the drawings. (FIG. 3) is a structural diagram showing the structure of a conventional solid-state imaging device. In (Figure 3),
1 is a photoelectric conversion element, 2 is a charge transfer gate, 3 is a vertical charge transfer section, 4 is a charge storage section, 5 is a horizontal charge transfer section, 6 is an output stage, and 7 is an output terminal. Incident light that enters the photoelectric conversion element 1 is photoelectrically converted into signal charges, which are accumulated in the photoelectric conversion element 1 for a period of one field.

【0004】垂直ブランキング期間になると読み出しパ
ルスが電荷転送ゲート2に与えられ光電変換素子1内に
蓄積されていた電荷は垂直電荷転送部3に読み出される
。その後垂直ブランキング期間内に垂直電荷転送部3の
電荷は高速で蓄積部4に転送され、次のフィールドで順
次水平電荷転送部5に転送されて出力段6、出力端子7
を通して出力信号として出力される。
During the vertical blanking period, a read pulse is applied to the charge transfer gate 2, and the charges accumulated in the photoelectric conversion element 1 are read out to the vertical charge transfer section 3. Thereafter, within the vertical blanking period, the charges in the vertical charge transfer section 3 are transferred at high speed to the storage section 4, and in the next field, they are sequentially transferred to the horizontal charge transfer section 5 to the output stage 6 and the output terminal 7.
It is output as an output signal through.

【0005】従来の固体撮像装置の入射光量と出力電荷
量の関係を表す光電変換特性を(図2)に示す。従来の
固体撮像装置では入射光量と出力電荷量は比例しており
、入射光量の増加とともに出力電荷量も増加する。しか
し出力電荷量はある入射光量Aで飽和してそれ以上の入
射光量では出力電荷量は一定となる。
FIG. 2 shows photoelectric conversion characteristics representing the relationship between the amount of incident light and the amount of output charge of a conventional solid-state imaging device. In conventional solid-state imaging devices, the amount of incident light and the amount of output charge are proportional, and as the amount of incident light increases, the amount of output charge also increases. However, the output charge amount is saturated at a certain amount of incident light A, and the output charge amount becomes constant at a higher amount of incident light.

【0006】このためビデオカメラではこの入射光量A
より強い入射光では階調再現でない。ビデオカメラを設
計する際は出力信号の白レベルを与える標準光量を決定
する必要がある。一般にビデオカメラでは標準光量より
も4〜6倍まで明るい高輝度部も階調再現するためにビ
デオカメラの標準光量A’を固体撮像素子の飽和光量A
の1/4〜1/6としている。
Therefore, in a video camera, this amount of incident light A
Gradation reproduction is not possible with stronger incident light. When designing a video camera, it is necessary to determine the standard amount of light that provides the white level of the output signal. In general, in video cameras, in order to reproduce gradation even in high-brightness areas that are 4 to 6 times brighter than the standard light amount, the standard light amount A' of the video camera is set to the saturated light amount A of the solid-state image sensor.
It is set at 1/4 to 1/6 of that.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような構成ではビデオカメラで標準光量のN倍の光量ま
で階調再現するためには標準光量を固体撮像素子の飽和
光量のN分の1倍にする必要がある。固体撮像素子の入
射光量と出力電荷量は比例しているので標準光量時の出
力電荷量は固体撮像素子の飽和光量時の出力電荷量の1
/Nとなる。
[Problems to be Solved by the Invention] However, with the above configuration, in order to reproduce gradations up to N times the standard light amount with a video camera, the standard light amount must be set to 1/N times the saturated light amount of the solid-state image sensor. It is necessary to Since the amount of incident light and the amount of output charge of a solid-state image sensor are proportional, the amount of output charge at standard light amount is 1 of the amount of output charge at saturated light amount of the solid-state image sensor.
/N.

【0008】SN比は出力電荷量の平方根に比例するの
で標準光量時のSN比は飽和光量時のSN比の1/√N
となるという課題が発生する。このことは同時に、標準
光量時のSN比を良くしようとするとき、同じ固体撮像
素子を用いた場合階調再現可能な最大の入射光量の標準
光量に対する比Nを小さくしなければならないという課
題が発生する。
Since the SN ratio is proportional to the square root of the output charge amount, the SN ratio at standard light intensity is 1/√N of the SN ratio at saturated light intensity.
The problem arises that. This also means that when trying to improve the S/N ratio at standard light intensity, the ratio N of the maximum incident light intensity that can reproduce gradation when using the same solid-state image sensor to the standard light intensity must be reduced. Occur.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、固体撮像素子において特定の入射光量で
素子が飽和するような第1の蓄積動作と、前記第1の蓄
積動作における入射光量に対し異なる入射光量で素子が
飽和するような第2の蓄積動作とを単位蓄積時間内に行
い、前記第1の蓄積動作で得られる信号と前記第2の蓄
積動作で得られる信号を加え合わせた信号を前記単位蓄
積時間あたりの出力信号とするものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a first accumulation operation in which the element is saturated with a specific amount of incident light in a solid-state image sensor, and a first accumulation operation in the first accumulation operation. A second accumulation operation in which the element is saturated with an amount of incident light different from the amount of incident light is performed within a unit accumulation time, and the signal obtained in the first accumulation operation and the signal obtained in the second accumulation operation are combined. The added signal is used as an output signal per unit accumulation time.

【0010】0010

【作用】第1の蓄積動作により固体撮像素子の飽和出力
電荷量まで用いて標準光量までの信号を得、第2の蓄積
動作により標準光量より明るい高輝度部の信号を得、そ
れぞれの信号を加え合わせた信号を出力信号としている
ので、標準光量における出力電荷量は固体撮像素子の飽
和出力電荷量よりも大きくなり、標準光量時のSN比を
少なくとも固体撮像素子の飽和光量時におけるSN比ま
で上げることができ、さらに第2の蓄積動作の飽和光量
と第1の蓄積動作の飽和光量の比を変えることにより、
標準光量に対する階調再現できる入射光の範囲を変える
ことができる。
[Operation] The first accumulation operation uses up to the saturation output charge of the solid-state image sensor to obtain a signal up to the standard light intensity, and the second accumulation operation obtains a signal of a high brightness area brighter than the standard light intensity, and each signal is Since the added signal is used as the output signal, the output charge amount at standard light intensity is larger than the saturated output charge amount of the solid-state image sensor, and the S/N ratio at standard light intensity is at least as high as the S/N ratio at the saturated light intensity of the solid-state image sensor. By changing the ratio of the saturated light amount of the second accumulation operation and the saturated light amount of the first accumulation operation,
It is possible to change the range of incident light that can reproduce gradations with respect to the standard light amount.

【0011】[0011]

【実施例】以下、本発明の第一の一実施例の固体撮像装
置について、図面を参照しながら説明する。(図1)は
本発明の固体撮像装置の構造を表す構造図である。(図
1)において8は光電変換素子、9は電荷転送ゲート、
10は垂直電荷転送部、11は電荷蓄積部、12は水平
電荷転送部、13は出力段、14は出力端子である。こ
の構造は従来のFIT型の固体撮像素子と同じ構造であ
るが、垂直電荷転送部12の最大蓄積電荷量は光電変換
素子8の最大蓄積電荷量の2倍になるような構造となっ
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid-state imaging device according to a first embodiment of the present invention will be described below with reference to the drawings. (FIG. 1) is a structural diagram showing the structure of a solid-state imaging device of the present invention. (Fig. 1), 8 is a photoelectric conversion element, 9 is a charge transfer gate,
10 is a vertical charge transfer section, 11 is a charge storage section, 12 is a horizontal charge transfer section, 13 is an output stage, and 14 is an output terminal. This structure is the same as that of a conventional FIT type solid-state image sensor, but the structure is such that the maximum amount of accumulated charge in the vertical charge transfer section 12 is twice the maximum amount of accumulated charge in the photoelectric conversion element 8. .

【0012】光電変換素子8で1フィールド期間のN/
(N+1)の時間光電変換されて蓄積された電荷は電荷
転送ゲート9に与えられる読み出しパルスによって光電
変換素子8より垂直電荷転送部10に読み出される。こ
こでNは1より大きな定数である。第1の蓄積動作によ
って得られる入射光量と出力電荷量の関係を表すグラフ
を(図4)(a) に一点鎖線で示す。(図4)(a)
 でAの入射光量のときに出力電荷量はQs となって
飽和しそれ以上の光量では出力電荷量はQs のまま一
定となる。
In the photoelectric conversion element 8, N/ of one field period is
The charges accumulated through photoelectric conversion for a period of (N+1) are read out from the photoelectric conversion element 8 to the vertical charge transfer section 10 by a read pulse applied to the charge transfer gate 9. Here, N is a constant greater than 1. A graph showing the relationship between the amount of incident light and the amount of output charge obtained by the first accumulation operation is shown in (a) of FIG. 4 by a dashed line. (Figure 4) (a)
When the amount of incident light is A, the output charge amount becomes Qs and saturates, and when the amount of light exceeds that amount, the output charge amount remains constant at Qs.

【0013】第1の蓄積動作による電荷が読み出された
後ただちに第2の蓄積動作が始まる。第2の蓄積動作に
よって1フィールド期間の1/(N+1)の時間光電変
換されて光電変換素子8に蓄積された電荷は電荷転送ゲ
ート9に与えられる読み出しパルスによって光電変換素
子8より垂直電荷転送部10に読み出される。第2の蓄
積動作における蓄積時間は第1の蓄積動作における蓄積
時間の1/Nとなっている。
[0013] Immediately after the charges resulting from the first accumulation operation are read out, the second accumulation operation begins. Charges photoelectrically converted for a time of 1/(N+1) of one field period by the second accumulation operation and accumulated in the photoelectric conversion element 8 are transferred from the photoelectric conversion element 8 to the vertical charge transfer section by a read pulse given to the charge transfer gate 9. 10. The accumulation time in the second accumulation operation is 1/N of the accumulation time in the first accumulation operation.

【0014】第2の蓄積動作によって得られる出力電荷
量と入射光量の関係を表すグラフを(図4)(b) に
二点鎖線で示す。第1の蓄積動作に比べて第2の蓄積動
作では蓄積時間が1/Nなので、(図4)(b) では
飽和するときの入射光量Bは(図4)(a) の第1の
蓄積動作における飽和入射光量AのN倍の光量となる。
A graph showing the relationship between the amount of output charge obtained by the second accumulation operation and the amount of incident light is shown by a chain double-dashed line in FIG. 4(b). Since the accumulation time in the second accumulation operation is 1/N compared to the first accumulation operation, the amount of incident light B at the time of saturation in (Fig. 4) (b) is (Fig. 4) (a). The light amount is N times the saturated incident light amount A during operation.

【0015】入射光量がAのときの、時間と光電変換素
子8内に蓄積される電荷量との関係を示すグラフを一点
鎖線で(図5)(a) に、入射光量がBのときの、時
間と光電変換素子8内に蓄積される電荷量との関係を二
点鎖線で(図5)(b) に、読み出しパルスのタイミ
ングを(図5)(c) に示す。
A graph showing the relationship between time and the amount of charge accumulated in the photoelectric conversion element 8 when the amount of incident light is A is shown by the dashed-dotted line (FIG. 5) (a), and when the amount of incident light is B The relationship between time and the amount of charge accumulated in the photoelectric conversion element 8 is shown by the two-dot chain line (FIG. 5) (b), and the timing of the read pulse is shown in (FIG. 5) (c).

【0016】入射光量Aの(図5)(a) では第1の
蓄積動作で時間とともに光電変換素子8内の電荷は増加
し、光電変換素子8が飽和したのと同時に第1の蓄積動
作が終わり光電変換素子8内の電荷は読み出され、第2
の蓄積動作が始まる。第2の蓄積動作では蓄積時間が第
1の蓄積動作の蓄積時間の1/Nなので第2の蓄積動作
により蓄積される電荷量は第1の蓄積動作で蓄積される
電荷量の1/Nとなる。
In the incident light amount A (FIG. 5(a)), the charge inside the photoelectric conversion element 8 increases with time during the first accumulation operation, and the first accumulation operation starts at the same time as the photoelectric conversion element 8 is saturated. At the end, the charge in the photoelectric conversion element 8 is read out, and the second
The accumulation operation begins. In the second accumulation operation, the accumulation time is 1/N of the accumulation time of the first accumulation operation, so the amount of charge accumulated in the second accumulation operation is 1/N of the amount of charge accumulated in the first accumulation operation. Become.

【0017】入射光量Bの(図5)(b) では第1の
蓄積動作が始まってしばらくすると光電変換素子8は飽
和する。第1の蓄積動作が終わり光電変換素子8内の電
荷は読み出され、第2の蓄積動作が始まる。入射光量B
は入射光量AのN倍の光量なので、この場合第2の蓄積
動作でも光電変換素子8は飽和する。
In the incident light amount B (FIG. 5) (b), the photoelectric conversion element 8 becomes saturated after a while after the first accumulation operation starts. After the first accumulation operation is completed, the charges in the photoelectric conversion element 8 are read out, and the second accumulation operation begins. Incident light amount B
Since the amount of light is N times the amount of incident light A, in this case, the photoelectric conversion element 8 is saturated even in the second accumulation operation.

【0018】垂直電荷転送部10内では第1の蓄積動作
によって得られた電荷と第2の蓄積動作によって得られ
た電荷は加え合わされる。このようにして加え合わされ
た電荷は垂直ブランキング期間内に高速で電荷蓄積部1
1に転送された後、順次水平電荷転送部12に転送され
出力段13および出力端子14を通して出力信号として
出力される。
In the vertical charge transfer section 10, the charges obtained by the first accumulation operation and the charges obtained by the second accumulation operation are added together. The charges added in this manner are transferred to the charge storage unit 1 at high speed within the vertical blanking period.
1, the signals are sequentially transferred to the horizontal charge transfer section 12 and outputted as output signals through the output stage 13 and the output terminal 14.

【0019】垂直電荷転送部10内で第1の蓄積動作に
よって得られた電荷と第2の蓄積動作によって得られた
電荷を加え合わせて得られた出力電荷量と入射光量の関
係を表すグラフを(図4)(c) に実線で示す。(図
4)(c)に示した入射光量と出力電荷量の関係が本実
施例における固体撮像装置の光電変換特性である。
A graph showing the relationship between the amount of output charge obtained by adding the charges obtained by the first accumulation operation and the charges obtained by the second accumulation operation in the vertical charge transfer section 10 and the amount of incident light is shown below. (Figure 4) (c) is shown by a solid line. (FIG. 4) The relationship between the amount of incident light and the amount of output charge shown in (c) is the photoelectric conversion characteristic of the solid-state imaging device in this example.

【0020】(図4)(c) では出力電荷量は入射光
量がAのときまでは比例的に増加し入射光量Aのときに
光電変換素子8の飽和出力電荷量Qs の(1+N)/
N倍になる。入射光量がAをこえてからも出力電荷量は
傾きは変わるが比例的に増加し入射光量Bのときに光電
変換素子8の飽和出力電荷量Qs の2倍となる。
(FIG. 4) (c), the output charge amount increases proportionally until the amount of incident light is A, and when the amount of incident light is A, the saturated output charge amount Qs of the photoelectric conversion element 8 becomes (1+N)/
It becomes N times. Even after the amount of incident light exceeds A, the output charge amount increases proportionally, although the slope changes, and becomes twice the saturated output charge amount Qs of the photoelectric conversion element 8 when the amount of incident light is B.

【0021】本実施例の固体撮像素子では入射光量が光
電変換素子8が飽和する入射光量AのN倍のBまで出力
電荷が飽和しないのでBの入射光量まで階調再現ができ
ることになる。従来の方式では標準光量のN倍の光量ま
で階調再現するために標準の入射光量を固体撮像素子が
飽和する入射光量Aの1/Nにしていたが本発明の固体
撮像装置を用いることにより標準の入射光量を素子の飽
和入射光量Aにしたままで標準状態のN倍の光量まで階
調再現することができる。
In the solid-state image pickup device of this embodiment, the output charge is not saturated until the amount of incident light reaches B, which is N times the amount of incident light A at which the photoelectric conversion element 8 is saturated, so that tone reproduction can be performed up to the amount of incident light B. In the conventional method, the standard incident light amount was set to 1/N of the incident light amount A at which the solid-state image sensor is saturated in order to reproduce gradation up to a light amount N times the standard light amount, but by using the solid-state image sensor of the present invention, While the standard amount of incident light is kept at the saturated amount of incident light A of the element, gradations can be reproduced up to a light amount N times that of the standard state.

【0022】標準の出力電荷量は従来の固体撮像装置で
は素子の飽和出力電荷量の1/Nであるのに対して本実
施例の固体撮像装置の標準の出力電荷量は固体撮像素子
の飽和出力電荷量の(1+N)/N倍なので、本実施例
の固体撮像装置の標準状態における出力電荷量は従来の
固体撮像装置の標準状態における出力電荷量の(N+1
)倍となる。固体撮像素子のSN比は出力電荷量の平方
根に比例するので、本実施例の固体撮像装置は従来の固
体撮像装置に比べて標準状態におけるSN比を√N倍以
上にすることができる。
The standard output charge amount of the conventional solid-state imaging device is 1/N of the saturation output charge amount of the element, whereas the standard output charge amount of the solid-state imaging device of this embodiment is 1/N of the saturation output charge amount of the solid-state imaging device. Since it is (1+N)/N times the output charge amount, the output charge amount in the standard state of the solid-state imaging device of this embodiment is (N+1) of the output charge amount in the standard state of the conventional solid-state imaging device.
) will be doubled. Since the SN ratio of a solid-state imaging device is proportional to the square root of the output charge amount, the solid-state imaging device of this embodiment can increase the SN ratio in a standard state by √N times or more compared to a conventional solid-state imaging device.

【0023】なお本実施例で図4(c) に示した入射
光量と出力電荷量の関係を表すグラフで、その傾きが標
準の入射光量Aを境に異なっている。これによって標準
の入射光量より明るい高輝度部の信号は圧縮されるにな
り、出力画像に不自然さが現れるように思われる。しか
し従来の固体撮像装置を用いたカメラでも、カメラの信
号処理部におけるプロセス回路に含まれるニー補正回路
でこのような圧縮を行っており、実用上まったく問題は
ない。
In this embodiment, in the graph showing the relationship between the amount of incident light and the amount of output charge shown in FIG. 4(c), the slope differs with respect to the standard amount of incident light A. As a result, signals in high-brightness areas that are brighter than the standard amount of incident light are compressed, and it seems that unnaturalness appears in the output image. However, even in cameras using conventional solid-state imaging devices, such compression is performed by the knee correction circuit included in the process circuit in the signal processing section of the camera, and there is no problem at all in practice.

【0024】本実施例では第1の蓄積動作における蓄積
時間及び第2の蓄積動作における蓄積時間を1フィール
ドという時間を基準に決めているが、電子スチルカメラ
に用いる固体撮像素子のように1フィールドという時間
に関係なく駆動させるような撮像装置の場合には1フィ
ールド以上の時間を基準に蓄積時間を決めることができ
る。
In this embodiment, the accumulation time in the first accumulation operation and the accumulation time in the second accumulation operation are determined based on the time of one field. In the case of an imaging device that is driven regardless of time, the accumulation time can be determined based on the time of one field or more.

【0025】また本実施例で、第1の蓄積動作で得られ
る信号と第2の蓄積動作で得られる信号を固体撮像素子
内部で加え合わせたが、メモリなどの利用により、素子
の外部でディジタル的に加え合わせて出力信号を得るこ
とによっても同様の効果を得ることができる。以下、本
発明の第ニの一実施例の固体撮像装置について、図面を
参照しながら説明する。(図6)は本発明の固体撮像装
置の構成を表すブロック図である。(図6)にお、いて
15は光学レンズ、16は絞り、17は絞り駆動部、1
8は固体撮像素子駆動回路、19は固体撮像素子、20
は出力端子である。固体撮像装置に用いられる固体撮像
素子は第一の実施例のものと同じものを用いる。
Furthermore, in this embodiment, the signal obtained in the first accumulation operation and the signal obtained in the second accumulation operation are added inside the solid-state image sensor, but by using a memory or the like, the signal obtained in the second accumulation operation is added digitally outside the element. A similar effect can be obtained by adding the signals together to obtain an output signal. A solid-state imaging device according to a second embodiment of the present invention will be described below with reference to the drawings. (FIG. 6) is a block diagram showing the configuration of the solid-state imaging device of the present invention. (Fig. 6), 15 is an optical lens, 16 is an aperture, 17 is an aperture drive unit, 1
8 is a solid-state image sensor drive circuit, 19 is a solid-state image sensor, 20
is the output terminal. The solid-state imaging device used in the solid-state imaging device is the same as that used in the first embodiment.

【0026】この構造は従来のFIT型の固体撮像素子
とほぼ等しい構造であるが、(図3)で垂直電荷転送部
10の最大蓄積電荷量は光電変換素子8の最大蓄積電荷
量の2倍になるような構造となっている。
This structure is almost the same as that of a conventional FIT type solid-state image sensor, but as shown in FIG. 3, the maximum amount of accumulated charge in the vertical charge transfer section 10 is twice that of the photoelectric conversion element 8. It is structured so that

【0027】光電変換素子8で1フィールド期間の1/
2の時間光電変換されて蓄積された電荷は電荷転送ゲー
ト9に与えられる読み出しパルスによって光電変換素子
8より垂直電荷転送部10に読み出される。光学レンズ
15を通り絞り16に入射する入射光量と第1の蓄積動
作によって得られる出力電荷量の関係を表すグラフを(
図7)(a) に一点鎖線で示す。(図7)(a) で
Aの入射光量のときに出力電荷量はQs となって飽和
しそれ以上の光量では出力電荷量はQs のまま一定と
なる。
In the photoelectric conversion element 8, 1/1 of one field period
The charges accumulated through photoelectric conversion for two hours are read out from the photoelectric conversion element 8 to the vertical charge transfer section 10 by a read pulse applied to the charge transfer gate 9. A graph showing the relationship between the amount of incident light passing through the optical lens 15 and entering the aperture 16 and the amount of output charge obtained by the first accumulation operation is shown in (
It is shown by the dashed line in Figure 7) (a). (FIG. 7) (a) When the amount of incident light is A, the output charge amount becomes Qs and saturates, and when the amount of light exceeds that amount, the output charge amount remains constant at Qs.

【0028】第1の蓄積動作による電荷が読み出された
と同時に固体撮像素子駆動回路18は絞り駆動部17に
駆動パルスを送り、絞り16は絞り駆動部17によって
固体撮像素子19への入射光量が第1の蓄積動作におけ
る入射光量の1/Nになるように閉じられる。ここでN
は1より大きな定数である。
At the same time as the charges resulting from the first accumulation operation are read out, the solid-state image sensor drive circuit 18 sends a drive pulse to the aperture drive section 17, and the aperture drive section 17 causes the aperture 16 to control the amount of light incident on the solid-state image sensor 19. It is closed so that the amount of incident light becomes 1/N of the amount of incident light in the first accumulation operation. Here N
is a constant greater than 1.

【0029】その後直ちに第2の蓄積動作が始まる。第
2の蓄積動作によって1フィールド期間の1/2の時間
光電変換されて蓄積された電荷は電荷転送ゲート9に与
えられる読み出しパルスによって光電変換素子8より垂
直電荷転送部10に読み出される。第2の蓄積動作によ
って得られる出力電荷量と光学レンズ15を通り絞り1
6に入射する入射光量の関係を表すグラフを(図7)(
b) に二点鎖線で示す。
Immediately thereafter, the second accumulation operation begins. The charges photoelectrically converted and accumulated for 1/2 of one field period in the second accumulation operation are read out from the photoelectric conversion element 8 to the vertical charge transfer section 10 by a read pulse applied to the charge transfer gate 9. The amount of output charge obtained by the second accumulation operation and the aperture 1 through the optical lens 15
A graph showing the relationship between the amount of incident light incident on 6 (Figure 7) (
b) Indicated by a chain double-dashed line.

【0030】第1の蓄積動作に比べて第2の蓄積動作で
は固体撮像素子19に入射する入射光量が1/Nになる
ように絞りが閉じられているので、(図7)(b) で
は飽和するときの入射光量Bは(図7)(a) の第1
の蓄積動作における飽和入射光量AのN倍の光量となる
Compared to the first accumulation operation, in the second accumulation operation, the diaphragm is closed so that the amount of incident light incident on the solid-state image sensor 19 is 1/N, so (FIG. 7) (b) The amount of incident light B when saturated is (Fig. 7) (a).
The light amount is N times the saturated incident light amount A in the accumulation operation.

【0031】入射光量がAのときの時間と光電変換素子
8内に蓄積される電荷量との関係を示すグラフを一点鎖
線で(図8)(a) に、入射光量がBのときの時間と
光電変換素子8内に蓄積される電荷量との関係を二点鎖
線で(図8)(b) に、読み出しパルスのタイミング
を(図8)(c) に示す。
A graph showing the relationship between the time when the amount of incident light is A and the amount of charge accumulated in the photoelectric conversion element 8 is shown by the dashed-dotted line (FIG. 8) (a), and the time when the amount of incident light is B is shown in (a) of FIG. The relationship between the amount of charge accumulated in the photoelectric conversion element 8 and the amount of charge accumulated in the photoelectric conversion element 8 is shown by the two-dot chain line (FIG. 8) (b), and the timing of the read pulse is shown in (FIG. 8) (c).

【0032】入射光量Aの(図8)(a) では第1の
蓄積動作で時間とともに光電変換素子8内の電荷は増加
し、素子が飽和したのと同時に第1の蓄積動作が終了し
光電変換素子8内の電荷は読み出される。第2の蓄積動
作では固体撮像素子19に入射する入射光量が第1の蓄
積動作の入射光量の1/Nなので第2の蓄積動作により
蓄積される電荷量は第1の蓄積動作で蓄積される電荷量
の1/Nとなる。
In the incident light amount A (FIG. 8) (a), the charge inside the photoelectric conversion element 8 increases with time during the first accumulation operation, and the first accumulation operation ends at the same time as the element becomes saturated, and the photoelectric conversion element 8 is terminated at the same time as the element becomes saturated. The charge within the conversion element 8 is read out. In the second accumulation operation, the amount of incident light that enters the solid-state image sensor 19 is 1/N of the amount of incident light in the first accumulation operation, so the amount of charge accumulated in the second accumulation operation is accumulated in the first accumulation operation. It becomes 1/N of the amount of charge.

【0033】入射光量Bの図5(b) では第1の蓄積
動作が始まってしばらくすると光電変換素子8は飽和す
る。 第1の蓄積動作が終了すると光電変換素子8内の電荷は
読み出さる。入射光量Bは入射光量AのN倍の光量なの
で、この場合第2の蓄積動作でも光電変換素子8は飽和
する。
In FIG. 5(b) showing the amount of incident light B, the photoelectric conversion element 8 becomes saturated after a while after the first accumulation operation starts. When the first accumulation operation is completed, the charges in the photoelectric conversion element 8 are read out. Since the incident light amount B is N times the incident light amount A, in this case, the photoelectric conversion element 8 is saturated even in the second accumulation operation.

【0034】垂直電荷転送部10内で第1の蓄積動作に
よって得られた電荷と第2の蓄積動作によって得られた
電荷は加え合わされる。このようにして加え合わされた
電荷は垂直ブランキング期間内に高速で電荷蓄積部11
に転送された後、順次水平電荷転送部12に転送され出
力段13および出力端子14を通して固体撮像素子19
の出力信号として出力される。
In the vertical charge transfer section 10, the charges obtained by the first accumulation operation and the charges obtained by the second accumulation operation are added. The charges added in this manner are transferred to the charge storage section 11 at high speed within the vertical blanking period.
After being transferred to the horizontal charge transfer section 12, the charges are transferred to the solid-state image sensor 19 through the output stage 13 and the output terminal 14.
is output as the output signal.

【0035】光学レンズ15を通り絞り16に入射する
入射光量と垂直電荷転送部10内で第1の蓄積動作によ
って得られた電荷と第2の蓄積動作によって得られた電
荷を加え合わせて得られた出力電荷量の関係を表すグラ
フを(図7)(c) に実線で示す。
It is obtained by adding the amount of incident light passing through the optical lens 15 and entering the aperture 16, the charge obtained by the first accumulation operation in the vertical charge transfer section 10, and the charge obtained by the second accumulation operation. A graph showing the relationship between the output charge amount and the output charge amount is shown in (c) of FIG. 7 as a solid line.

【0036】(図7)(c) では出力電荷量は入射光
量がAのときまでは比例的に増加し入射光量Aのときに
光電変換素子8の飽和出力電荷量Qs の(1+N)/
N倍になる。出力電荷量は入射光量がAをこえてからも
傾きは変わるが比例的に増加し入射光量Bのときに光電
変換素子8の飽和出力電荷量Qs の2倍となって飽和
する。
In (c) of FIG. 7, the output charge amount increases proportionally until the amount of incident light is A, and when the amount of incident light is A, the saturated output charge amount Qs of the photoelectric conversion element 8 becomes (1+N)/
It becomes N times. Even after the amount of incident light exceeds A, the output charge amount increases proportionally, although the slope changes, and becomes saturated at twice the saturated output charge amount Qs of the photoelectric conversion element 8 when the amount of incident light is B.

【0037】本実施例の固体撮像素子では入射光量が光
電変換素子8が飽和する入射光量AのN倍のBまで出力
電荷が飽和しないのでBの入射光量まで階調再現ができ
ることになる。従来の方式では標準光量のN倍の光量ま
で階調再現するために標準の入射光量を素子が飽和する
入射光量Aの1/Nにしていたが本発明の固体撮像装置
を用いることにより標準の入射光量を素子の飽和入射光
量Aにしたままで標準状態のN倍の光量まで階調再現す
ることができる。
In the solid-state image pickup device of this embodiment, the output charge is not saturated until the amount of incident light reaches B, which is N times the amount of incident light A at which the photoelectric conversion element 8 is saturated, so that gradation reproduction can be performed up to the amount of incident light B. In the conventional method, the standard incident light amount was set to 1/N of the incident light amount A that saturates the element in order to reproduce gradation up to a light amount N times the standard light amount, but by using the solid-state imaging device of the present invention, the standard While keeping the amount of incident light at the saturation amount of incident light A of the element, gradations can be reproduced up to a light amount N times that of the standard state.

【0038】標準の出力電荷量は従来の固体撮像装置で
は素子の飽和出力電荷量の1/Nであるのに対して本実
施例の固体撮像装置の標準の出力電荷量は素子の飽和出
力電荷量の(1+N)/N倍なので、本実施例の固体撮
像装置の標準状態における出力電荷量は従来の固体撮像
装置の標準状態における出力電荷量の(N+1)倍以上
となる。固体撮像素子のSN比は出力電荷量の平方根に
比例するので、本実施例の固体撮像装置は従来の固体撮
像装置に比べて標準状態におけるSN比を√N倍以上に
することができる。
In contrast to the standard output charge amount of the conventional solid-state imaging device, which is 1/N of the saturation output charge amount of the element, the standard output charge amount of the solid-state imaging device of this embodiment is the saturation output charge of the element. Since the output charge amount is (1+N)/N times the amount, the output charge amount in the standard state of the solid-state imaging device of this embodiment is (N+1) times or more the output charge amount in the standard state of the conventional solid-state imaging device. Since the SN ratio of a solid-state imaging device is proportional to the square root of the output charge amount, the solid-state imaging device of this embodiment can increase the SN ratio in a standard state by √N times or more compared to a conventional solid-state imaging device.

【0039】本実施例では第1の蓄積動作における蓄積
時間及び第2の蓄積動作における蓄積時間を1フィール
ドという時間を基準に決めているが、電子スチルカメラ
に用いる固体撮像素子のように1フィールドという時間
に関係なく駆動させるような撮像装置の場合には1フィ
ールド以上の時間を基準に蓄積時間を決めることができ
る。
In this embodiment, the accumulation time in the first accumulation operation and the accumulation time in the second accumulation operation are determined based on the time of one field. In the case of an imaging device that is driven regardless of time, the accumulation time can be determined based on the time of one field or more.

【0040】また本実施例で固体撮像素子に入射する光
量の変更を絞りを用いて行ったが、NDフィルタのよう
なフィルタを挿入することにより変更してもよい。
Further, in this embodiment, the amount of light incident on the solid-state image pickup device was changed using an aperture, but it may also be changed by inserting a filter such as an ND filter.

【0041】また本実施例で第1の蓄積動作で得られる
信号と第2の蓄積動作で得られる信号を固体撮像素子内
部で加え合わせたが、メモリなどの利用によりディジタ
ル的に素子の外部で加え合わせて出力信号を得ることに
よっても同様の効果が得られる。
Furthermore, in this embodiment, the signal obtained in the first accumulation operation and the signal obtained in the second accumulation operation are added inside the solid-state image sensor, but they can be digitally added outside the element by using a memory or the like. A similar effect can be obtained by adding together to obtain an output signal.

【0042】[0042]

【発明の効果】固体撮像素子において特定の入射光量で
素子が飽和するような第1の蓄積動作と、前記第1の蓄
積動作における入射光量に対し異なる入射光量で素子が
飽和するような第2の蓄積動作とを単位蓄積時間内に行
い、前記第1の蓄積動作で得られる信号と前記第2の蓄
積動作で得られる信号を加え合わせた信号を前記単位蓄
積時間あたりの出力信号とすることによって、第1の蓄
積動作により撮像素子の飽和出力電荷量まで利用して標
準光量までの信号を得ることができ、第2の蓄積動作で
標準光量より明るい高輝度部の階調再現に用いられる信
号を得ることができる。
Effects of the Invention In a solid-state image sensor, there is a first accumulation operation in which the element is saturated with a specific amount of incident light, and a second accumulation operation in which the element is saturated with an amount of incident light different from the amount of incident light in the first accumulation operation. an accumulation operation is performed within a unit accumulation time, and a signal obtained by adding the signal obtained in the first accumulation operation and the signal obtained in the second accumulation operation is used as an output signal per unit accumulation time. Therefore, in the first accumulation operation, it is possible to obtain a signal up to the standard light intensity by using up to the saturation output charge of the image sensor, and in the second accumulation operation, it is used to reproduce the gradation of a high-brightness area that is brighter than the standard light intensity. I can get a signal.

【0043】そのため、標準光量時のSN比を少なくと
も固体撮像素子の飽和光量時におけるSN比まで上げる
ことができ、さらに階調再現できる入射光の範囲を自由
に変えることができる。
Therefore, the SN ratio at the standard light amount can be increased to at least the SN ratio at the saturated light amount of the solid-state image sensor, and furthermore, the range of incident light that can reproduce gradation can be freely changed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来の固体撮像装置の一例の構造図である。FIG. 1 is a structural diagram of an example of a conventional solid-state imaging device.

【図2】従来の固体撮像装置の入射光量と出力電荷量の
関係を表す光電変換特性のグラフである。
FIG. 2 is a graph of photoelectric conversion characteristics showing the relationship between the amount of incident light and the amount of output charge of a conventional solid-state imaging device.

【図3】本発明の第1の実施例の固体撮像装置の構造を
表す構造図である。
FIG. 3 is a structural diagram showing the structure of a solid-state imaging device according to a first embodiment of the present invention.

【図4】本発明の第1の実施例の固体撮像装置の入射光
量と出力電荷量の関係を表すグラフである。
FIG. 4 is a graph showing the relationship between the amount of incident light and the amount of output charge of the solid-state imaging device according to the first embodiment of the present invention.

【図5】本発明の第1の実施例の固体撮像装置の時間と
光電変換素子に蓄積される電荷量との関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between time and the amount of charge accumulated in a photoelectric conversion element in the solid-state imaging device according to the first embodiment of the present invention.

【図6】本発明の第2の実施例の固体撮像装置の構成を
表すブロック図である。
FIG. 6 is a block diagram showing the configuration of a solid-state imaging device according to a second embodiment of the present invention.

【図7】本発明の第2の実施例の固体撮像装置の入射光
量と蓄積電荷量の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the amount of incident light and the amount of accumulated charge in a solid-state imaging device according to a second embodiment of the present invention.

【図8】本発明の第2の実施例の固体撮像装置の時間と
光電変換素子に蓄積される電荷量との関係を示すグラフ
である。
FIG. 8 is a graph showing the relationship between time and the amount of charge accumulated in a photoelectric conversion element in a solid-state imaging device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  光電変換素子 2  電荷転送ゲート 3  垂直電荷転送部 4  電荷蓄積部 5  水平電荷転送部 6  出力段 7  出力端子 8  光電変換素子 9  電荷転送ゲート 10  垂直電荷転送部 11  電荷蓄積部 12  水平電荷転送部 13  出力段 14  出力端子 15  光学レンズ 16  絞り 17  絞り駆動部 18  固体撮像素子駆動回路 19  固体撮像素子 20  出力端子 1 Photoelectric conversion element 2 Charge transfer gate 3 Vertical charge transfer section 4 Charge storage section 5 Horizontal charge transfer section 6 Output stage 7 Output terminal 8 Photoelectric conversion element 9 Charge transfer gate 10 Vertical charge transfer section 11 Charge storage section 12 Horizontal charge transfer section 13 Output stage 14 Output terminal 15 Optical lens 16 Aperture 17 Aperture drive section 18 Solid-state image sensor drive circuit 19 Solid-state image sensor 20 Output terminal

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  固体撮像素子において、特定の入射光
量で素子が飽和するような第1の蓄積動作と、前記第1
の蓄積動作における入射光量に対し異なる入射光量で素
子が飽和するような第2の蓄積動作とを単位蓄積時間内
に行い、前記第1の蓄積動作で得られる信号と前記第2
の蓄積動作で得られる信号を加え合わせた信号を前記単
位蓄積時間あたりの出力信号とすることを特徴とする固
体撮像装置。
1. In a solid-state image sensor, a first accumulation operation that saturates the element with a specific amount of incident light;
A second accumulation operation in which the element is saturated with an amount of incident light different from the amount of incident light in the accumulation operation is performed within a unit accumulation time, and the signal obtained in the first accumulation operation and the second accumulation operation are
A solid-state imaging device characterized in that a signal obtained by adding together signals obtained in the accumulation operation is used as an output signal per unit accumulation time.
【請求項2】  固体撮像装置には、光電変換を行い入
射光に応じた信号を出力する固体撮像素子と、入射光を
前記固体撮像素子の光電変換面上に結像する光学系と、
前記固体撮像素子に入射する入射光量を変化させる絞り
機構とを具備することを特徴とする請求項1記載の固体
撮像装置。
2. The solid-state imaging device includes a solid-state imaging device that performs photoelectric conversion and outputs a signal according to incident light, and an optical system that forms an image of the incident light on a photoelectric conversion surface of the solid-state imaging device.
The solid-state imaging device according to claim 1, further comprising an aperture mechanism that changes the amount of incident light incident on the solid-state imaging device.
【請求項3】  固体撮像素子において、第1の蓄積動
作と第2の蓄積動作は単位蓄積時間内に行われ、絞り機
構の絞り値は一定として、前記第1の蓄積動作における
蓄積時間と、前記第2の蓄積動作における蓄積時間が相
異なることを特徴とする請求項2記載の固体撮像装置。
3. In the solid-state image sensor, the first accumulation operation and the second accumulation operation are performed within a unit accumulation time, and assuming that the aperture value of the aperture mechanism is constant, the accumulation time in the first accumulation operation; 3. The solid-state imaging device according to claim 2, wherein the accumulation times in the second accumulation operation are different.
【請求項4】  固体撮像素子において、第1の蓄積動
作と第2の蓄積動作は単位時間内に行われ、前記第1の
蓄積動作の蓄積時間と第2の蓄積動作の蓄積時間は各々
前記単位蓄積時間の1/2の時間であり、前記第1の蓄
積動作における絞り機構の絞り値と前記第2の蓄積動作
における絞り機構の絞り値が相異なることを特徴とする
請求項2記載の固体撮像装置。
4. In the solid-state image sensor, the first accumulation operation and the second accumulation operation are performed within a unit time, and the accumulation time of the first accumulation operation and the accumulation time of the second accumulation operation are respectively 3. The aperture value of the aperture mechanism in the first accumulation operation is different from the aperture value of the aperture mechanism in the second accumulation operation. Solid-state imaging device.
【請求項5】  第1の蓄積動作で得られる信号と第2
の蓄積動作で得られる信号は固体撮像素子内部で加え合
わせることを特徴とする請求項2記載の固体撮像装置。
Claim 5: The signal obtained in the first accumulation operation and the second
3. The solid-state imaging device according to claim 2, wherein the signals obtained by the accumulation operations are added together inside the solid-state imaging device.
【請求項6】  固体撮像素子は受光部と蓄積部と出力
部からなるいわゆるフレームインターライントランスフ
ァー型の固体撮像素子で、第1の蓄積動作により蓄積さ
れた電荷を前記受光部における垂直電荷転送部に読みだ
した後第2の蓄積動作を行い、第2の蓄積動作により蓄
積された電荷を第1の蓄積動作による電荷を保持したま
まの状態である前記垂直電荷転送部に読み出すことによ
り前記第1の蓄積動作で得られた電荷と前記第2の蓄積
動作で得られた電荷を加え合わせることを特徴とする請
求項5記載の固体撮像装置。
6. The solid-state image sensor is a so-called frame interline transfer type solid-state image sensor that includes a light receiving section, a storage section, and an output section, and the charge accumulated by the first accumulation operation is transferred to the vertical charge transfer section in the light receiving section. A second accumulation operation is performed after reading out the charge from the first accumulation operation, and the charge accumulated by the second accumulation operation is read out to the vertical charge transfer section in which the charge from the first accumulation operation is still held. 6. The solid-state imaging device according to claim 5, wherein the charge obtained in the first accumulation operation and the charge obtained in the second accumulation operation are added together.
【請求項7】  単位蓄積時間あたりの出力信号はテレ
ビジョンの方式で決まっている1フィールド分の時間に
対応した信号として出力されることを特徴とする請求項
1記載の固体撮像装置。
7. The solid-state imaging device according to claim 1, wherein the output signal per unit accumulation time is output as a signal corresponding to the time of one field determined by a television system.
【請求項8】  単位蓄積時間あたりの出力信号はテレ
ビジョンの方式で決まっている複数フィールド分の時間
に対応した信号として出力されることを特徴とする請求
項1記載の固体撮像装置。
8. The solid-state imaging device according to claim 1, wherein the output signal per unit accumulation time is output as a signal corresponding to a time period for a plurality of fields determined by a television system.
JP3139920A 1991-06-12 1991-06-12 Solid-state image pickup device Pending JPH04364681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3139920A JPH04364681A (en) 1991-06-12 1991-06-12 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3139920A JPH04364681A (en) 1991-06-12 1991-06-12 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH04364681A true JPH04364681A (en) 1992-12-17

Family

ID=15256735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3139920A Pending JPH04364681A (en) 1991-06-12 1991-06-12 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH04364681A (en)

Similar Documents

Publication Publication Date Title
JP3666900B2 (en) Imaging apparatus and imaging method
US20030011693A1 (en) Solid-state image sensor having control cells for developing signals for image-shooting control under poor illumination
US5675381A (en) Control of solid-state image sensor
US7432962B2 (en) Dynamic range broadening method for a solid-state image sensor including photosensitive cells each having a main and a subregion
JP3982987B2 (en) Imaging device
US4849813A (en) Video camera with high-speed scanning
JPS6398286A (en) Image signal processor
JP3480739B2 (en) Solid-state imaging device
JP3273619B2 (en) Electronic imaging device
JP4279562B2 (en) Control method for solid-state imaging device
JP4282262B2 (en) Imaging device
JPH10189930A (en) Solid-state image sensor
US7616354B2 (en) Image capture apparatus configured to divisionally read out accumulated charges with a plurality of fields using interlaced scanning
GB2365650A (en) Method of operating imaging array to reduce noise and increase signal dynamic range.
JPH04364681A (en) Solid-state image pickup device
JPH0698227A (en) Variable system clock type digital electronic still camera
JP2545120B2 (en) Imaging device
JP2812990B2 (en) Solid-state image sensor and signal processing circuit for solid-state image sensor
JPH06245151A (en) Video camera equipment
JP2545125B2 (en) Solid-state imaging device
EP0484134B1 (en) Control of solid-state image sensor
JPH0522669A (en) Video camera
JPH08336077A (en) Image pickup device
JP2000184290A (en) Solid-state image pickup device
JPH02134985A (en) Picture reproducing device