JPH04364500A - Removing method of radioactive iodic ion - Google Patents

Removing method of radioactive iodic ion

Info

Publication number
JPH04364500A
JPH04364500A JP16631891A JP16631891A JPH04364500A JP H04364500 A JPH04364500 A JP H04364500A JP 16631891 A JP16631891 A JP 16631891A JP 16631891 A JP16631891 A JP 16631891A JP H04364500 A JPH04364500 A JP H04364500A
Authority
JP
Japan
Prior art keywords
radioactive
ions
iodic
bi5o7i
bismuth oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16631891A
Other languages
Japanese (ja)
Other versions
JPH0727071B2 (en
Inventor
Hiroshi Kodama
博志 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP3166318A priority Critical patent/JPH0727071B2/en
Priority to FR9203235A priority patent/FR2677799B1/en
Publication of JPH04364500A publication Critical patent/JPH04364500A/en
Publication of JPH0727071B2 publication Critical patent/JPH0727071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/12Iodides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Removal Of Specific Substances (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove iodic ions in radioactive waste by making them into the form of a stable compound. CONSTITUTION:Radioactive iodic ions contained in an NaI solution and a bismuth oxide (alpha-Bi2O3) are made to react directly with each other and thereby the radioactive iodic ions are immobilized as alpha-Bi5O7I and removed. It is preferable that the NaI contains the radioactive iodic ions of high concentration of 5X10<-2>mol.dm<-3> or above. By adjusting the ratio of the gram-molecular weight of the bismuth oxide to the gram-ion number of the radioactive iodic ions to be in a range from 4:1 to 1:2, a single phase of alpha-Bi5O7I is obtained irrespective of the concentration of the iodic ions. Accordingly, the iodic ions of 99.8% in the NaI solution can be removed as a stable solid.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は放射性ヨウ素イオンの除
去方法に関し、例えば原子力発電プラントにおいて生ず
る放射性廃液中のヨウ素イオンを除去するための方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing radioactive iodine ions, and more particularly, to a method for removing iodine ions from radioactive waste liquid produced in nuclear power plants.

【0002】0002

【従来の技術及び発明が解決しようとする課題】原子炉
発電プラントにおいて、原子炉中での核分裂により生ず
る放射性ヨウ素ガスは、燃料の検査、交換の場合、更に
は燃料取り扱い時の事故や原子炉暴走事故によって、突
発的に放出される危険性があり、また燃料再処理プラン
トの運転時にも連続的に放出される可能性がある。こう
した種々の事態に対し、放射性ヨウ素ガスの処理法とし
て、洗浄処理方式、固体吸着剤充填による物理・化学的
処理方式、イオン交換剤による処理方式などが検討され
ている。
[Prior Art and Problems to be Solved by the Invention] In nuclear power plants, radioactive iodine gas produced by nuclear fission in the reactor is used during fuel inspection and replacement, and even when fuel is handled in an accident or in the reactor. There is a risk of sudden release due to a runaway accident, and continuous release during operation of a fuel reprocessing plant. In response to these various situations, methods for treating radioactive iodine gas, such as cleaning treatment methods, physical/chemical treatment methods using solid adsorbent filling, and treatment methods using ion exchange agents, are being considered.

【0003】しかしながら、液体吸着剤による洗浄処理
方式では、これを液体のまま長期間貯蔵(半減期は17
00万年)するのでは、量的にも、また安全上も問題が
多い。また固体吸着剤充填による物理・化学的処理方式
によって捕捉されたヨウ素は、他のガスとの交換の可能
性に常にさらされており、また温度が上昇すると容易に
吸着物を放出するという難点がある。更に、イオン交換
剤による処理方式では、交換樹脂の耐熱安定性が保たれ
るのは100℃程度までであり、これより高温では十分
な性能を発揮しない。またそれ自身が可燃性であること
から、安全管理上難点がある。
However, in the cleaning treatment method using a liquid adsorbent, it is stored as a liquid for a long period of time (half-life is 17
1,000,000 years), there are many problems in terms of quantity and safety. In addition, iodine captured by the physical and chemical treatment method filled with solid adsorbents is constantly exposed to the possibility of exchange with other gases, and also has the disadvantage that it easily releases adsorbed substances when the temperature rises. be. Furthermore, in the treatment method using an ion exchange agent, the heat resistance stability of the exchange resin is maintained up to about 100° C., and sufficient performance is not exhibited at higher temperatures. Furthermore, since it is itself flammable, it poses a safety management problem.

【0004】一方、他の観点から、溶液中のヨウ素イオ
ンを他の元素と反応させて安定な化合物として取り出し
保存しようという試みも検討されている。この方法は、
NaIを水に溶かして作った低濃度ヨウ素イオン溶液(
<5×10−2mol・dm−3)中にα−Bi2O3
とα−Bi5O7Iの混合物を加えて反応させ、溶液中
のヨウ素イオンをα−Bi5O7Iに変えて取り出す方
法である。原料中にα−Bi5O7Iを混ぜるのは結晶
の核形成に必要な時間を省き、反応速度を速めるためで
ある。(なお、酸化ビスマスにはα−相、β−相、γ−
相、δ−相の多形があり、α相が低温安定相、δ相が高
温安定相で、他は準安定相である。またBi5O7Iに
もα、βの多形がある。 以下、「Bi2O3」及び「Bi5O7I」と記述した
場合、特にことわらない限り、いずれもα形の化合物を
表わす)
On the other hand, from another perspective, attempts have been made to react iodine ions in a solution with other elements to extract and preserve them as stable compounds. This method is
Low concentration iodine ion solution made by dissolving NaI in water (
α-Bi2O3 in <5×10-2 mol・dm-3)
This is a method in which a mixture of . The purpose of mixing α-Bi5O7I into the raw materials is to reduce the time required for crystal nucleation and to speed up the reaction rate. (Note that bismuth oxide includes α-phase, β-phase, γ-phase
There are polymorphs of phase and δ-phase, where the α phase is a low-temperature stable phase, the δ phase is a high-temperature stable phase, and the others are metastable phases. Bi5O7I also has α and β polymorphisms. Hereinafter, when "Bi2O3" and "Bi5O7I" are described, unless otherwise specified, both represent α-form compounds)

【0005】しかしながら、この方法では、NaI溶液
中のヨウ素イオン濃度を5×10−2mol・dm−3
以上にすると、Bi5O7I以外の化合物が生成するた
め、ヨウ素イオン濃度をそれ以下に保たなければならな
い。このため、多量のヨウ素イオンを処理するためには
大量の溶液を処理しなければならない欠点がある。また
、低濃度のために、HCO3−やSO4−2やCl−な
どの陰イオンが溶液中に共存するとBi5O7Iの成長
が妨害され、その上、Bi5O7Iの核形成にも多大の
時間がかかるので、原料に予めBi5O7Iを加えて反
応を行わせるという余分な工程を必要とする。更に、こ
の方法では、繰返し使用しても原料として使われたBi
2O3のうち最小でも30%が未反応として残り、これ
を分離して再使用することは不可能なので、原料のロス
が大きく、また保存すべき固体の量も増えるという欠点
がある。
However, in this method, the iodine ion concentration in the NaI solution is reduced to 5×10-2 mol·dm-3.
If the concentration is higher than that, compounds other than Bi5O7I will be generated, so the iodine ion concentration must be kept below that level. Therefore, there is a drawback that a large amount of solution must be processed in order to process a large amount of iodine ions. In addition, due to the low concentration, if anions such as HCO3-, SO4-2, and Cl- coexist in the solution, the growth of Bi5O7I will be hindered, and furthermore, the nucleation of Bi5O7I will take a long time. This requires an extra step of adding Bi5O7I to the raw materials in advance to carry out the reaction. Furthermore, in this method, even after repeated use, the Bi used as a raw material
At least 30% of the 2O3 remains unreacted, and it is impossible to separate and reuse it, resulting in large losses of raw materials and an increased amount of solids to be stored.

【0006】本発明は、上記従来法の欠点を解消し、放
射性ヨウ素イオンを安定な固体として高効率で且つ容易
に除去し保存し得る方法を提供することを目的とするも
のである。
The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods and to provide a method by which radioactive iodine ions can be easily removed and stored as a stable solid with high efficiency.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
、本発明者は、NaI溶液中に含まれる放射性ヨウ素イ
オンを安定な固体として取り出す方法について鋭意研究
を重ねた結果、ここに本発明を完成したものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventor has conducted intensive research on a method for extracting radioactive iodine ions contained in NaI solution as a stable solid, and has hereby devised the present invention. It is completed.

【0008】すなわち、本発明は、NaI溶液中に含ま
れる放射性ヨウ素イオンと酸化ビスマス(α−Bi2O
3)とを直接反応させて、放射性ヨウ素イオンをα−B
i5O7Iとして固定化して除去することを特徴とする
放射性ヨウ素イオンの除去方法を要旨とするものである
That is, the present invention combines radioactive iodine ions and bismuth oxide (α-Bi2O) contained in a NaI solution.
3) by directly reacting with α-B to convert radioactive iodine ions into
The gist of this invention is a method for removing radioactive iodine ions, which is characterized by immobilizing and removing i5O7I.

【0009】以下に本発明を更に詳述する。The present invention will be explained in more detail below.

【作用】[Effect]

【0010】ビスマスと酸素とヨウ素の化合物としては
、α−Bi5O7I、β−Bi5O7I、Bi7O9I
3、Bi4O5I2、BiOIの五種類の化合物が報告
されている。 これらはそれぞれ異なった結晶構造を有し、常温で固体
である。これら化合物の中で、α−Bi5O7Iは水と
熱に対して最も安定であり、例えば、非酸性溶液中(2
5℃)で分解して出てくるヨウ素イオンの濃度は約10
−17mol・dm−ぐらいであり、極めて微量である
。また、空気中での加熱に対しては約550℃くらいま
で安定であり、これらの安定度は、他の方法の場合と比
べて、比較にならないほど高い。
Compounds of bismuth, oxygen and iodine include α-Bi5O7I, β-Bi5O7I, Bi7O9I.
3. Five types of compounds have been reported: Bi4O5I2 and BiOI. Each of these has a different crystal structure and is solid at room temperature. Among these compounds, α-Bi5O7I is the most stable to water and heat, for example in non-acidic solutions (2
The concentration of iodine ions released by decomposition at 5℃) is approximately 10
It is about -17 mol·dm-, which is an extremely small amount. Furthermore, it is stable up to about 550° C. when heated in air, and the stability is incomparably higher than that of other methods.

【0011】本発明においては、NaI溶液、特に高濃
度のヨウ素イオンを含むNaI溶液を用いて溶液中のヨ
ウ素イオンを酸化ビスマスと反応させ、上述の安定なα
−Bi5O7Iに変化させ、これを溶液と分離して保存
するものである。
In the present invention, the stable α
-Bi5O7I, which is stored separately from the solution.

【0012】上記反応は次式によって進行する。     5α−Bi2O3+2I−+H2O→2α−B
i5O7I+2OH−    …  (1)
The above reaction proceeds according to the following formula. 5α-Bi2O3+2I-+H2O→2α-B
i5O7I+2OH-... (1)

【0013
】NaI溶液としては、高濃度(≧5×10−2mol
・dm−3)のヨウ素イオンを含むNaI溶液を用いる
のが好ましい。高濃度であれば、核生成を容易に行うこ
とができるので、原料の酸化ビスマスを100%反応さ
せられ未反応の酸化ビスマスが生じることがなく、また
従来のようにBi5O7Iを添加する必要がなく、また
微量に存在する妨害イオンの影響も無視できる。
0013
] As a NaI solution, high concentration (≧5×10-2 mol
- It is preferable to use a NaI solution containing iodine ions of dm-3). If the concentration is high, nucleation can be easily performed, so 100% of the raw material bismuth oxide is reacted, and unreacted bismuth oxide is not generated, and there is no need to add Bi5O7I as in the past. , and the influence of interfering ions present in trace amounts can also be ignored.

【0014】なお、NaI溶液が高濃度であっても、こ
の化学反応を行うに当たって、生成物がα−Bi5O7
Iのみであって、他の化合物が生成したり、共生したり
しないようにするためには、反応に関与する酸化ビスマ
スのグラム分子数とヨウ素イオンのグラムイオン数との
比を4:1から1:2の間に調整すると良い。ヨウ素の
割合がこれより多くても、また少なくともα−Bi5O
7I以外の化合物が成長するようになる。
[0014] Even if the concentration of the NaI solution is high, the product is α-Bi5O7 when performing this chemical reaction.
In order to prevent only I from forming or coexisting with other compounds, the ratio of the number of gram molecules of bismuth oxide involved in the reaction to the number of gram ions of iodine ions should be adjusted from 4:1 to 4:1. It is best to adjust the ratio between 1:2. Even if the proportion of iodine is higher than this, it is also at least α-Bi5O
Compounds other than 7I begin to grow.

【0015】次に本発明の実施例を示す。Next, examples of the present invention will be shown.

【0016】[0016]

【実施例1】酸化ビスマス約233mg(5×10−4
グラム分子)と0.2mol・dm−3のヨウ化ナトリ
ウム溶液1000μl(2×10−4グラムイオン)を
蓋付き容器に入れて密閉し、恒温槽中にて25℃及び5
0℃で反応させた。撹拌は行わなかった。一定時間経過
後、固体を溶液と分離し乾燥した後、粉末X線回折法で
同定した。これを反応前の固体(Bi2O3)の粉末X
線回折パターンと比較することによって、反応の進み具
合を調べた。化学式(1)に従って反応が完了すると、
Bi2O3の残存量は零になり、X線回折パターンは消
滅する筈である。その例を図1に示す。
[Example 1] Approximately 233 mg of bismuth oxide (5 x 10-4
gram molecule) and 1000 μl of a 0.2 mol/dm-3 sodium iodide solution (2
The reaction was carried out at 0°C. No stirring was performed. After a certain period of time, the solid was separated from the solution, dried, and identified by powder X-ray diffraction. This is the solid (Bi2O3) powder X before the reaction.
The progress of the reaction was examined by comparing it with the line diffraction pattern. When the reaction is completed according to chemical formula (1),
The remaining amount of Bi2O3 should become zero and the X-ray diffraction pattern should disappear. An example is shown in FIG.

【表1】 に示した結果から明らかなように、反応速度は温度によ
って多少異なり、50℃では48時間以内に反応は完了
するが、25℃では更に時間がかかるようである。いず
れの場合でも、所定の反応時間後にはBi2O3の残存
量が零か極微量である。
As is clear from the results shown in Table 1, the reaction rate varies somewhat depending on the temperature; at 50°C, the reaction is completed within 48 hours, but at 25°C, it seems to take longer. In either case, the amount of Bi2O3 remaining after a predetermined reaction time is zero or very small.

【0017】[0017]

【実施例2】酸化ビスマス約233mg(5×10−4
グラム分子)と0.8mol・dm−3のヨウ化ナトリ
ウム溶液250μl(2×10−4グラムイオン)を5
0℃で反応させて進行具合を調べた。実験の手順は実施
例1と同じである。
[Example 2] Approximately 233 mg of bismuth oxide (5 x 10-4
gram molecule) and 250 μl of 0.8 mol/dm-3 sodium iodide solution (2 x 10-4 gram ion)
The reaction was carried out at 0°C and the progress was examined. The experimental procedure was the same as in Example 1.

【表2】 に示した結果から明らかなように、反応は24時間以内
に完了した。
As is clear from the results shown in Table 2, the reaction was completed within 24 hours.

【0018】[0018]

【実施例3】酸化ビスマス約233mgと種々の濃度の
ヨウ化ナトリウム溶液1000μlを50℃で96時間
反応させた。その結果を
Example 3 Approximately 233 mg of bismuth oxide and 1000 μl of sodium iodide solutions of various concentrations were reacted at 50° C. for 96 hours. The result

【表3】 に示す。[Table 3] Shown below.

【0019】[0019]

【実施例4】酸化ビスマス約233mgと種々の濃度の
ヨウ化ナトリウム溶液250μlを50℃で48時間反
応させた。その結果を
Example 4 Approximately 233 mg of bismuth oxide and 250 μl of sodium iodide solutions of various concentrations were reacted at 50° C. for 48 hours. The result

【表4】 に示す。[Table 4] Shown below.

【0020】実施例1、2の結果から明らかなように、
原料固体と反応溶液の容積比を変えると反応速度も変化
する。溶液の容積が増すと反応速度は遅くなっているこ
とがわかる。また、実施例3、4の結果から明らかなよ
うに、Bi5O7Iのみが生成するのに必要な条件はB
i2O3のグラム分子数とI−のグラムイオン数との比
を一定の範囲内に保つことが好ましいことがわかる。
As is clear from the results of Examples 1 and 2,
Changing the volume ratio of the raw material solid to the reaction solution also changes the reaction rate. It can be seen that as the volume of the solution increases, the reaction rate slows down. Furthermore, as is clear from the results of Examples 3 and 4, the conditions necessary to generate only Bi5O7I are B
It can be seen that it is preferable to maintain the ratio of the number of gram molecules of i2O3 to the number of gram ions of I- within a certain range.

【0021】[0021]

【実施例5】ヨウ素イオンの反応率を調べた。酸化ビス
マス約255mg(5.5×10−4グラム分子)と0
.2mol・dm−3のヨウ化ナトリウム溶液1000
μl(2×10−4グラムイオン)を50℃で72時間
反応させ後、溶液中に残存するヨウ素イオンの濃度を分
析した。その結果、残存したヨウ素イオンは反応前の溶
液の約0.2%であり、99.8%のヨウ素イオンが固
体に変化した。
[Example 5] The reaction rate of iodine ions was investigated. Approximately 255 mg of bismuth oxide (5.5 x 10-4 gram molecules) and 0
.. 2 mol/dm-3 sodium iodide solution 1000
After reacting .mu.l (2.times.10.sup.-4 gram ions) at 50.degree. C. for 72 hours, the concentration of iodine ions remaining in the solution was analyzed. As a result, the remaining iodine ions were about 0.2% of the solution before reaction, and 99.8% of the iodine ions were converted into solid.

【0022】[0022]

【発明の効果】以上詳述したように、本発明によれば、
NaI溶液中に含まれる放射性ヨウ素イオンが酸化ビス
マスと反応してα−Bi5O7I単体に変化させて取り
出し、保存するので、水や熱や種々のガスなどに対する
安定性が著しく改善される。しかも、この化合物は固体
結晶であるので量的にもかさばらず、保存や取扱いが容
易である。
[Effects of the Invention] As detailed above, according to the present invention,
Since the radioactive iodine ions contained in the NaI solution react with bismuth oxide and are converted into α-Bi5O7I, which is taken out and stored, stability against water, heat, various gases, etc. is significantly improved. Furthermore, since this compound is a solid crystal, it is not bulky and is easy to store and handle.

【0023】また、NaI溶液中のヨウ素イオン濃度が
低濃度の場合には、これを濃縮することによって液体の
容積を100分の1以下にすることができ、従来技術に
比べて反応容器は極めて小型のものですみ、またその労
力を大幅に短縮できる。また、高濃度溶液中で反応させ
ると核形成が容易に行われるので、従来のように反応前
に原料の酸化ビスマスにBi5O7Iを加える工程を必
要とせず、また微量に存在する妨害イオンの影響も無視
できる。更に、高濃度下では原料の酸化ビスマスを10
0%反応させることもできるので、未反応の酸化ビスマ
スが生じない。
Furthermore, when the iodine ion concentration in the NaI solution is low, the volume of the liquid can be reduced to 1/100 or less by concentrating it, and the reaction vessel is extremely compact compared to the conventional technology. It only needs to be small, and the labor involved can be greatly reduced. In addition, since nucleation occurs easily when reacted in a highly concentrated solution, there is no need for the conventional step of adding Bi5O7I to the raw material bismuth oxide before the reaction, and there is no need for the effect of interfering ions present in trace amounts. Can be ignored. Furthermore, under high concentrations, the raw material bismuth oxide
Since the reaction can be carried out at 0%, unreacted bismuth oxide is not generated.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】原料(Bi2O3)及び生成物(α−Bi5O
7Iのみ)の粉末X線回折パターンを示す図で、Aは原
料(Bi2O3)の場合、Bは生成物の場合である。
[Figure 1] Raw material (Bi2O3) and product (α-Bi5O
7I only), where A is the case of the raw material (Bi2O3) and B is the case of the product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  NaI溶液中に含まれる放射性ヨウ素
イオンと酸化ビスマス(α−Bi2O3)とを直接反応
させて、放射性ヨウ素イオンをα−Bi5O7Iとして
固定化して除去することを特徴とする放射性ヨウ素イオ
ンの除去方法。
1. Radioactive iodine ion, characterized in that the radioactive iodine ion contained in the NaI solution and bismuth oxide (α-Bi2O3) are directly reacted to immobilize and remove the radioactive iodine ion as α-Bi5O7I. How to remove.
【請求項2】  NaI溶液が5×10−2mol・d
m−3以上の高濃度の放射性ヨウ素イオンを含むもので
ある請求項1に記載の方法。
[Claim 2] The NaI solution is 5 x 10-2 mol・d
The method according to claim 1, which contains radioactive iodine ions at a high concentration of m-3 or more.
【請求項3】  酸化ビスマスのグラム分子数と放射性
ヨウ素イオンのグラムイオン数との比が4:1から1:
2の間に調整されている請求項1又は2に記載の方法。
[Claim 3] The ratio of the number of gram molecules of bismuth oxide to the number of gram ions of radioactive iodine ions is 4:1 to 1:
3. The method according to claim 1 or 2, wherein the method is adjusted between 2 and 3.
JP3166318A 1991-06-11 1991-06-11 Radioiodine ion removal method Expired - Lifetime JPH0727071B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3166318A JPH0727071B2 (en) 1991-06-11 1991-06-11 Radioiodine ion removal method
FR9203235A FR2677799B1 (en) 1991-06-11 1992-03-18 METHOD FOR ELIMINATING RADIOACTIVE IODINE IONS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166318A JPH0727071B2 (en) 1991-06-11 1991-06-11 Radioiodine ion removal method

Publications (2)

Publication Number Publication Date
JPH04364500A true JPH04364500A (en) 1992-12-16
JPH0727071B2 JPH0727071B2 (en) 1995-03-29

Family

ID=15829132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166318A Expired - Lifetime JPH0727071B2 (en) 1991-06-11 1991-06-11 Radioiodine ion removal method

Country Status (2)

Country Link
JP (1) JPH0727071B2 (en)
FR (1) FR2677799B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536824A (en) * 2015-12-30 2016-05-04 陕西师范大学 Nano mesoporous microspherical Bi5O7I photocatalyst and hydrothermal-thermal decomposition preparation method thereof
CN105800686A (en) * 2016-03-11 2016-07-27 石家庄经济学院 Method for preparing Bi5O7I

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512248B1 (en) * 2013-12-24 2015-04-16 한국원자력연구원 Porous adsorbents for trapping radioactive iodine gas and fabrication method thereof
CN106955721B (en) * 2017-03-24 2019-10-08 中南民族大学 A kind of preparation method of the Bi5O7Br nano-photocatalyst material of banded structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2903705A1 (en) * 1979-01-31 1980-09-11 Gilak Armin Separating iodine radionuclide derivs. from aq. solns. - by pptn. with bismuth or silver cpd. pref. promoted by hydroxy-quinoline
US4591455A (en) * 1982-11-24 1986-05-27 Pedro B. Macedo Purification of contaminated liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536824A (en) * 2015-12-30 2016-05-04 陕西师范大学 Nano mesoporous microspherical Bi5O7I photocatalyst and hydrothermal-thermal decomposition preparation method thereof
CN105800686A (en) * 2016-03-11 2016-07-27 石家庄经济学院 Method for preparing Bi5O7I

Also Published As

Publication number Publication date
FR2677799A1 (en) 1992-12-18
FR2677799B1 (en) 1995-03-03
JPH0727071B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
CN108160048B (en) Large-scale preparation method of high-stability cesium removal adsorbent, and product and application thereof
Ryan et al. Recovery and purification of plutonium by anion exchange
Kauczor et al. Structure and properties of Levextrel resins
Marcus et al. Anion-exchange Studies. XXV. The Rare Earth in Nitrate Solutions
Cheng et al. Adsorption behavior of iodide ion by silver-doped zeolite 4A in LiCl-KCl molten salt
EP0281672B1 (en) Minimization of radioactive material deposition in water-cooled nuclear reactors
CN102773067A (en) Preparation method of selective adsorbent for magnetic cesium
GB1533955A (en) Method of purifying ion exchanger resin used in nuclear reactors
EP3305403A1 (en) Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said adsorbent
JP2540401B2 (en) Method for precipitating and separating radioactive iodine compounds
JPH04364500A (en) Removing method of radioactive iodic ion
KR20150137201A (en) A method for preparing silicotitanate and Cs adsorbent
CN114956172B (en) Magnesium vanadate adsorbent for targeting strontium ions and cesium ions, and preparation method and application thereof
KR20170022522A (en) Method for preparing titanosilicate using dropwise method and titanosilicate absorbent for removing radioactive nuclides prepared thereby
JPH0552993A (en) Eliminating method for radioactive iodine ion
CN114669269B (en) Cs (cell lines) + 、Sr 2+ Co-adsorption-separation dual-function ion exchanger and preparation method and application thereof
US3687641A (en) Separation and recovery of americium from curium and other elements
JPH0631182A (en) Novel inorganic ion exchanger and method for removing and solidifying radioactive iodide ion by using the same
KR102654512B1 (en) Adsorbent for removing radionuclides and manufacturing method thereof
Chowdhury et al. Thermal and neutron irradiation effects on the rate of racemization of d-K3Cr (C2O4) 3.2 H2O in the solid state
JP2021501043A (en) Removal of Europium impurities from samarium-153 in nitrate medium using ionic liquids
JP7427198B2 (en) Isolation method for minor actinides
JPH0218906B2 (en)
US3351424A (en) Separation of cerium from other rare earths
JP2005230664A (en) Strontium separating method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term