JPH0552993A - Eliminating method for radioactive iodine ion - Google Patents

Eliminating method for radioactive iodine ion

Info

Publication number
JPH0552993A
JPH0552993A JP3238740A JP23874091A JPH0552993A JP H0552993 A JPH0552993 A JP H0552993A JP 3238740 A JP3238740 A JP 3238740A JP 23874091 A JP23874091 A JP 23874091A JP H0552993 A JPH0552993 A JP H0552993A
Authority
JP
Japan
Prior art keywords
solution
ion
bismuth oxide
radioactive iodine
iodine ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3238740A
Other languages
Japanese (ja)
Other versions
JPH0727072B2 (en
Inventor
Hiroshi Kodama
博志 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP3238740A priority Critical patent/JPH0727072B2/en
Publication of JPH0552993A publication Critical patent/JPH0552993A/en
Publication of JPH0727072B2 publication Critical patent/JPH0727072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently eliminate radioactive iodine ion contained in solution by stabilizing as BI5O7I single phase. CONSTITUTION:Radioactive iodine ion and bismuth oxide (alpha-Bi2O3) included in KI and LiI solutions are directly reacted by adjusting the ratio of bismuth oxide gram molecule number and iodine ion gram ion number at 4 to 1 through 1 to 4 for KI solution and 5 to 2 through 1 to 2 for LiI solution. Radioactive iodine ion is thus stabilized into alpha-Bi5O7I and more than 99% thereof is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放射性ヨウ素イオンの除
去方法に関し、例えば原子力発電プラントにおいて生ず
る放射性廃液中のヨウ素イオンを除去するのに適してい
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing radioactive iodine ions, which is suitable for removing iodine ions in radioactive waste liquid generated in a nuclear power plant, for example.

【0002】[0002]

【従来の技術】原子炉発電プラントにおいて、原子炉中
での核分裂により生ずる放射性ヨウ素ガスは、燃料の検
査、交換の場合、更に燃料取扱い時の事故や原子炉暴走
事故によって突発的に放出される危険性があり、また燃
料再処理プラントの運転時にも連続的に放出される可能
性がある。こうした種々の事態に対し、放射性ヨウ素ガ
スの処理法として、洗浄処理方式、固体吸着剤充填によ
る物理・化学的処理方式、イオン交換剤による処理など
が検討されている。
2. Description of the Related Art In a nuclear power plant, radioactive iodine gas produced by nuclear fission in a nuclear reactor is suddenly released when a fuel is inspected or replaced and when a fuel handling accident or a nuclear reactor runaway accident occurs. Dangerous and can be continuously released during operation of the fuel reprocessing plant. For such various situations, as a treatment method of radioactive iodine gas, a cleaning treatment method, a physical / chemical treatment method by filling a solid adsorbent, a treatment with an ion exchange agent, and the like are being studied.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、液体吸
着剤による洗浄処理方式では、これを液体のまま長期間
貯蔵するのでは(半減期は1700万年)、量的にも、ま
た安全上も問題が多い。また、固体吸着剤充填による物
理・化学的処理方式では、捕捉されたヨウ素は、他のガ
スとの交換の可能性に常に曝されており、また温度が上
昇すると容易に吸着物を放出するという難点がある。更
に、イオン交換剤による処理方式では、交換樹脂の耐熱
安定性が保たれるのは100℃程度までであり、これよ
り高温では十分な性能を発揮しない。また、それ自身が
可燃性であることから、安全管理上難点がある。
However, in the cleaning treatment method using a liquid adsorbent, if it is stored as a liquid for a long time (half-life is 17 million years), there is a problem in terms of quantity and safety. There are many. Also, in the physical / chemical treatment method by filling the solid adsorbent, the captured iodine is always exposed to the possibility of exchange with other gas, and the adsorbate is easily released when the temperature rises. There are difficulties. Furthermore, in the treatment method using an ion exchange agent, the heat resistance stability of the exchange resin is maintained up to about 100 ° C., and at a temperature higher than this, sufficient performance is not exhibited. In addition, since it is flammable itself, there is a problem in safety management.

【0004】かゝる観点から、溶液中の放射性ヨウ素イ
オンを他の元素と反応させて安定な化合物として取り出
し保存しようという試み(固化法)も検討されている。こ
の方法は、NaI溶液中に酸化ビスマス(α-Bi23)を
加えて反応させ、溶液中のヨウ素イオンをα-Bi57
に変えて取り出すというものである。この反応では、ヨ
ウ素イオンと共存する陽イオン(Na+)も重要な働きをし
ている。もし、NH4I溶液中にα-Bi23を加えてヨ
ウ素イオンと反応させても、生成物はα-Bi57I単一
相ではない。その原因は、ヨウ素イオンと共存していた
陽イオン
From such a point of view, an attempt (reaction method) of reacting radioactive iodine ions in a solution with other elements to extract them as a stable compound for storage is also being studied. In this method, bismuth oxide (α-Bi 2 O 3 ) is added to a NaI solution and reacted, and iodine ions in the solution are reacted with α-Bi 5 O 7 I.
It is to change into and take out. In this reaction, the cation (Na +) coexisting with the iodine ion also plays an important role. If α-Bi 2 O 3 is added to the NH 4 I solution and reacted with iodide ions, the product is not an α-Bi 5 O 7 I single phase. The cause is a cation that coexists with iodine ion.

【化1】 にあると思われる。[Chemical 1] It seems to be in.

【0005】本発明は、上記従来技術の問題点を解決
し、KI溶液やLiI溶液中に含まれる放射性ヨウ素イ
オンに酸化ビスマスを反応させてBi57I単一相のみ
を生成させ、固定化して効率的に除去し得る方法を提供
することを目的とするものである。
The present invention solves the problems of the prior art described above, and reacts radioactive iodine ions contained in a KI solution or a LiI solution with bismuth oxide to produce only a Bi 5 O 7 I single phase and immobilize it. It is an object of the present invention to provide a method that can be efficiently converted into a product.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明者は、放射性ヨウ素イオンに酸化ビスマスを
反応させても、Bi57I単一相のみを生成し、他の化
合物が生成しない条件について鋭意研究を重ねた結果、
ここに本発明を完成したものである。
In order to solve the above-mentioned problems, the present inventor has found that even when a radioiodine ion is reacted with bismuth oxide, only Bi 5 O 7 I single phase is produced, and other compounds As a result of earnest research on the condition that does not generate,
The present invention has been completed here.

【0007】すなわち、本発明は、KI及びLiI溶液
中に含まれる放射性ヨウ素イオンと酸化ビスマス(α-B
i23)とを、酸化ビスマスのグラム分子数とヨウ素イオ
ンのグラムイオン数との比がKI溶液の場合には4:1
から1:4の間に、LiI溶液の場合には5:2から
1:2の間に調整して直接反応させ、放射性ヨウ素イオ
ンをα-Bi57Iとして固定化して除去することを特徴
とするものである。
That is, according to the present invention, radioactive iodine ions and bismuth oxide (α-B) contained in KI and LiI solutions are contained.
i 2 O 3 ) is 4: 1 when the ratio of the number of gram molecules of bismuth oxide to the number of gram ions of iodine ions is 4: 1.
From 1: 4 to 1: 4, and in the case of LiI solution, from 5: 2 to 1: 2, the reaction is carried out directly, and the radioactive iodine ion is immobilized as α-Bi 5 O 7 I to be removed. It is a feature.

【0008】以下に本発明を更に詳述する。The present invention will be described in more detail below.

【0009】[0009]

【作用】[Action]

【0010】酸化ビスマスにはα−、β−、γ−、δ−
相の多形があり、α形が低温安定相、δ相が高温安定相
で他は準安定相である。またBi57Iにもα、βの多
形がある。以下においてBi23及びBi57Iと記すも
のは、いずれもα形の化合物を表わす。
For bismuth oxide, α-, β-, γ-, δ-
There are polymorphs of phases, α type is a low temperature stable phase, δ phase is a high temperature stable phase, and the others are metastable phases. Bi 5 O 7 I also has α and β polymorphs. In the following description, Bi 2 O 3 and Bi 5 O 7 I both represent α-form compounds.

【0011】ビスマス(Bi)と酸素(O)とヨウ素(I)の
化合物としては、α-Bi57I、β-Bi57I、Bi7
93、Bi452、BiOIの五種類の化合物が報告さ
れている。これらはそれぞれ異なった結晶構造を有し、
常温で固体である。これらの化合物の中で、α-Bi57
Iは水と熱に対して最も安定であり、例えば、非酸性溶
液中(25℃)で分解して出てくるヨウ素イオンの濃度は
約10-17mol・dm-3くらいであり、極めて微量である。
また、空気中での加熱に対しては約550℃くらいまで
安定であり、これらの安定度は、他の方法と比べると比
較にならないほど高い。
The compounds of bismuth (Bi), oxygen (O) and iodine (I) include α-Bi 5 O 7 I, β-Bi 5 O 7 I and Bi 7 O.
Five kinds of compounds, 9 I 3 , Bi 4 O 5 I 2 and BioI, have been reported. These have different crystal structures,
Solid at room temperature. Among these compounds, α-Bi 5 O 7
I is the most stable to water and heat. For example, the concentration of iodine ion that is decomposed in a non-acidic solution (25 ° C) is about 10 -17 mol · dm -3, which is extremely small. Is.
Further, it is stable up to about 550 ° C. against heating in air, and these stability are incomparably higher than those of other methods.

【0012】本発明においては、KI溶液又はLiI溶
液を用いて、溶液中の放射性ヨウ素イオンと酸化ビスマ
ス(α-Bi23)とを反応させて、Bi57I単一相に変
化させ、これを溶液と分離して保存するものである。こ
の反応は次式によって進行する。
In the present invention, a KI solution or a LiI solution is used to react radioiodine ions in the solution with bismuth oxide (α-Bi 2 O 3 ) to form a Bi 5 O 7 I single phase. The solution is stored separately from the solution. This reaction proceeds according to the following equation.

【0013】 5α-Bi23+2I-+H2O→2α-Bi57I+2OH- …(1)5α-Bi 2 O 3 + 2I + H 2 O → 2α-Bi 5 O 7 I + 2OH (1)

【0014】この化学反応を行うに当たって、生成物が
Bi57Iのみであって、他の化合物が生成しないよう
にするためには、反応に関与する酸化ビスマスのグラム
分子数とヨウ素イオンのグラムイオン数との比を、KI
溶液の場合には4:1〜1:4の間に、そしてLiI溶
液の場合には5:2から1:2の間に調整する必要があ
る。ヨウ素の割合がこれより多くても、また、少なくて
も、Bi57I以外の化合物が成長するようになる。
In carrying out this chemical reaction, the only product is Bi 5 O 7 I, and in order to prevent the formation of other compounds, the number of gram molecules of bismuth oxide involved in the reaction and the iodine ion The ratio with the number of gram ions is KI
It should be adjusted between 4: 1 and 1: 4 for solutions and between 5: 2 and 1: 2 for LiI solutions. If the proportion of iodine is higher or lower than this, compounds other than Bi 5 O 7 I will grow.

【0015】また、本発明によれば、ヨウ素イオンと共
存する陽イオンの種類が
Further, according to the present invention, the kinds of cations coexisting with iodine ions are

【化2】 ではなく、[Chemical 2] not,

【化3】 [Chemical 3] Or

【化4】 であっても、或いはそれらが共存していても、Bi57
I単一相による固化が可能である。しかも、Bi57
のみが生成するための条件(酸化ビスマスのグラム分子
数とヨウ素イオンのグラムイオン数と比)の上限も、K
I溶液のときには1:4であり、NaI溶液のときの上
限(1:2)よりも大きく、Bi57Iが安定に成長でき
る範囲が、より広い。
[Chemical 4] Or even if they coexist, Bi 5 O 7
I Solidification by a single phase is possible. Moreover, Bi 5 O 7 I
The upper limit of the conditions (ratio between the number of gram molecules of bismuth oxide and the number of gram ions of iodine ions) for producing only
It is 1: 4 in the case of the I solution, which is larger than the upper limit (1: 2) in the case of the NaI solution, and the range over which Bi 5 O 7 I can stably grow is wider.

【0016】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0017】[0017]

【実施例1】酸化ビスマス(Bi23)約233mg(5×1
-4グラム分子)と0.2mol・dm-3のヨウ化カリウム溶
液1000μl(2×10-4グラムイオン)を、蓋付き容
器に入れて密閉し恒温槽中にて25℃及び50℃で反応
させた。撹拌はしない。一定時間経過後、固体を溶液と
分離し乾燥した後、粉末X線回折法で同定した。これを
反応前の固体(Bi23)の粉末X線回折パターンと比較
することによって反応の進み具合を調べた。化学式(1)
に従って、反応が完了するとBi23の残存量は零にな
り、X線回折パターンは消滅するはずであり、その例を
図1のA(反応前)、B(反応後)に示す。
Example 1 About 233 mg (5 × 1) of bismuth oxide (Bi 2 O 3 ).
0-4 gram molecule) and 0.2 mol · dm -3 of potassium iodide solution 1000 μl (2 × 10 -4 gram ion) are put in a container with a lid and hermetically sealed at 25 ° C and 50 ° C in a constant temperature bath. It was made to react. Do not stir. After a certain period of time, the solid was separated from the solution, dried, and then identified by a powder X-ray diffraction method. The progress of the reaction was examined by comparing this with the powder X-ray diffraction pattern of the solid (Bi 2 O 3 ) before the reaction. Chemical formula (1)
According to the above, when the reaction is completed, the residual amount of Bi 2 O 3 should be zero, and the X-ray diffraction pattern should disappear, examples of which are shown in A (before reaction) and B (after reaction) of FIG.

【表1】 に示した結果から明らかなように、反応速度は温度によ
って多少異なるが、50℃では48時間以内に反応が完
了し、Bi57I単一相が得られている。25℃ではこ
の単一相を得るには更に時間を要する。
[Table 1] As is clear from the results shown in Table 1, the reaction rate varies slightly depending on the temperature, but at 50 ° C., the reaction is completed within 48 hours, and a Bi 5 O 7 I single phase is obtained. It takes more time to obtain this single phase at 25 ° C.

【0018】[0018]

【実施例2】酸化ビスマス(Bi23)約233mg(5×1
-4グラム分子)と0.8mol・dm-3のヨウ化カリウム溶
液250μl(2×10-4グラムイオン)を50℃で反応
させて進行具合を調べた。実験の手順は実施例1と同じ
である。
Example 2 Bismuth oxide (Bi 2 O 3 ) about 233 mg (5 × 1)
(0 −4 gram molecule) and 0.8 mol · dm −3 of potassium iodide solution (250 μl, 2 × 10 −4 gram ion) were reacted at 50 ° C. to examine the progress. The experimental procedure is the same as in Example 1.

【表2】 に示した結果から明らかなように、反応は24時間以内
に完了し、Bi57I単一相が得られた。
[Table 2] As is clear from the results shown in the above, the reaction was completed within 24 hours, and a Bi 5 O 7 I single phase was obtained.

【0019】[0019]

【実施例3】酸化ビスマス(Bi23)約233mgと様々
な濃度のヨウ化カリウム溶液1000μlを50℃で9
6時間反応させた結果を
Example 3 Approximately 233 mg of bismuth oxide (Bi 2 O 3 ) and 1000 μl of potassium iodide solution having various concentrations were mixed at 50 ° C. for 9 days.
The result of reacting for 6 hours

【表3】 に示す。本発明範囲内の条件の場合にBi57I単一相
が得られることがわかる。
[Table 3] Shown in. It can be seen that Bi 5 O 7 I single phase is obtained under conditions within the scope of the present invention.

【0020】[0020]

【実施例4】酸化ビスマス(Bi23)約233mgと様々
な濃度のヨウ化カリウム溶液250μlを50℃で48
間反応させた結果を
Example 4 About 233 mg of bismuth oxide (Bi 2 O 3 ) and 250 μl of potassium iodide solution having various concentrations were added at 50 ° C. for 48 hours.
The result of the reaction

【表4】 に示す。本発明範囲内の条件の場合にBi57I単一相
が得られることがわかる。
[Table 4] Shown in. It can be seen that Bi 5 O 7 I single phase is obtained under conditions within the scope of the present invention.

【0021】[0021]

【実施例5】酸化ビスマス(Bi23)約233mgと様々
な濃度のヨウ化リチウム溶液1000μlを50℃で9
6間反応させた結果を
Example 5 About 233 mg of bismuth oxide (Bi 2 O 3 ) and 1000 μl of a lithium iodide solution having various concentrations were mixed at 50 ° C. for 9 hours.
The result of reacting for 6

【表5】 に示す。本発明範囲内の条件の場合にBi57I単一相
が得られることがわかる。
[Table 5] Shown in. It can be seen that Bi 5 O 7 I single phase is obtained under conditions within the scope of the present invention.

【0022】[0022]

【実施例6】ヨウ素イオンの反応率を調べるために、酸
化ビスマス(Bi23)約255mg(5.5×10-4グラム
分子)と0.2mol・dm-3のヨウ化カリウム溶液及びヨウ
化リウム溶液1000μl(2×10-4グラムイオン)を
50℃で72時間反応させた後、溶液中に残存するヨウ
素イオンの濃度分析した。その結果、反応後に残存した
ヨウ素イオン濃度は、KI溶液の場合は反応前の容液の
濃度の0.32%で、LiI溶液の場合は反応前の溶液の
濃度の0.23%であった。これ以外のヨウ素イオンは
すべて固体に変化したものと考えられる。
Example 6 To examine the reaction rate of iodine ions, about 255 mg (5.5 × 10 −4 gram molecule) of bismuth oxide (Bi 2 O 3 ) and 0.2 mol · dm −3 potassium iodide solution and After reacting 1000 μl (2 × 10 −4 gram ion) of the iodium iodide solution at 50 ° C. for 72 hours, the concentration of the iodine ion remaining in the solution was analyzed. As a result, the concentration of iodine ions remaining after the reaction was 0.32% of the concentration of the solution before the reaction in the case of the KI solution, and 0.23% of the concentration of the solution before the reaction in the case of the LiI solution. .. All other iodine ions are considered to have changed to solids.

【0023】実施例1、2の結果から明らかなように、
原料固体と反応溶液の容積比を変えると反応速度も変化
する。溶液の容積が増すと反応速度は遅くなっている。
また、実施例3、4、5の結果から明らかなように、B
i57Iのみが生成するのに必要な条件はBi23のグラ
ム分子数とI-のグラムイオン数との比を一定の範囲内
に保つことであることが確認された。
As is clear from the results of Examples 1 and 2,
When the volume ratio of the raw material solid to the reaction solution is changed, the reaction rate also changes. The reaction rate slows as the volume of the solution increases.
In addition, as is clear from the results of Examples 3, 4, and 5, B
It was confirmed that the condition necessary for producing only i 5 O 7 I was to keep the ratio of the number of gram molecules of Bi 2 O 3 to the number of gram ions of I within a certain range.

【0024】[0024]

【発明の効果】以上述べたように、本発明によれば、溶
液中に存在する放射性ヨウ素イオンを酸化ビスマスと反
応させてBi57I単体相のみとして取り出すことがで
き、99%以上を固体として除去できる。また水や熱や
種々のガスなどに対する安定性が著しく改善される。し
かも、この化合物は固体結晶であるので、量的にも嵩張
らず保存や取扱いが容易である。
As described above, according to the present invention, radioactive iodine ions present in a solution can be reacted with bismuth oxide to take out only Bi 5 O 7 I simple phase, and 99% or more can be taken out. It can be removed as a solid. Further, the stability against water, heat and various gases is remarkably improved. Moreover, since this compound is a solid crystal, it is not bulky in quantity and is easy to store and handle.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉末X線回折パターンを示す図で、Aは原料
(Bi23)の場合、Bは生成物がBi57Iのみの場合で
ある。
FIG. 1 is a diagram showing a powder X-ray diffraction pattern, in which A is a raw material.
In the case of (Bi 2 O 3 ), B is the case where the product is Bi 5 O 7 I only.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 KI及びLiI溶液中に含まれる放射性
ヨウ素イオンと酸化ビスマス(α-Bi23)とを、酸化ビ
スマスのグラム分子数とヨウ素イオンのグラムイオン数
との比がKI溶液の場合には4:1から1:4の間に、
LiI溶液の場合には5:2から1:2の間に調整して
直接反応させ、放射性ヨウ素イオンをα-Bi57Iとし
て固定化して除去することを特徴とする放射性ヨウ素イ
オンの除去方法。
1. A radioactive iodine ion contained in a KI and LiI solution and bismuth oxide (α-Bi 2 O 3 ) are contained in a KI solution having a ratio of the gram molecular number of bismuth oxide to the gram ion number of iodine ion. In some cases between 4: 1 and 1: 4,
In the case of LiI solution, it is adjusted between 5: 2 and 1: 2 for direct reaction, and radioiodine ion is immobilized and removed as α-Bi 5 O 7 I to remove radioiodine ion. Method.
JP3238740A 1991-08-26 1991-08-26 Radioiodine ion removal method Expired - Lifetime JPH0727072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3238740A JPH0727072B2 (en) 1991-08-26 1991-08-26 Radioiodine ion removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238740A JPH0727072B2 (en) 1991-08-26 1991-08-26 Radioiodine ion removal method

Publications (2)

Publication Number Publication Date
JPH0552993A true JPH0552993A (en) 1993-03-02
JPH0727072B2 JPH0727072B2 (en) 1995-03-29

Family

ID=17034556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238740A Expired - Lifetime JPH0727072B2 (en) 1991-08-26 1991-08-26 Radioiodine ion removal method

Country Status (1)

Country Link
JP (1) JPH0727072B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105800686A (en) * 2016-03-11 2016-07-27 石家庄经济学院 Method for preparing Bi5O7I
CN106076246A (en) * 2016-06-20 2016-11-09 江苏大学 A kind of have the compound except iodine material and preparation method of micro-nano hierarchy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105800686A (en) * 2016-03-11 2016-07-27 石家庄经济学院 Method for preparing Bi5O7I
CN106076246A (en) * 2016-06-20 2016-11-09 江苏大学 A kind of have the compound except iodine material and preparation method of micro-nano hierarchy

Also Published As

Publication number Publication date
JPH0727072B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
Gruen et al. Oxidation states and complex ions of uranium in fused chlorides and nitrates
Palmer et al. Spectral characterization and kinetics of formation of hypoiodous acid in aqueous solution
JP2540401B2 (en) Method for precipitating and separating radioactive iodine compounds
JP4452837B2 (en) Extraction separation method
White et al. The kinetics of dissolution of calcium oxalate monohydrate; a constant composition study
JPH0552993A (en) Eliminating method for radioactive iodine ion
JPH0727071B2 (en) Radioiodine ion removal method
JP2500345B2 (en) Method of solidifying and removing iodide ion
CA1057947A (en) Process for solidifying nuclear materials
Howells et al. The chemical processing of irradiated fuels from thermal reactors
US3322679A (en) Process for reprocessing burned uranium fuel using molten bath containing ammonium nitrate
JP3864203B2 (en) Solidification method for radioactive waste
US5953678A (en) Thorium phosphates, method for preparing same, and use thereof for storing radioactive materials
Wilmarth et al. Absorption spectrophotometric and X-ray diffraction studies of the trihalides of promethium in the solid state
JPS6244697A (en) Method of solidifying high-level radioactive waste liquor
Iyer et al. Double sulphates of PuIII and some lanthanides with ammonium
Carnall et al. The Visible and Near-Infrared Absorption Spectra of Some Trivalent Actinide and Lanthanide Elements in DClO4 and in Molten Nitrate Salts
Muromura Effect of oxygen and carbon impurities on lattice parameter of PuN
JPS60119499A (en) Method of solidifying alkaline waste liquor containing iodine
Courrier et al. Determination of rhenium: chlorine ratios in complexes by neutron activation
Hamza et al. Constant-composition study of the kinetics of the dissolution of strontium fluoride in aqueous solution
JP3403240B2 (en) Method for producing high purity metal fluoride
JPH07257926A (en) Production of bi5o7(no2)
Haire Preparation of transplutonium metals and compounds
Smith A STUDY OF THE PERCHLORATES OF THE ALKALI AND ALKALINE EARTH METALS, THEIR PREPARATION, SOLUBILITIES, AND USE IN QUANTITATIVE ANALYSIS.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term