JPH04364455A - Surface analyzing method - Google Patents
Surface analyzing methodInfo
- Publication number
- JPH04364455A JPH04364455A JP3166278A JP16627891A JPH04364455A JP H04364455 A JPH04364455 A JP H04364455A JP 3166278 A JP3166278 A JP 3166278A JP 16627891 A JP16627891 A JP 16627891A JP H04364455 A JPH04364455 A JP H04364455A
- Authority
- JP
- Japan
- Prior art keywords
- ray intensity
- sample
- acceleration voltage
- voltage
- intensity ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 5
- 230000001133 acceleration Effects 0.000 claims abstract description 24
- 238000010894 electron beam technology Methods 0.000 claims abstract description 16
- 230000005284 excitation Effects 0.000 claims description 23
- 238000005259 measurement Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000005211 surface analysis Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 6
- 238000004445 quantitative analysis Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、電子線マイクロアナラ
イザ等を用いて、試料の極表面の定量分析を行う方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively analyzing the extreme surface of a sample using an electron beam microanalyzer or the like.
【0002】0002
【従来の技術】極表面における定量分析を行うには、電
子線の加速電圧をできるだけ低くして試料に照射する必
要があるが、元素によってX線を励起させるために必要
なエネルギーに差があり、従来は、測定元素の全てにお
いてX線を励起させることができるエネルギーの電子線
を照射していた。そのために深さ方向に対する分解精度
が悪くなると云う問題があった。また、全元素を、夫々
の元素の最小励起エネルギーで励起させて測定しようと
した場合、試料測定と同じ加速電圧で各元素の標準試料
を測定しなければならないために、測定時間がかかり過
ぎると云う問題があった。[Prior Art] In order to perform quantitative analysis on the extreme surface, it is necessary to irradiate the sample with an electron beam at the lowest possible accelerating voltage, but there are differences in the energy required to excite the X-rays depending on the element. Conventionally, all of the elements to be measured were irradiated with an electron beam of energy capable of exciting X-rays. Therefore, there was a problem in that the resolution accuracy in the depth direction deteriorated. In addition, if you try to measure all elements by exciting them with the minimum excitation energy of each element, the measurement time will be too long because the standard sample of each element must be measured at the same acceleration voltage as the sample measurement. There was a problem.
【0003】0003
【発明が解決しようとする課題】本発明は、電子線マイ
クロアナライザを用いて試料の極表面の定量分析を高精
度にできるようにすることを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to enable highly accurate quantitative analysis of the extreme surface of a sample using an electron beam microanalyzer.
【0004】0004
【課題を解決するための手段】電子線マイクロアナライ
ザ等による極表面分析において、適当な間隔で電子線の
加速電圧を数点設定し、設定した各加速電圧で各元素の
特性X線強度を測定すると共に、事前に上記各加速電圧
における各元素の標準試料における特性X線強度を測定
記憶しておき、各加速電圧毎に各元素iのX線強度比I
iを計算し、各元素毎に加速電圧と上記計算されたX線
強度比との相関曲線を求め、各元素の最小励起電圧にお
けるX線強度比を上記求めた相関曲線を低加速電圧側に
外挿的に延長して求めて、これらの値をもとにZAF補
正計算を行い、極表面における各元素の濃度を求めるよ
うにした。[Means for solving the problem] In extreme surface analysis using an electron beam microanalyzer, etc., the acceleration voltage of the electron beam is set at several points at appropriate intervals, and the characteristic X-ray intensity of each element is measured at each set acceleration voltage. At the same time, the characteristic X-ray intensity of the standard sample of each element at each acceleration voltage is measured and memorized in advance, and the X-ray intensity ratio I of each element i is calculated for each acceleration voltage.
i is calculated, and a correlation curve between the accelerating voltage and the X-ray intensity ratio calculated above is determined for each element, and the X-ray intensity ratio at the minimum excitation voltage of each element is shifted to the lower accelerating voltage side. After extrapolation and extension, ZAF correction calculations were performed based on these values to determine the concentration of each element at the extreme surface.
【0005】[0005]
【作用】或る元素の均一濃度試料で、電子加速電圧をそ
の元素の最低励起電圧以下の所から次第に上げて行くと
、その元素の特性X線強度は、最低励起電圧の所で急に
立上がり、以後次第に増加して行き、図4の実線Pのよ
うに変化する筈である。実際は加速電圧のバラツキとか
励起効率の影響等により、立上がりの所は図4の点線の
ようにだれた形になっているが、この立上がり点Sにお
ける特性X線強度は、特性X線強度のカーブを高励起電
圧側から、外挿的に延長し、横軸の最低励起電圧の所0
に立てた垂線との交点として決定することができる。
試料面に電子を入射させると、電子はエネルギーを失い
ながら試料内に進入して行き、その間に試料からX線を
放射させる。電子の加速電圧が或る元素の最低励起電圧
の時、試料面に入射した電子は、試料面から少し進入し
た所では、上記元素の最低励起電圧以下のエネルギーに
なっているから、この時試料から放射される上記元素の
特性X線強度は、試料極表面のみの情報を示している。
そこで、次に目的元素の濃度均一の試料と、表面濃度は
この均一試料と同じだが深さ方向に濃度が変化している
不均一な試料を考えると、不均一な試料の場合、電子加
速電圧を上げて行くと、目的元素の特性X線強度は、深
さ方向の濃度分布に応じて、図4のQ或はRのように変
化するが、これらのカーブを励起電圧の低い方へ外挿的
に延長して、最低励起電圧の所に立てた垂線との交点を
求めると、表面濃度が同じなので、全てはS点となる。
即ち、試料中の目的元素の深さ方向の濃度分布が均一で
なくても、電子加速電圧の高い側から低い方へ最低励起
電圧の所まで外挿したときの特性X線強度は、その試料
の表面における値を示している。従って、X線強度比の
外挿された最小励起電圧での値は、最表面の値を示して
いると云える。[Operation] When the electron acceleration voltage is gradually increased from a point below the lowest excitation voltage of a certain element in a uniform concentration sample, the characteristic X-ray intensity of that element suddenly rises at the lowest excitation voltage. , will gradually increase thereafter and change as shown by the solid line P in FIG. In reality, due to variations in the accelerating voltage and the effects of excitation efficiency, the rising point has a sloping shape as shown by the dotted line in Fig. 4, but the characteristic X-ray intensity at this rising point S is based on the characteristic X-ray intensity curve. is extrapolated from the high excitation voltage side, and the lowest excitation voltage on the horizontal axis is 0.
It can be determined as the point of intersection with the perpendicular line erected at . When electrons are incident on the sample surface, the electrons enter the sample while losing energy, and during this time the sample emits X-rays. When the accelerating voltage of electrons is the lowest excitation voltage of a certain element, the electrons incident on the sample surface have energy less than the lowest excitation voltage of the element at a point a little further from the sample surface. The characteristic X-ray intensity of the above elements emitted from the sample shows information only on the very surface of the sample. Next, consider a sample with a uniform concentration of the target element, and a non-uniform sample where the surface concentration is the same as this uniform sample, but the concentration changes in the depth direction. As the excitation voltage is increased, the characteristic X-ray intensity of the target element changes as shown by Q or R in Figure 4 depending on the concentration distribution in the depth direction. If we extend the intersection point with the perpendicular line at the lowest excitation voltage, all of them will be point S because the surface concentration is the same. In other words, even if the concentration distribution of the target element in the sample in the depth direction is not uniform, the characteristic X-ray intensity when extrapolated from the high electron acceleration voltage to the low electron acceleration voltage to the lowest excitation voltage is shows the value on the surface of Therefore, it can be said that the value at the extrapolated minimum excitation voltage of the X-ray intensity ratio indicates the value at the outermost surface.
【0006】[0006]
【実施例】図1に本発明の一実施例の構成図を示す。S
は試料、1は電子銃で、電子を放射するカソード1Aと
、電子を細く絞るグリッド1Bと、電子を加速するアノ
ード1Cから構成されている。2は電子ビームを収束さ
せるレンズ1、3は電子ビームを走査収束させるレンズ
2、分光器Aは分光結晶4と検出器5で構成されており
、両者が一定の関係を保ちつつ分光器駆動部6で駆動さ
れることで波長走査を行う。分光結晶4は試料から放射
されたX線を分光する。検出器5は分光結晶4で分光さ
れたX線を検出する。7は加速電源部で、グリッド1B
とアノード1Cとの間の電圧を変化させて、電子ビーム
の照射速度即ち照射エネルギーを制御する。8は分光器
制御部で、分光器Aを波長走査制御を行う。9はCPU
で、電子銃1の電子ビーム速度を加速電源部7により制
御すると共に、分光器制御部8により波長走査制御を行
い、検出器5で得られた信号に加速電圧及び分光波長を
付加して、記憶部11に記憶させ、記憶させたデータを
記憶部11に記憶させた標準試料の測定データを使用し
て後述したデータ処理を行い、試料元素の最小励起電圧
におけるX線強度を求め、極表面の定量分析を行う。
10はCRTで、その結果を画面に表示する。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a configuration diagram of an embodiment of the present invention. S
1 is a sample, and 1 is an electron gun, which is composed of a cathode 1A that emits electrons, a grid 1B that narrows the electrons, and an anode 1C that accelerates the electrons. 2 is a lens 1 that converges the electron beam, 3 is a lens 2 that scans and converges the electron beam, and the spectrometer A is composed of a spectroscopic crystal 4 and a detector 5, and the spectrometer drive unit maintains a constant relationship between the two. 6 to perform wavelength scanning. The spectroscopic crystal 4 spectrally spectra the X-rays emitted from the sample. The detector 5 detects the X-rays separated by the spectroscopic crystal 4. 7 is the acceleration power supply section, grid 1B
The irradiation speed, that is, the irradiation energy of the electron beam is controlled by changing the voltage between the anode 1C and the anode 1C. Reference numeral 8 denotes a spectrometer control section that controls the wavelength scanning of the spectrometer A. 9 is CPU
Then, the electron beam speed of the electron gun 1 is controlled by the acceleration power supply section 7, and the wavelength scanning is controlled by the spectrometer control section 8, and the acceleration voltage and the spectral wavelength are added to the signal obtained by the detector 5. The stored data is stored in the storage unit 11, and the data processing described below is performed using the measurement data of the standard sample stored in the storage unit 11, and the X-ray intensity at the minimum excitation voltage of the sample element is determined. Perform quantitative analysis of 10 is a CRT, which displays the results on the screen.
【0007】CPU9における制御動作を図2のフロー
チャートを用いて説明する。#5のステップ実行のため
、予め濃度均一の標準試料について測定データを採取し
ておく。先ず、或る加速電圧で電子線の照射エネルギー
を決め、全元素の定性分析を行う(#1)。データ処理
(ピークサーチ、ピーク強度値PK,バックグランド値
BGの計算、元素名の判定)を行い、検出元素を確認す
る(#2)。検出元素に対応して測定に用いる電子線の
励起電圧を数点決定する(#3)。決定した数点の励起
電圧において、各検出元素の特性X線強度を測定する(
#4)。上記測定と同じ励起電圧における各検出元素の
標準試料の測定データを記憶部11から読出し(#5)
、各元素において、測定試料と標準試料における特性X
線強度の比即ちX線強度比Iiを
Ii=(PKSi−BGSi)/(PKHi−BGHi
)但し、Sは測定試料、Hは標準試料、iは元素iのデ
ータを示す。で計算する(#6)。これを図3に示すよ
うにグラフにプロットする(#7)。上記プロットされ
た点を結ぶ曲線を2次式或は3次式として最小二乗法等
により想定し、各元素の最小励起電圧時のX線強度比を
推定する(#8)。推定で得られたX線強度比をZAF
(原子番号効果,吸収効果,蛍光励起効果)補正し(#
9)、求めた値をCRT10に表示する(#10)。The control operation in the CPU 9 will be explained using the flowchart shown in FIG. In order to execute step #5, measurement data for a standard sample with uniform concentration is collected in advance. First, the irradiation energy of the electron beam is determined at a certain acceleration voltage, and qualitative analysis of all elements is performed (#1). Data processing (peak search, calculation of peak intensity value PK, background value BG, determination of element name) is performed, and the detected element is confirmed (#2). Several excitation voltages of the electron beam used for measurement are determined corresponding to the detected element (#3). Measure the characteristic X-ray intensity of each detected element at several determined excitation voltage points (
#4). Read the measurement data of the standard sample of each detected element at the same excitation voltage as the above measurement from the storage unit 11 (#5)
, for each element, the characteristics X in the measurement sample and standard sample
The ratio of ray intensities, that is, the X-ray intensity ratio Ii, is expressed as Ii=(PKSi-BGSi)/(PKHi-BGHi
) However, S indicates the measurement sample, H indicates the standard sample, and i indicates the data for element i. Calculate (#6). Plot this on a graph as shown in Figure 3 (#7). A curve connecting the plotted points is assumed as a quadratic or cubic equation by the least squares method or the like, and the X-ray intensity ratio at the minimum excitation voltage of each element is estimated (#8). The estimated X-ray intensity ratio is ZAF
(atomic number effect, absorption effect, fluorescence excitation effect) correction (#
9) Display the obtained value on the CRT 10 (#10).
【0008】上記実施例では、X線強度比の計算に用い
るX線強度を、測定ピーク強度PKからバックグランド
値BGを引くことによって行っているだけで、照射電流
を考慮していないが、照射電流は電子線の照射強度のパ
ラメータであるので、X線強度比Iiを、上記計算値に
照射電流値PCを掛けて、
Ii=(PKSi−BGSi)PCSi/(P
KHi−BGHi)PCHi
で計算し、この値により各元素濃度を求めても、上記同
様の効果を得ることができる。In the above embodiment, the X-ray intensity used for calculating the X-ray intensity ratio is calculated by simply subtracting the background value BG from the measured peak intensity PK, and the irradiation current is not taken into account. Since the current is a parameter of the electron beam irradiation intensity, the X-ray intensity ratio Ii is calculated by multiplying the above calculation value by the irradiation current value PC, and is calculated as Ii=(PKSi-BGSi)PCSi/(P
Even if the concentration of each element is determined by calculating KHi-BGHi)PCHi, the same effect as described above can be obtained.
【0009】[0009]
【発明の効果】本発明によれば、各元素の最小励起電圧
時におけるX線強度比を求めることが可能になり、極表
面における各元素の濃度分布を高精度に測定することが
可能になった。[Effects of the Invention] According to the present invention, it has become possible to determine the X-ray intensity ratio of each element at the minimum excitation voltage, and it has become possible to measure the concentration distribution of each element on the extreme surface with high precision. Ta.
【図1】本発明の一実施例のブロック図[Fig. 1] Block diagram of one embodiment of the present invention
【図2】上記実
施例のフローチャート[Figure 2] Flowchart of the above embodiment
【図3】上記実施例の各元素の励起電圧とX線強度比の
相関曲線図[Figure 3] Correlation curve diagram between excitation voltage and X-ray intensity ratio of each element in the above example
【図4】上記実施例の励起電圧とX線強度の相関曲線図
[Figure 4] Correlation curve diagram between excitation voltage and X-ray intensity in the above example
S 試料 1 電子銃 1A カソード 1B グリッド 1C アノード 2 レベル1 3 レベル2 4 分光結晶 5 検出器 6 分光器駆動部 7 加速電源部 8 分光器制御部 9 CPU 10 CRT 11 記憶部 S Sample 1 Electron gun 1A Cathode 1B Grid 1C Anode 2 Level 1 3 Level 2 4 Spectroscopic crystal 5 Detector 6 Spectrometer drive unit 7 Acceleration power supply section 8 Spectrometer control section 9 CPU 10 CRT 11. Storage section
Claims (2)
し、設定した各加速電圧で各元素の特性X線強度を測定
すると共に、事前に上記各加速電圧における各元素の標
準試料における特性X線強度を測定記憶しておき、各加
速電圧毎に各元素iのX線強度比Iiを計算し、各元素
毎に加速電圧と上記計算されたX線強度比との相関曲線
を求め、各元素の最小励起電圧におけるX線強度比を上
記求めた相関曲線を低加速電圧側に外挿的に延長して求
めて、極表面における各元素の濃度を求めることを特徴
とする表面分析方法。Claim 1: The acceleration voltage of the electron beam is set at several points at appropriate intervals, the characteristic X-ray intensity of each element is measured at each set acceleration voltage, and a standard sample of each element at each acceleration voltage is measured in advance. Measure and store the characteristic X-ray intensity at , calculate the X-ray intensity ratio Ii of each element i for each acceleration voltage, and calculate the correlation curve between the acceleration voltage and the calculated X-ray intensity ratio for each element. and the X-ray intensity ratio at the minimum excitation voltage of each element is obtained by extrapolating and extending the above-obtained correlation curve to the low acceleration voltage side to obtain the concentration of each element at the extreme surface. Analysis method.
Ii=(PKSi−BGSi)PCSi/(PKHi−
BGHi)PCHi 但し、PKはピーク強度、BGはバックグランド値
、PCは照射電流値、添字はデータの種類を示し、Sは
測定試料、Hは標準試料、iは元素iを表す。で計算し
て求めたことを特徴とする請求項1記載の表面分析方法
。[Claim 2] The X-ray intensity ratio Ii of each element i is
Ii=(PKSi−BGSi)PCSi/(PKHi−
BGHi) PCHi where PK is the peak intensity, BG is the background value, PC is the irradiation current value, and the subscript indicates the type of data, S is the measurement sample, H is the standard sample, and i is the element i. 2. The surface analysis method according to claim 1, wherein the surface analysis method is obtained by calculation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3166278A JPH04364455A (en) | 1991-06-11 | 1991-06-11 | Surface analyzing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3166278A JPH04364455A (en) | 1991-06-11 | 1991-06-11 | Surface analyzing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04364455A true JPH04364455A (en) | 1992-12-16 |
Family
ID=15828417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3166278A Pending JPH04364455A (en) | 1991-06-11 | 1991-06-11 | Surface analyzing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04364455A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019027931A (en) * | 2017-07-31 | 2019-02-21 | 日本電子株式会社 | Image processing device, analysis device, and image processing method |
-
1991
- 1991-06-11 JP JP3166278A patent/JPH04364455A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019027931A (en) * | 2017-07-31 | 2019-02-21 | 日本電子株式会社 | Image processing device, analysis device, and image processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4037101A (en) | Method and apparatus for analyzing fine grained substances | |
JP6769402B2 (en) | Electron microanalyzer and data processing program | |
US4569592A (en) | Plasma monitor | |
US10613043B2 (en) | Method and apparatus for sample analysis | |
US9188686B2 (en) | Radiation detector assembly and sample analyzer | |
JP4517323B2 (en) | Electron microanalyzer measurement data correction method | |
EP0452825B1 (en) | Method and apparatus for background correction in analysis of a specimen surface | |
JPH04364455A (en) | Surface analyzing method | |
US11391682B2 (en) | Auger electron microscope and analysis method | |
JP7279853B2 (en) | Laser desorption ionization mass spectrometer and laser power adjustment method | |
JP2002310957A (en) | X-ray analyzer by electron excitation | |
US6845147B2 (en) | Scatter spectra method for x-ray fluorescent analysis with optical components | |
JPH0515718Y2 (en) | ||
JP2006177752A (en) | X-ray analyzer | |
JP2003229084A (en) | Surface analyzer | |
JPS62285048A (en) | Element density distribution measurement | |
JP3069305B2 (en) | X-ray fluorescence analysis method and apparatus | |
US20240142395A1 (en) | Analyzing Method and Analyzer | |
JP2002181745A (en) | Quantitative analysis method for sample analyzing device | |
JP2985904B2 (en) | X-ray photoelectron analysis method | |
JP4458985B2 (en) | X-ray analyzer and X-ray analysis method | |
JPH03118456A (en) | X-ray spectrochemical analysis method | |
JPH01319238A (en) | X-ray spectrum analyzer | |
JP2794885B2 (en) | Analyzer using charged particle beam | |
JPH0735709A (en) | Quantitative analytic/measuring method employing wavelength dispersive spectrometer and energy dispersive spectrometer |