JPH04364342A - Super high speed electric rotating machine - Google Patents

Super high speed electric rotating machine

Info

Publication number
JPH04364342A
JPH04364342A JP13897591A JP13897591A JPH04364342A JP H04364342 A JPH04364342 A JP H04364342A JP 13897591 A JP13897591 A JP 13897591A JP 13897591 A JP13897591 A JP 13897591A JP H04364342 A JPH04364342 A JP H04364342A
Authority
JP
Japan
Prior art keywords
stator
rotor
electric rotating
grooves
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13897591A
Other languages
Japanese (ja)
Inventor
Shigeki Hagiwara
萩原 茂喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP13897591A priority Critical patent/JPH04364342A/en
Publication of JPH04364342A publication Critical patent/JPH04364342A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/12Machines characterised by means for reducing windage losses or windage noise

Abstract

PURPOSE:To realize a super high speed electric rotating machine, e.g. a motor or a generator, by evacuating the air gap between a rotor and a stator forcibly thereby lowering the density of inner gas sufficiently. CONSTITUTION:At least one of the outer peripheral face of a rotor 2 or the inner peripheral face of a stator 4 is formed of a continuous irregular face 18 having hooked ridges or grooves 19, 19,... so that the air gap G is evacuated forcibly through the ridges or the grooves 19, 19,... when the rotor 2 rotates at super high speed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、モータや発電機に代
表される電気回転機に関し、特にロータ回転数が10万
rpmを越えるような超高速の電気回転機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electric rotating machines such as motors and generators, and particularly to ultra-high speed electric rotating machines whose rotor rotation speed exceeds 100,000 rpm.

【0002】0002

【従来の技術】一般に、この種の電気回転機で発生する
損失には電気的損失、磁気的損失、摩擦に起因する損失
等がある。例えば従来形態のモータを超高速化する場合
には、上記損失のうち、特に摩擦損失が問題となる。摩
擦損失は、軸受やシール部での接触摩擦損と、ロータが
高速で回転することによる風損、つまりエアギャップに
存在する空気の粘性剪断による損失とに分けられる。前
者の接触摩擦損については、従来、例えば磁気軸受でロ
ータ軸を支持する等、軸受の非接触化を図ることで損失
の大幅な低下が実現されつつある(例えば特開平1―1
45420号公報や実開平2―85012号公報参照)
2. Description of the Related Art Generally, losses occurring in this type of electric rotating machine include electrical loss, magnetic loss, loss due to friction, and the like. For example, when increasing the speed of a conventional motor to an ultra-high speed, among the above losses, friction loss becomes a particular problem. Friction loss can be divided into contact friction loss at bearings and seals, and wind loss due to high speed rotation of the rotor, that is, loss due to viscous shearing of the air present in the air gap. Regarding the former type of contact friction loss, the loss has been significantly reduced by making the bearing non-contact, such as by supporting the rotor shaft with a magnetic bearing (for example, Japanese Patent Application Laid-Open No. 1-1)
(Refer to Publication No. 45420 and Japanese Utility Model Application Publication No. 2-85012)
.

【0003】0003

【発明が解決しようとする課題】しかしながら、後者の
風損については殆ど検討が加えられておらず、その解決
が待たれていた。因みに、風損はコイル冷却に適用する
気体の種類によっても大きな差を生じることが知られて
おり、例えば水素を冷却媒体とする場合には、空気を冷
却媒体とする場合に比べて風損を85〜90%程度に減
らすことができる。
[Problem to be Solved by the Invention] However, little consideration has been given to the latter windage loss, and a solution to this problem has been awaited. Incidentally, it is known that windage loss varies greatly depending on the type of gas used to cool the coil. For example, when hydrogen is used as a cooling medium, windage loss is lower than when air is used as a cooling medium. It can be reduced to about 85-90%.

【0004】この発明は上記に鑑み提案されたものであ
って、その目的は、エアギャップに存在する気体を強制
的に外部に排気し、その内部の気体密度を十分に低下さ
せることにより、風損を低減させて電気回転機の超高速
化を実現することにある。
[0004] The present invention was proposed in view of the above, and its purpose is to forcibly exhaust the gas existing in the air gap to the outside and sufficiently reduce the gas density inside the air gap. The goal is to reduce losses and achieve ultra-high speeds in electric rotating machines.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、この発明では、超高速電気回転機において内外に対
向するロータの外周面又はステータの内周面の少なくと
もいずれか一方を連続凹凸面で構成し、その連続凹凸面
を構成する凸条ないし凹溝の形状を、ロータ軸線方向の
中間部が両端部に対しずれるように略く字状に屈曲させ
、ロータ回転時、この凸条ないし凹溝によりエアギャッ
プ内の気体を外部に排出するようにする。上記略く字状
に屈曲される凸条及び凹溝は、ロータに設ける場合とス
テータに設ける場合とでその向きが逆になる。これは、
回転するロータと回転しないステータとの状態の違いに
由来する。
[Means for Solving the Problems] In order to achieve this object, in the present invention, at least one of the outer circumferential surface of the rotor or the inner circumferential surface of the stator, which faces inside and outside, in an ultra-high-speed electric rotating machine is formed into a continuous uneven surface. The shape of the protrusions or grooves constituting the continuous uneven surface is bent into a substantially dogleg shape so that the middle part in the rotor axis direction is offset from both ends, and when the rotor rotates, the protrusions or grooves The concave groove allows the gas in the air gap to be discharged to the outside. The above-mentioned protrusions and grooves bent into a substantially doglegged shape are opposite in direction depending on whether they are provided on the rotor or on the stator. this is,
This is due to the difference in state between the rotating rotor and the non-rotating stator.

【0006】具体的には、請求項1の発明では、図1及
び図2に示すように、超高速電気回転機はステータ(4
)と、該ステータ(4)の内部に回転可能に支持され、
外周面がステータ(4)の内周面にエアギャップ(G)
を介して対向配置されたロータ(2)とを備えた構成で
あり、上記ロータ(2)外周面が円周方向へ多数の凸条
又は凹溝(19),(19),…の連続する連続凹凸面
(18)で構成されていること、及び、連続凹凸面(1
8)を構成する凸条ないし凹溝(19),(19),…
の各々は、ロータ軸線方向の中間部が両端部に対しロー
タ回転方向前側にずれるように略く字状に屈曲されてい
ることを要件とする。
Specifically, in the invention of claim 1, as shown in FIGS. 1 and 2, the ultra high-speed electric rotating machine has a stator (4
), rotatably supported inside the stator (4),
Air gap (G) between the outer circumferential surface and the inner circumferential surface of the stator (4)
The outer peripheral surface of the rotor (2) has a large number of continuous protrusions or grooves (19), (19), etc. in the circumferential direction. The continuous uneven surface (18) is composed of a continuous uneven surface (18), and the continuous uneven surface (18)
8) Convex lines or concave grooves (19), (19),...
Each of these requires that the intermediate portion in the rotor axial direction be bent in a substantially dogleg shape so that the intermediate portion in the rotor axial direction is shifted forward in the rotor rotational direction with respect to both end portions.

【0007】請求項2の発明では、上記請求項1の発明
とは逆に、ステータの内周面を連続凹凸面に構成する。 すなわち、この発明では、図4(a)に示すように、ス
テータ(4)と、該ステータ(4)の内部に回転可能に
支持され、外周面がステータ(4)の内周面にエアギャ
ップ(G)を介して対向配置されたロータ(2)とを備
えた超高速電気回転機に対し、上記ステータ(4)内周
面が円周方向へ多数の凸条又は凹溝(19),(19)
,…の連続する連続凹凸面(18)で構成されているこ
と、及び、連続凹凸面(18)を構成する凸条ないし凹
溝(19),(19),…の各々は、ロータ軸線方向の
中間部が両端部に対しロータ回転方向後側にずれるよう
に略く字状に屈曲されていることを要件とする。
According to the second aspect of the invention, contrary to the first aspect of the invention, the inner circumferential surface of the stator is formed into a continuous uneven surface. That is, in this invention, as shown in FIG. 4(a), the stator (4) is rotatably supported inside the stator (4), and the outer circumferential surface forms an air gap with the inner circumferential surface of the stator (4). For an ultra-high-speed electric rotating machine equipped with a rotor (2) facing each other via a rotor (G), the inner circumferential surface of the stator (4) has a large number of protrusions or grooves (19) in the circumferential direction, (19)
,..., and each of the protrusions or grooves (19), (19),... constituting the continuous uneven surface (18) extends in the rotor axial direction. It is required that the intermediate portion of the rotor be bent in a substantially dogleg shape so that the intermediate portion thereof is shifted rearward in the rotor rotational direction with respect to both end portions.

【0008】請求項3の発明では、ロータの外周面及び
ステータの内周面の双方を連続凹凸面で構成する。つま
り、この発明では、上記請求項1の発明において、ステ
ータ(4)内周面が円周方向へ多数の凸条又は凹溝(1
9),(19),…の連続する連続凹凸面(18)で構
成されていること、及び、連続凹凸面(18)を構成す
る凸条ないし凹溝(19),(19),…の各々は、ロ
ータ軸線方向の中間部が両端部に対しロータ回転方向後
側にずれるように略く字状に屈曲されていることを要件
とする。
In the third aspect of the invention, both the outer circumferential surface of the rotor and the inner circumferential surface of the stator are formed of continuous uneven surfaces. That is, in this invention, in the invention of claim 1, the inner peripheral surface of the stator (4) has a large number of protrusions or grooves (1) in the circumferential direction.
9), (19), ... consisting of a continuous uneven surface (18), and the convex grooves or grooves (19), (19), ... constituting the continuous uneven surface (18). Each of them is required to be bent in a substantially dogleg shape so that the intermediate portion in the rotor axial direction is shifted rearward in the rotor rotational direction with respect to both end portions.

【0009】請求項4の発明では、上記ステータ(4)
の内部に、断面円形状の中心孔(17a)を備えた整形
スリーブ(17)を装着し、この整形スリーブ(17)
の中心孔(17a)内周面でステータ(4)の内周面を
構成する。
[0009] In the invention according to claim 4, the stator (4)
A shaping sleeve (17) equipped with a center hole (17a) having a circular cross section is mounted inside the shaping sleeve (17).
The inner circumferential surface of the center hole (17a) constitutes the inner circumferential surface of the stator (4).

【0010】0010

【作用】請求項1の発明では、ロータ(2)の外周面が
連続凹凸面(18)で構成されているので、ロータ(2
)の回転に伴い、エアギャップ(G)内の気体は、凸条
或いは凹溝(19),(19),…の各々の屈曲角部(
19a)を境にして両端部(19b),(19b)のギ
ャップ(G)開口へ向かって強制的に押し出される。凸
条或いは凹溝(19)における屈曲角部(19a)と両
端部(19b),(19b)との間はロータ(2)の軸
線と平行な方向に対し傾斜していて、この傾斜部におい
て気体に対し軸方向外側へ向かう押出し分力が作用する
からである。この排気作用はロータ回転数が増加するほ
ど増大し、超高速回転状態においてはエアギャップ(G
)内の気体密度が十分に低下して見掛け上の気体の粘度
が下がり、気体の粘性剪断による損失を殆ど無視できる
程度にまで低減できる。
[Operation] In the invention of claim 1, since the outer circumferential surface of the rotor (2) is constituted by a continuous uneven surface (18), the rotor (2)
), the gas in the air gap (G) moves around the bent corners (
19a) and is forcibly pushed out toward the opening of the gap (G) at both ends (19b), (19b). The area between the bent corner (19a) and both ends (19b), (19b) of the protruding strip or groove (19) is inclined with respect to the direction parallel to the axis of the rotor (2), and in this inclined portion This is because an extrusion force directed outward in the axial direction acts on the gas. This exhaust effect increases as the rotor rotation speed increases, and in extremely high-speed rotation conditions, the air gap (G
), the apparent viscosity of the gas decreases, and the loss due to viscous shear of the gas can be reduced to an almost negligible level.

【0011】請求項2の発明では、逆に、ステータ(4
)の内周面が連続凹凸面(18)とされているので、上
記請求項1の発明のような排気作用は得られないが、エ
アギャップ(G)内の気体はロータ(2)に引き摺られ
てこれと同じ方向へ回転するため、ロータ(2)が超高
速で回転する状態では気体も同方向へ高速で流動する。 この流動する気体は凸条或いは凹溝(19),(19)
,…に衝突し、その傾斜部に案内されてギャップ(G)
開口の側へ押し出される。従って、この場合にもエアギ
ャップ(G)内の気体を十分に稀薄にして気体密度を低
下できる。
In the invention of claim 2, on the contrary, the stator (4
) has a continuous uneven surface (18), so the exhaust effect as in the invention of claim 1 cannot be obtained, but the gas in the air gap (G) is not dragged by the rotor (2). Since the rotor (2) rotates at an extremely high speed, the gas also flows at high speed in the same direction. This flowing gas has protrusions or grooves (19), (19)
, ... and is guided by the slope of the gap (G)
Pushed towards the opening. Therefore, in this case as well, the gas within the air gap (G) can be sufficiently diluted to reduce the gas density.

【0012】請求項3の発明では、上記請求項1及び2
の発明の双方の作用効果が相乗的に得られ、より有利で
ある。
[0012] In the invention of claim 3, the above-mentioned claims 1 and 2
The effects of both inventions can be obtained synergistically, which is more advantageous.

【0013】多くの場合、ステータ(4)の内周側には
、コイル装填用の溝が開口している。この溝は、連続凹
凸面(18)による排気作用を著しく阻害して無効化し
やすい。こうした不具合を避けるために、請求項4の発
明では断面円形の中心孔(17a)を備えた整形スリー
ブ(17)をステータ(4)内部に装着する。
[0013] In many cases, a groove for loading the coil is opened on the inner peripheral side of the stator (4). This groove significantly impedes the exhaust action of the continuous uneven surface (18) and is likely to be rendered ineffective. In order to avoid such problems, in the invention according to claim 4, a shaping sleeve (17) provided with a center hole (17a) having a circular cross section is installed inside the stator (4).

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図4はこの発明を超高速モータに適用した
実施例を示す。図2において、モータはハウジング(1
)の内部にロータ(2)、該ロータ(2)を支持するロ
ータ軸(3)、及び内部にロータ(2)を嵌入するステ
ータ(4)を配置してなるもので、ロータ軸(3)の上
部寄り及び下端はそれぞれ磁気軸受(5),(6)で回
転自在に支持されている。磁気軸受(5),(6)は、
各々ロータ軸(3)に固定された回転子(7)と、ハウ
ジング(1)の内面に固定された固定子(8)とからな
り、固定子(8)に埋設した磁石(9)の磁力を、回転
子(7)と固定子(8)とのスラスト回転面で対向する
対向磁極(10),(11)に集中させて、非接触状態
の下にロータ軸(3)を支承している。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. 1 to 4 show an embodiment in which the present invention is applied to an ultra-high speed motor. In Figure 2, the motor has a housing (1
), a rotor (2), a rotor shaft (3) that supports the rotor (2), and a stator (4) into which the rotor (2) is fitted. The upper and lower ends are rotatably supported by magnetic bearings (5) and (6), respectively. The magnetic bearings (5) and (6) are
Consisting of a rotor (7) fixed to the rotor shaft (3) and a stator (8) fixed to the inner surface of the housing (1), the magnetic force of the magnet (9) embedded in the stator (8) are concentrated on opposing magnetic poles (10) and (11) that face each other on the thrust rotation surface of the rotor (7) and stator (8), and support the rotor shaft (3) in a non-contact state. There is.

【0015】上側の磁気軸受(5)はラジアル軸受とし
てのみ機能するが、下側の磁気軸受(6)は動圧型のス
ラスト軸受としても機能する。詳しくは、対向磁極(1
0),(11)の間に非磁性セラミックス製のリング(
12),(13)を嵌め込み、両リング(12),(1
3)の対向面の一方に渦巻状の凹溝を設け、ロータ軸(
3)が超高速で回転するとき、上記凹溝で生成された気
流の圧力で回転子(7)及びロータ軸(3)を浮上支持
できるようにしている。
The upper magnetic bearing (5) functions only as a radial bearing, but the lower magnetic bearing (6) also functions as a dynamic pressure type thrust bearing. For details, refer to the opposing magnetic pole (1
A non-magnetic ceramic ring (
12) and (13), and both rings (12) and (1
A spiral groove is provided on one of the facing surfaces of 3), and the rotor shaft (
3) rotates at an extremely high speed, the rotor (7) and the rotor shaft (3) can be supported in a floating manner by the pressure of the airflow generated in the grooves.

【0016】ステータ(4)は、磁性材料としての鋼板
の積層体からなるコア(15)のヨーク部にコイル(1
6)を巻き付けて形成され、その内部には断面円形状の
中心孔(17a)を有する円筒状の整形スリーブ(17
)が圧入嵌合状態で固定されている。整形スリーブ(1
7)は非磁性材料で形成される。この整形スリーブ(1
7)の中心孔(17a)内周面はステータ(4)の内周
面を構成するもので、この内周面とロータ(2)外周面
との間にエアギャップ(G)が設けられている。
The stator (4) has a core (15) made of a laminate of steel plates as a magnetic material, and a coil (1
6), and has a central hole (17a) with a circular cross section inside.
) are fixed in a press-fitted state. Orthopedic sleeve (1
7) is made of non-magnetic material. This orthopedic sleeve (1
The inner peripheral surface of the center hole (17a) of 7) constitutes the inner peripheral surface of the stator (4), and an air gap (G) is provided between this inner peripheral surface and the outer peripheral surface of the rotor (2). There is.

【0017】ロータ(2)が超高速で回転するときの風
損を低減するために、上記エアギャップ(G)に面する
ロータ(2)外周面が連続凹凸面(18)で構成されて
いる。図3に示すように、連続凹凸面(18)は、ロー
タ(2)の外周面に円周方向へ連続するように形成した
一群の凹溝(19),(19),…で構成されている。 図4(a)に示すように、各凹溝(19)はロータ(2
)の軸線方向の中央部が両端部(19b),(19b)
に対しずれるように略く字状に屈曲され、中央部たる屈
曲角部(19a)が両端部(19b),(19b)より
もロータ(2)の回転方向前側(図4(a)で右側)に
位置する形状とされている。尚、エアギャップ(G)の
隙間寸法、各凹溝(19)の幅及び深さ、さらには図4
の展開状態における凹溝(19)の傾斜角については、
ロータ(2)の回転速度等に応じて設定する。
[0017] In order to reduce windage loss when the rotor (2) rotates at an extremely high speed, the outer peripheral surface of the rotor (2) facing the air gap (G) is constituted by a continuous uneven surface (18). . As shown in FIG. 3, the continuous uneven surface (18) is composed of a group of grooves (19), (19), etc. formed continuously in the circumferential direction on the outer peripheral surface of the rotor (2). There is. As shown in FIG. 4(a), each groove (19) is connected to the rotor (2).
) is at both ends (19b), (19b)
The bent corner (19a), which is the central part, is on the front side in the rotational direction of the rotor (2) (the right side in Fig. 4(a)) than both ends (19b), (19b). ). In addition, the gap dimensions of the air gap (G), the width and depth of each groove (19), and also Fig. 4
Regarding the inclination angle of the groove (19) in the unfolded state,
Set according to the rotation speed of the rotor (2), etc.

【0018】したがって、この実施例では、ロータ(2
)が回転するとき、エアギャップ(G)内に存在する空
気は、各凹溝(19)における屈曲角部(19a)と両
端部(19b),(19b)との間の傾斜部によって引
き摺られる。一方、凹溝(19)内の空気は傾斜部の側
壁に押し付けられ、その屈曲部(19a)を境にして両
端部(19b),(19b)に位置するギャップ(G)
の開口へ向かって押し出される。この押出し作用で凹溝
(19)内の圧力が下がると、引き続いてエアギャップ
(G)の空気が凹溝(19)内へ流入するので、エアギ
ャップ(G)内の圧力も下がる。ロータ(2)の回転数
が上昇するのに伴って、凹溝(19)による排気作用は
さらに大きくなり、超高速回転状態においてはエアギャ
ップ(G)内の圧力が大気圧よりも低いレベルまで降下
し、そこでの空気密度を十分に低下できる。従って、空
気の粘性剪断による風損を無視できる程度にまで低減で
き、モータを超高速度で回転させることができる。
Therefore, in this embodiment, the rotor (2
) rotates, the air present in the air gap (G) is dragged by the slope between the bent corner (19a) and both ends (19b), (19b) of each groove (19). . On the other hand, the air in the groove (19) is pressed against the side wall of the inclined part, and a gap (G) is formed at both ends (19b), (19b) with the bent part (19a) as a boundary.
is pushed towards the opening. When the pressure in the groove (19) decreases due to this extrusion action, the air in the air gap (G) subsequently flows into the groove (19), so the pressure in the air gap (G) also decreases. As the rotational speed of the rotor (2) increases, the exhaust action by the groove (19) becomes even greater, and in ultra-high speed rotation, the pressure in the air gap (G) reaches a level lower than atmospheric pressure. can descend and reduce the air density there sufficiently. Therefore, windage loss due to viscous shear of air can be reduced to a negligible extent, and the motor can be rotated at an extremely high speed.

【0019】また、ステータ(4)の内部に整形スリー
ブ(17)が装着されているので、ステータ(4)の内
周側にコイル(16)装填用の溝が開口していても、そ
の溝の影響を抑制することができ、連続凹凸面(18)
による排気作用を有効に維持することができる。
Furthermore, since the shaping sleeve (17) is installed inside the stator (4), even if the groove for loading the coil (16) is opened on the inner circumferential side of the stator (4), the groove is Continuous uneven surface (18)
The exhaust action can be maintained effectively.

【0020】尚、上記実施例では、ロータ(2)の外周
面に連続凹凸面(18)を設けたが、連続凹凸面(18
)は整形スリーブ(17)の中心孔(17a)内周面(
ステータ(4)の内周面)に設けることもできる。この
ステータ(4)側に連続凹凸面(18)を設ける場合は
、図4(b)に示すように、凹溝(19)(又は凸条)
の屈曲方向を上記ロータ(2)外周面に設ける凹溝(1
9)の屈曲方向とは逆向きにして、屈曲角部(19a)
が両端部(19b),(19b)よりも回転方向後側に
ずれるよう屈曲させる。こうすることにより、ロータ(
2)が超高速で回転する状態で、エアギャップ(G)内
の気体がロータ(2)に引き摺られてこれと同じ方向へ
高速で流動し、連続凹凸面(18)における凸条或いは
凹溝(19),(19),…の各々に衝突すると、この
気体は凸条或いは凹溝(19)における傾斜部に案内さ
れてギャップ(G)開口の側へ押し出される。 よってエアギャップ(G)内の気体を十分に稀薄にして
気体密度を低下することができる。
In the above embodiment, the continuous uneven surface (18) was provided on the outer peripheral surface of the rotor (2), but the continuous uneven surface (18)
) is the inner peripheral surface (
It can also be provided on the inner peripheral surface of the stator (4). When providing a continuous uneven surface (18) on the stator (4) side, as shown in FIG.
A concave groove (1) provided on the outer circumferential surface of the rotor (2)
The bent corner (19a) is opposite to the bending direction of 9).
is bent so that it is deviated from both ends (19b), (19b) to the rear side in the rotational direction. By doing this, the rotor (
2) rotates at an extremely high speed, the gas in the air gap (G) is dragged by the rotor (2) and flows at high speed in the same direction as the rotor (2), causing convex lines or concave grooves on the continuous uneven surface (18). When the gas collides with each of (19), (19), . . . , it is guided by the slope of the protruding strip or groove (19) and is pushed out toward the gap (G) opening side. Therefore, the gas in the air gap (G) can be sufficiently diluted to reduce the gas density.

【0021】さらには、連続凹凸面(18)をロータ(
2)の外周面と整形スリーブ(17)の中心孔(17a
)内周面(ステータ(4)内周面)との双方に設けるこ
ともできる。この場合、エアギャップ(G)からの排気
効果が相乗的に増大して、より一層高い速度でロータ(
2)を回転させることができる。
Furthermore, the continuous uneven surface (18) is attached to the rotor (
2) and the center hole (17a) of the orthopedic sleeve (17).
) and the inner circumferential surface (the inner circumferential surface of the stator (4)). In this case, the exhaust effect from the air gap (G) increases synergistically and the rotor (
2) can be rotated.

【0022】連続凹凸面(18)は上記実施例の如き凹
溝(19),(19),…以外に、円周面に多数の屈曲
状凸条を円周方向に連続して固定することで形成するこ
ともできる。さらに、凹溝及び凸条は展開状態において
必ずしも屈曲角部(19a)以外の部分が直線状である
必要はなく、全体が弧状に屈曲していてもよい。
In addition to the concave grooves (19), (19), . . . as in the above embodiments, the continuous uneven surface (18) has a large number of curved protrusions continuously fixed in the circumferential direction on the circumferential surface. It can also be formed with. Further, in the unfolded state, the grooves and the protrusions do not necessarily have to be linear in portions other than the bent corners (19a), and the entirety may be bent in an arc shape.

【0023】また、この発明は、上記実施例のようなモ
ータ以外に発電機等の他の電気回転機にも広く適用でき
る。
Furthermore, the present invention can be widely applied to other electric rotating machines such as generators, in addition to the motors of the above embodiments.

【0024】[0024]

【発明の効果】以上説明したように、請求項1、2又は
3の発明によると、ロータの外周面とステータの内周面
の少なくともいずれか一方を連続凹凸面で形成し、連続
凹凸面を形成する凸条或いは凹溝を略く字状に屈曲して
、ロータが超高速で回転するとき、エアギャップ内の気
体が上記凸条或いは凹溝によって強制的に排気されるよ
うにしたことにより、超高速回転時におけるエアギャッ
プ内の気体密度を十分に低下させて見掛け上の気体粘度
を下げることができ、これにより、気体の粘性剪断によ
る損失を殆ど無視できる程度にまで低減して、電気回転
機の超高速化を実現できる。
As explained above, according to the invention of claim 1, 2 or 3, at least one of the outer circumferential surface of the rotor and the inner circumferential surface of the stator is formed with a continuous uneven surface. The formed protrusions or grooves are bent into a substantially dogleg shape so that when the rotor rotates at ultra-high speed, the gas in the air gap is forcibly exhausted by the protrusions or grooves. , it is possible to sufficiently reduce the gas density in the air gap during ultra-high-speed rotation and lower the apparent gas viscosity, which reduces the loss due to viscous shear of the gas to an almost negligible level, making it possible to It is possible to achieve ultra-high speed rotating machines.

【0025】また、請求項4の発明によれば、断面円形
の中心孔を備えた整形スリーブをステータ内に装着して
、その中心孔内周面をステータ内周面としたので、ステ
ータの内周側にコイル装填用の溝が開口していても、そ
の溝の影響を抑制することができ、連続凹凸面による排
気作用を有効に維持することができる。
According to the fourth aspect of the invention, the shaping sleeve having the center hole having a circular cross section is mounted inside the stator, and the inner peripheral surface of the center hole is used as the inner peripheral surface of the stator. Even if a coil loading groove is opened on the circumferential side, the influence of the groove can be suppressed, and the exhaust effect due to the continuous uneven surface can be effectively maintained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例に係る超高速モータの要部を示
す断面図である。
FIG. 1 is a cross-sectional view showing essential parts of an ultrahigh-speed motor according to an embodiment of the present invention.

【図2】超高速モータの概略構造を示す縦縦断図である
FIG. 2 is a longitudinal cross-sectional view showing a schematic structure of an ultra-high-speed motor.

【図3】エアギャップ及びその周辺の構造体を示す要部
断面図である。
FIG. 3 is a sectional view of a main part showing an air gap and a structure around the air gap.

【図4】連続凹凸面の展開形状を示す説明図である。FIG. 4 is an explanatory diagram showing a developed shape of a continuous uneven surface.

【符号の説明】[Explanation of symbols]

(2)…ロータ (4)…ステータ (17)…整形スリーブ (17a)…中心孔 (18)…連続凹凸面 (19)…凹溝 (G)…エアギャップ (2)...Rotor (4)...Stator (17)…Orthopedic sleeve (17a)...center hole (18)...Continuous uneven surface (19)...concave groove (G)...Air gap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  ステータ(4)と、該ステータ(4)
の内部に回転可能に支持され、外周面がステータ(4)
の内周面にエアギャップ(G)を介して対向配置された
ロータ(2)とを備えた超高速電気回転機であって、ロ
ータ(2)外周面が円周方向へ多数の凸条又は凹溝(1
9),(19),…の連続する連続凹凸面(18)で構
成されており、連続凹凸面(18)を構成する凸条ない
し凹溝(19),(19),…の各々は、ロータ軸線方
向の中間部が両端部に対しロータ回転方向前側にずれる
ように略く字状に屈曲されている超高速電気回転機。
Claim 1: A stator (4) and the stator (4).
is rotatably supported inside the stator (4), and the outer peripheral surface is the stator (4).
An ultra-high-speed electric rotating machine comprising a rotor (2) disposed opposite to each other on the inner circumferential surface of the rotor (2) through an air gap (G), the outer circumferential surface of the rotor (2) having a large number of protrusions or stripes in the circumferential direction. Concave groove (1
It is composed of a continuous uneven surface (18) of 9), (19), ..., and each of the protrusions or grooves (19), (19), ... constituting the continuous uneven surface (18) is An ultra-high-speed electric rotating machine in which the middle part of the rotor in the axial direction is bent in a substantially dogleg shape so that it is shifted forward in the rotor rotational direction with respect to both ends.
【請求項2】  ステータ(4)と、該ステータ(4)
の内部に回転可能に支持され、外周面がステータ(4)
の内周面にエアギャップ(G)を介して対向配置された
ロータ(2)とを備えた超高速電気回転機であって、ス
テータ(4)内周面が円周方向へ多数の凸条又は凹溝(
19),(19),…の連続する連続凹凸面(18)で
構成されており、連続凹凸面(18)を構成する凸条な
いし凹溝(19),(19),…の各々は、ロータ軸線
方向の中間部が両端部に対しロータ回転方向後側にずれ
るように略く字状に屈曲されている超高速電気回転機。
Claim 2: A stator (4) and the stator (4).
is rotatably supported inside the stator (4), and the outer peripheral surface is the stator (4).
An ultra-high-speed electric rotating machine comprising a rotor (2) disposed opposite to each other on the inner circumferential surface of the stator (4) through an air gap (G), the inner circumferential surface of the stator (4) having a large number of protrusions in the circumferential direction. or concave groove (
It is composed of a continuous uneven surface (18) of 19), (19), ..., and each of the protrusions or grooves (19), (19), ... constituting the continuous uneven surface (18) is An ultra-high-speed electric rotating machine in which the middle part of the rotor in the axial direction is bent in a substantially dogleg shape so that it is shifted rearward in the rotor rotational direction with respect to both ends.
【請求項3】  ステータ(4)内周面が円周方向へ多
数の凸条又は凹溝(19),(19),…の連続する連
続凹凸面(18)で構成されており、連続凹凸面(18
)を構成する凸条ないし凹溝(19),(19),…の
各々は、ロータ軸線方向の中間部が両端部に対しロータ
回転方向後側にずれるように略く字状に屈曲されている
請求項1記載の超高速電気回転機。
Claim 3: The inner circumferential surface of the stator (4) is composed of a continuous uneven surface (18) having a large number of protrusions or grooves (19), (19), ... in the circumferential direction, and has continuous unevenness. Face (18
), each of the convex grooves or concave grooves (19), (19), ... is bent into a substantially doglegged shape such that the middle part in the rotor axis direction is shifted rearward in the rotor rotational direction with respect to both ends. The ultra high-speed electric rotating machine according to claim 1.
【請求項4】  ステータ(4)の内部に、断面円形状
の中心孔(17a)を備えた整形スリーブ(17)が装
着されており、この整形スリーブ(17)の中心孔(1
7a)内周面でステータ(4)の内周面が構成されてい
る請求項1、2又は3記載の超高速電気回転機。
4. A shaping sleeve (17) having a center hole (17a) with a circular cross section is installed inside the stator (4).
7a) The ultra-high-speed electric rotating machine according to claim 1, 2 or 3, wherein the inner circumferential surface of the stator (4) is constituted by the inner circumferential surface of the stator (4).
JP13897591A 1991-06-11 1991-06-11 Super high speed electric rotating machine Withdrawn JPH04364342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13897591A JPH04364342A (en) 1991-06-11 1991-06-11 Super high speed electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13897591A JPH04364342A (en) 1991-06-11 1991-06-11 Super high speed electric rotating machine

Publications (1)

Publication Number Publication Date
JPH04364342A true JPH04364342A (en) 1992-12-16

Family

ID=15234549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13897591A Withdrawn JPH04364342A (en) 1991-06-11 1991-06-11 Super high speed electric rotating machine

Country Status (1)

Country Link
JP (1) JPH04364342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1026022B1 (en) * 2018-02-15 2019-09-16 Euro Diesel S A Energy accumulator and method of manufacturing a drum for a kinetic energy accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1026022B1 (en) * 2018-02-15 2019-09-16 Euro Diesel S A Energy accumulator and method of manufacturing a drum for a kinetic energy accumulator

Similar Documents

Publication Publication Date Title
CN106026492B (en) A kind of super high speed motor
WO2001086151A3 (en) Magnetic bearing with damping
JP2003515038A (en) High speed turbo pump
JP2008232289A (en) Bearing device, and rotation driving device having the same
CN112803642A (en) Motor rotor and magnetic suspension motor
JPH04364342A (en) Super high speed electric rotating machine
CN116336078A (en) Natural electromagnetic magnetic suspension and pneumatic dynamic pressure suspension combined suspension shafting
JPS59230453A (en) Axial air gap type induction motor
KR100453331B1 (en) Fluid dynamic bearing spindle motor
CN112974867A (en) Air floatation electric spindle and drilling machine
JP2000308301A (en) Motor-operated blower
JP4438195B2 (en) Turbo molecular pump
CN214380360U (en) Motor rotor and magnetic suspension motor
JP5290240B2 (en) Rotating device, turbo molecular pump
JP2571302Y2 (en) Cooling device for high-speed rotating electrical machines
CN220934937U (en) Front cover of solid rotor braking three-phase asynchronous motor
CN212690414U (en) Heat radiation fan
CN209805530U (en) Protection structure for rotor magnetic steel of electric fuel pump
JP6095389B2 (en) Rotor and elevator hoisting machine
CN209896814U (en) Wear-resisting anti-oxidant air pump motor
JP6658309B2 (en) Vacuum pump
JPH07170693A (en) Rotor of rotating electric machine
CN212726737U (en) Motor heat radiation structure
CN209823590U (en) High-speed fan motor and rotor thereof
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903