【考案の詳細な説明】[Detailed explanation of the idea]
〔産業上の利用分野〕
本考案は振動型ジヤイロに係り、特に温度ドリ
フトの改善を図つた振動型ジヤイロに関する。
〔従来の技術及び考案が解決しようとする問題
点〕
第7図は従来用いられている振動型ジヤイロの
一例を示すものである。この振動型ジヤイロは、
断面が方形をなす柱状の振動体1の各側面に圧電
体2を貼着し、その屈曲振動の節点部を細線3な
どで支持体4に支持するものであつて、被測定物
への取付部を有する外穀部材5と前記支持体4と
は別体に構成され、支持体4と振動体1とは略同
等の熱膨脹係数をもつ材料により形成されてい
る。
しかし乍ら上記従来例では、振動体1と支持台
4の熱膨脹係数が略等しいにも拘らず、振動ジヤ
イロとしての温度ドリフトが大きく、性能を安定
させることが難しい。
よつて本考案は、上述した従来の問題点に鑑
み、温度ドリフトが小さく、またその補償が容易
である高性能な振動型ジヤイロを提供することを
目的としている。
〔問題点を解決するための手段〕
上記目的を達するため本考案により成された振
動型ジヤイロは、振動体と、該振動体の振動の節
点に連結した支持ピンを介して前記振動体を支持
する支持台とを備える振動型ジヤイロにおいて、
前記振動体と前記支持台とを析出硬化型の恒弾性
材料により形成して両者の熱弾性係数を略等しく
したことを特徴としている。
〔作用〕
この構成により、熱膨張或いは熱収縮による振
動体及び支持台の弾性すなわち応力の温度依存性
による形状変化が同じように起こるので、両者を
単に熱膨張率の同じ材料で構成しただけでは解消
できない、振動体の振動周波数に与える温度の影
響を極力小さくし、温度補償を容易に行うことが
できるようになる。
〔実施例〕
第1図、第2図、第3図は本考案の振動型ジヤ
イロの正面図、平面図、側面図である。
図において箱型の外穀部材5内には制御回路基
板6と箱型の支持体4が収納されている。
第4図、第5図は支持体4と振動体1との関係
を示す断面図で、断面コ字状の支持体4には2本
の支持ピン7によつて振動体1が架設されてお
り、支持ピン7と振動体1との連結部は振動体1
の振動の節点である。振動体1の相対向する2つ
の側面には振動体1を駆動させるための圧電体
8,8が貼着され、この側面と直角方向の相対向
する2つの側面には検出用あるいはダンピング用
の圧電体9,9が貼着されている。そして支持体
4の開口部を閉鎖するように断面コ字状の薄肉の
枠体10が支持体4の外側に嵌着し、支持体4の
内部に振動体1を封入している。
上記振動型ジヤイロにあつて、振動体1及び支
持台4の材料としては、例えばエリンバー
(Elinvar),イソ・イラステツク(Iso−
Elastic),ビブラロイ(Vibralloy)等の恒弾性
材料が用いられ得るが、これら加工硬化型の恒弾
性材料は、恒弾性特性が磁気歪、内部歪、あるい
は化学成分の微妙な変化によつて大きく変化する
ため、安定した特性を得ることが容易ではない。
一方、一般にNi−SpanCとして知られている
恒弾性材料と同様の析出硬化型の恒弾性材料は、
析出物を熱処理によつて調整することにより、弾
性率の温度係数を任意の値に調整できる利点をも
つている。また機械的性質を時効処理によつて強
化するため、加工硬化型の合金と同様に熱弾性係
数及び機械的性質に方向性が少なく、振動体材料
として好適である。
実施例では、上記選択された恒弾性材料を用い
て振動体1及び支持台4を形成する。これによつ
て振動体1及び支持台4の熱弾性係数を同等にす
ることができる。
次に振動体1の振動周波数と温度との関係に
ついて説明する。
第6図の如き長方体形状の振動体1を例にとれ
ば、振動周波数は、
[Industrial Field of Application] The present invention relates to a vibrating gyro, and more particularly to a vibrating gyro with improved temperature drift. [Problems to be solved by conventional techniques and ideas] FIG. 7 shows an example of a conventionally used vibrating gyroscope. This vibrating gyroscope is
A piezoelectric material 2 is attached to each side of a columnar vibrating body 1 having a rectangular cross section, and the nodal points of the bending vibration are supported on a support 4 using thin wires 3, etc. The outer grain member 5 and the support body 4 are constructed separately, and the support body 4 and the vibrating body 1 are made of materials having substantially the same coefficient of thermal expansion. However, in the conventional example described above, although the coefficients of thermal expansion of the vibrating body 1 and the support base 4 are substantially equal, the temperature drift as a vibrating gyroscope is large and it is difficult to stabilize the performance. SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to provide a high-performance vibrating gyroscope that has small temperature drift and is easy to compensate for. [Means for Solving the Problems] In order to achieve the above object, the vibrating gyroscope according to the present invention includes a vibrating body and supporting the vibrating body via a support pin connected to a vibration node of the vibrating body. In a vibrating gyroscope equipped with a support stand,
It is characterized in that the vibrating body and the support base are formed of a precipitation hardening type constant elastic material so that their thermoelastic coefficients are approximately equal. [Function] With this configuration, the shape change due to the temperature dependence of the elasticity of the vibrating body and the support base due to thermal expansion or thermal contraction, that is, the stress, occurs in the same way. It becomes possible to minimize the influence of temperature on the vibration frequency of the vibrating body, which cannot be eliminated, and to easily perform temperature compensation. [Example] Figs. 1, 2, and 3 are a front view, a plan view, and a side view of the vibrating gyroscope of the present invention. In the figure, a control circuit board 6 and a box-shaped support body 4 are housed in a box-shaped shell member 5. 4 and 5 are cross-sectional views showing the relationship between the support body 4 and the vibrating body 1. The vibrating body 1 is mounted on the support body 4, which has a U-shaped cross section, by two support pins 7. The connecting portion between the support pin 7 and the vibrating body 1 is connected to the vibrating body 1.
It is a node of vibration. Piezoelectric bodies 8, 8 for driving the vibrating body 1 are attached to two opposing side surfaces of the vibrating body 1, and piezoelectric bodies 8, 8 for driving the vibrating body 1 are attached to two opposing side surfaces in a direction perpendicular to these sides. Piezoelectric bodies 9, 9 are attached. A thin frame 10 having a U-shaped cross section is fitted on the outside of the support 4 so as to close the opening of the support 4, and the vibrating body 1 is enclosed within the support 4. In the above-mentioned vibrating gyroscope, the materials of the vibrating body 1 and the support base 4 include, for example, Elinvar, Iso-Illustek, etc.
Constant-modulus materials such as Elastic and Vibralloy can be used, but the constant-modulus properties of these work-hardened constant-modulus materials vary greatly due to magnetostriction, internal strain, or subtle changes in chemical components. Therefore, it is not easy to obtain stable characteristics. On the other hand, a precipitation-hardened constant modulus material similar to the constant modulus material commonly known as Ni-SpanC is
By adjusting the precipitates through heat treatment, it has the advantage that the temperature coefficient of elastic modulus can be adjusted to an arbitrary value. In addition, since the mechanical properties are strengthened by aging treatment, the thermoelastic coefficient and mechanical properties have little directionality, similar to work-hardening alloys, and are suitable as vibrating body materials. In the embodiment, the vibrating body 1 and the support base 4 are formed using the constant elasticity material selected above. Thereby, the thermoelastic coefficients of the vibrating body 1 and the support base 4 can be made equal. Next, the relationship between the vibration frequency and temperature of the vibrating body 1 will be explained. Taking the rectangular rectangular vibrating body 1 as shown in FIG. 6 as an example, the vibration frequency is
〔考案の効果〕[Effect of idea]
本考案は以上の如くであり、振動体、支持体の
熱弾性係数を略等しくしたため、振動体の振動周
波数に対する温度の影響が小さく、また温度セン
サ等を用いて温度補償を容易に行うことができる
ものである。
The present invention is as described above, and since the thermoelastic coefficients of the vibrating body and the support body are approximately equal, the influence of temperature on the vibration frequency of the vibrating body is small, and temperature compensation can be easily performed using a temperature sensor, etc. It is possible.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図、第2図、第3図は本考案実施例の正面
図、平面図、側面図、第4図は振動ジヤイロ要部
の断面図、第5図は振動ジヤイロ要部の半断面
図、第6図a,bは振動体の正面図及び側面図、
第7図は従来例の斜視図である。
1……振動体、4……支持体。
Figures 1, 2, and 3 are a front view, plan view, and side view of the embodiment of the present invention, Figure 4 is a sectional view of the main part of the vibrating gyro, and Figure 5 is a half sectional view of the main part of the vibrating gyro. , FIGS. 6a and 6b are a front view and a side view of the vibrating body,
FIG. 7 is a perspective view of a conventional example. 1... vibrating body, 4... support body.