JPH04363649A - Defect inspection method of optical information recording medium - Google Patents

Defect inspection method of optical information recording medium

Info

Publication number
JPH04363649A
JPH04363649A JP17878391A JP17878391A JPH04363649A JP H04363649 A JPH04363649 A JP H04363649A JP 17878391 A JP17878391 A JP 17878391A JP 17878391 A JP17878391 A JP 17878391A JP H04363649 A JPH04363649 A JP H04363649A
Authority
JP
Japan
Prior art keywords
recording medium
information recording
focus error
optical information
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17878391A
Other languages
Japanese (ja)
Other versions
JP3057211B2 (en
Inventor
Noboru Sasa
登 笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3178783A priority Critical patent/JP3057211B2/en
Publication of JPH04363649A publication Critical patent/JPH04363649A/en
Application granted granted Critical
Publication of JP3057211B2 publication Critical patent/JP3057211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect an optical defect and a coating defect by taking out only a low frequency component of a focus error signal at an arbitrary point on an optical information recording medium to make it a reference signal and comparing the reference signal with the low frequency component of the focus error signal at each position. CONSTITUTION:An optical system is controlled so that a laser beam is either focused or brought in a state near a focus and only the low frequency component of a focus error signal at this point of time is taken out to make it a reference signal. A recording medium is scanned to detect only the low frequency component of the focus error signal, which is compared with the reference signal to perform the detection of a defect. Since the focus error signal indicates a defocus quantity caused by the thickness, the inclination, the change of a refraction factor and the like of the optical information recording medium, a flaw, thickness unevenness, the inclination, the optical defect and coating nonuniformity of a board can be detected with the use of the focus error signal. The high frequency component of the focus error signal is cut off so as not to detect the face deflection of the board and the like in the range without any problem is use and the judgement of the defect is performed with the use of only the low frequency component.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光情報記録媒体の欠陥検
査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection method for optical information recording media.

【0002】0002

【従来の技術及び発明が解決しようとする課題】従来の
光情報記録媒体の欠陥を検査する方法としては、タング
ステンハロゲンランプや水銀灯による透過光、反射光の
変化をCCDイメージセンサにより検出する方法、ある
いはレーザ光による透過光、反射光、回折光、散乱光量
の変化をフォトディテクターにより検出する方法などが
ある。
[Background Art and Problems to be Solved by the Invention] Conventional methods for inspecting optical information recording media for defects include a method in which a CCD image sensor detects changes in transmitted light and reflected light from a tungsten halogen lamp or a mercury lamp; Alternatively, there is a method of detecting changes in the amount of transmitted light, reflected light, diffracted light, and scattered light by a laser beam using a photodetector.

【0003】タングステンハロゲンランプ、水銀灯によ
る照射を行いCCDイメージセンサを利用する検査方法
は、全面走査時間が短かいという利点があるが、欠陥の
検出感度はあまり高くない。一方、レーザ光照射による
方法では上記の方法に比べて高感度となりえると言う利
点がある。このレーザ光による欠陥検査方法としては、
スパイラル走査法、ポリゴンミラーを用いた走査法等が
あるが、コスト的にみてスパイラル走査が一般的といえ
る。このレーザ光のスパイラル走査では通常走査タクト
との絡みでレーザ光のビーム径を数十μmオーダーにし
ている。この数十μmというビーム径は比較的大きな欠
陥を検出するには十分であるが、例えば明暗のコントラ
ストの低い欠陥、あるいはビーム径に比べて微小な欠陥
についてはレーザ光による透過光、反射光、回折光、散
乱光量の変化を利用する場合必ずしも十分な検出感度が
あるとは言えない。
Inspection methods that use irradiation with a tungsten halogen lamp or a mercury lamp and use a CCD image sensor have the advantage of short overall scanning time, but the defect detection sensitivity is not very high. On the other hand, the method using laser light irradiation has the advantage of higher sensitivity than the above methods. This defect inspection method using laser light is as follows:
There are spiral scanning methods, scanning methods using polygon mirrors, etc., but spiral scanning is the most common in terms of cost. In this spiral scanning of laser light, the beam diameter of the laser light is usually on the order of several tens of micrometers due to the scanning tact. This beam diameter of several tens of micrometers is sufficient to detect relatively large defects, but for example, defects with low contrast between light and dark, or defects that are minute compared to the beam diameter, can be detected using transmitted light, reflected light, etc. When using changes in the amount of diffracted light or scattered light, it cannot be said that there is necessarily sufficient detection sensitivity.

【0004】このような明暗のコントラストの低い欠陥
やビーム径に比べて微小な欠陥で実際の記録、再生時に
欠陥となるようなものは、欠陥信号の閾値を下げてやれ
ばよいが、この状態では微小欠陥信号レベルと雑音レベ
ル(欠陥無の信号レベル)の間のマージンが少なくなっ
てしまい、誤検出の恐れが出てしまう。又、レーザ光の
ビーム径を絞ることにより欠陥検出感度を上げることが
できるが、この方法は検査時間との絡みである程度の制
限を受けてしまう。
[0004] For such defects with low contrast between light and dark or defects that are minute compared to the beam diameter and become defects during actual recording and reproduction, it is possible to lower the threshold of the defect signal, but in this state In this case, the margin between the minute defect signal level and the noise level (signal level without a defect) becomes small, and there is a risk of erroneous detection. Furthermore, although it is possible to increase the defect detection sensitivity by narrowing down the beam diameter of the laser beam, this method is subject to certain limitations due to the inspection time.

【0005】更に、例えば基板の複屈折異常の欠陥を検
査する場合、ハードコート層の塗りむらを検査する場合
、色素等の記録膜の塗布むらを検査する場合等は、従来
の欠陥検査方法ではほとんどそれらの欠陥の検出が不可
能であった。
Furthermore, when inspecting defects such as birefringence abnormality of a substrate, coating unevenness of a hard coat layer, coating unevenness of a recording film such as a dye, etc., conventional defect inspection methods cannot be used. It was almost impossible to detect those defects.

【0006】本発明はこのような従来技術の実情に鑑み
てなされたもので、光学的欠陥や、塗布むら欠陥(膜厚
分布の不均一な欠陥)などの従来検出不可能であった欠
陥も検出できる検査方法を提供することを目的とする。
The present invention has been made in view of the actual state of the prior art, and can detect defects that were previously undetectable, such as optical defects and coating unevenness defects (defects with uneven film thickness distribution). The purpose is to provide an inspection method that can detect this.

【0007】[0007]

【課題を解決するための手段及び作用】前記課題は、レ
ーザ光の走査で光情報記録媒体の欠陥検査を行なう方法
において、フォーカスエラー信号の低周波成分のみを取
り出す手段を設け、ある任意の位置でレーザ光を光情報
記録媒体に合焦もしくは合焦に近い状態になるように光
学系を制御させ、その時点でのフォーカスエラー信号の
低周波成分を前記手段により予め求めておいて基準信号
とし、前記手段により得られる各位置でのフォーカスエ
ラー信号の低周波成分と前記フォーカスエラー信号の低
周波成分基準信号とを比較することにより欠陥の検出を
行なうことを特徴とする光情報記録媒体の欠陥検査方法
により解決される。
[Means and effects for solving the problem] The above problem is to provide a method for inspecting defects of an optical information recording medium by scanning a laser beam, by providing a means for extracting only the low frequency component of a focus error signal, and by detecting a certain arbitrary position. The optical system is controlled so that the laser beam is focused or nearly focused on the optical information recording medium, and the low frequency component of the focus error signal at that point is determined in advance by the above means and used as a reference signal. , a defect in an optical information recording medium, characterized in that the defect is detected by comparing the low frequency component of the focus error signal at each position obtained by the means with a low frequency component reference signal of the focus error signal. The problem is solved by the inspection method.

【0008】また、前記課題は、レーザ光の走査で光情
報記録媒体の欠陥検査を行なう方法において、レーザ光
のビーム径をトラックピッチの2倍以上に設定し、フォ
ーカスエラー信号の低周波成分のみを取り出す手段を設
け、ある任意の位置でレーザ光を光情報記録媒体に合焦
もしくは合焦に近い状態になるようにフォーカスサーボ
系を制御させ、その時点でのフォーカスエラー信号の低
周波成分を前記手段により予め求めておいて基準信号と
し、その後フォーカスサーボ系をオフ状態とし光学系を
固定して、前記手段により得られる各位置でのフォーカ
スエラー信号の低周波成分と前記フォーカスエラー信号
の低周波成分基準信号とを比較することにより欠陥の検
出を行なうことを特徴とする光情報記録媒体の欠陥検査
方法により解決される。
[0008] Furthermore, the above-mentioned problem is solved in a method of inspecting optical information recording media for defects by scanning a laser beam, in which the beam diameter of the laser beam is set to more than twice the track pitch, and only the low frequency component of the focus error signal is detected. The focus servo system is controlled so that the laser beam is focused or nearly focused on the optical information recording medium at a certain arbitrary position, and the low frequency component of the focus error signal at that point is A reference signal is obtained in advance by the means, and then the focus servo system is turned off and the optical system is fixed, and the low frequency component of the focus error signal at each position obtained by the means and the low frequency component of the focus error signal are The problem is solved by a defect inspection method for an optical information recording medium, which is characterized in that defects are detected by comparing frequency component reference signals.

【0009】以下、本発明について図面をもって説明す
る。従来の欠陥検査方法は、前にも説明したように欠陥
検査時間と欠陥検出感度の関係により通常数十ミクロン
というビーム径のものを使用し、光の透過、反射、回折
光等の光量変化を検出している。この方法で欠陥検査を
行なう場合、その検出感度はやはりビーム径と同等以上
のものとなってしまう。これに対し、本発明はビーム径
を1ミクロン程度(トラックピッチ1.6ミクロン程度
の場合)あるいは数トラック分の大きさに絞り、その状
態でフォーカスエラー信号の低周波成分により欠陥検査
を行なうものである。
The present invention will be explained below with reference to the drawings. As explained earlier, conventional defect inspection methods usually use beams with a diameter of several tens of microns due to the relationship between defect inspection time and defect detection sensitivity, and detect changes in the amount of light such as transmitted, reflected, and diffracted light. Detected. When performing defect inspection using this method, the detection sensitivity is still equal to or greater than the beam diameter. In contrast, the present invention narrows down the beam diameter to about 1 micron (in the case of a track pitch of about 1.6 microns) or the size of several tracks, and then performs defect inspection using the low frequency component of the focus error signal. It is.

【0010】本発明の請求項1に記載の方法では、まず
最初に任意の位置、例えば欠陥検査開始位置でフォーカ
スインさせ、合焦状態あるいは合焦に近い状態に光学系
を制御させる。もし最初に選んだ任意の位置で合焦状態
もしくは合焦に近い状態にならなかった場合は、他の任
意の位置で合焦させ、その位置でのフォーカスエラー信
号の低周波成分を取り込み、走査開始位置へと移動させ
ればよい。そして光情報記録媒体を走査し、フォーカス
エラー信号の低周波成分のみを検出し、前記フォーカス
エラー低周波成分基準信号と比較して欠陥の検出を行な
う。フォーカスエラー信号により欠陥の検出が行なえる
のは、フォーカスエラー信号が光情報記録媒体の厚み、
傾き、屈折率の変化等によるデフォーカス量を示すから
である(図1参照)。したがって、このフォーカスエラ
ー信号を用いることにより、基板のキズ、厚みムラ、傾
き、光学的欠陥、更に光情報記録媒体構成層の塗布ムラ
も検出できる。但し、通常の使用上問題のない範囲の基
板の面振れ等も検出してしまう恐れがある。そこで、本
発明ではフォーカスエラー信号の高周波成分をカット、
つまり欠陥として拾って困るフォーカスエラー信号の成
分を除外し、フォーカスエラー信号の低周波成分のみで
欠陥の判定をするようにしている(図2参照)。フォー
カスエラー信号の低周波成分のみを検出する回路は既知
の回路技術で構成可能である。
In the method according to claim 1 of the present invention, first, focus is brought into focus at an arbitrary position, for example, a defect inspection start position, and the optical system is controlled to be in a focused state or a state close to being in focus. If it is not in focus or close to focus at the first arbitrary position, focus at another arbitrary position, capture the low frequency component of the focus error signal at that position, and scan. Just move it to the starting position. Then, the optical information recording medium is scanned, only the low frequency component of the focus error signal is detected, and defects are detected by comparing it with the focus error low frequency component reference signal. Defects can be detected using the focus error signal because the focus error signal is based on the thickness of the optical information recording medium,
This is because it indicates the amount of defocus due to changes in tilt, refractive index, etc. (see FIG. 1). Therefore, by using this focus error signal, it is possible to detect scratches, thickness unevenness, tilt, optical defects of the substrate, and even coating unevenness of the layers constituting the optical information recording medium. However, there is a risk that surface deflection of the substrate, etc., which is not a problem in normal use, may be detected. Therefore, in the present invention, the high frequency component of the focus error signal is cut,
In other words, components of the focus error signal that are difficult to detect as defects are excluded, and defects are determined only based on the low frequency components of the focus error signal (see FIG. 2). A circuit that detects only the low frequency component of the focus error signal can be constructed using known circuit technology.

【0011】このように、本発明により従来の欠陥検査
方法では検出できなかった微小な欠陥の検出が可能とな
る。勿論、異物、ピンホール等の大きな欠陥、あるいは
従来法で欠陥検出可能な欠陥についてもフォーカスエラ
ー信号の低周波成分を検出することにより検出できる。
As described above, the present invention makes it possible to detect minute defects that could not be detected using conventional defect inspection methods. Of course, large defects such as foreign objects and pinholes, or defects that can be detected using conventional methods, can also be detected by detecting the low frequency component of the focus error signal.

【0012】更に、本発明ではビットエラーレイトとの
対応を良くするため、反射及び透過光量の検出系を必要
に応じて付加してもよい。但し、この場合はそれらの検
出系にプリピット等による光量変化を補償する手段を設
けなければならない。
Furthermore, in the present invention, in order to improve the correspondence with the bit error rate, a detection system for the amount of reflected and transmitted light may be added as necessary. However, in this case, means for compensating for changes in light amount due to pre-pits etc. must be provided in the detection system.

【0013】また、本発明では、高速に光情報記録媒体
の欠陥を検査するため、図3,4に示すような振動走査
法あるいは図5に示すようなスキップ走査法を用いるこ
とができる。
Furthermore, in the present invention, in order to inspect the optical information recording medium for defects at high speed, a vibration scanning method as shown in FIGS. 3 and 4 or a skip scanning method as shown in FIG. 5 can be used.

【0014】例えば、従来のレーザ走査の場合のレーザ
ビーム径を30ミクロンとすると、本発明方法における
振動走査は30ミクロンの範囲で行なえば従来法以上の
感度が得られる。また、振動の周波数をあげれば(l1
を小さくすれば)、更に感度の向上が望める。更に、走
査時間との絡みはあるが振動の範囲を狭めれば感度が高
まる。つまり従来法と同じ検査時間で、従来法以上の欠
陥検出感度が得られる。
For example, if the diameter of the laser beam in conventional laser scanning is 30 microns, vibration scanning in the method of the present invention can be performed in a range of 30 microns to obtain a sensitivity higher than that of the conventional method. Also, if the frequency of vibration is increased (l1
), further improvement in sensitivity can be expected. Furthermore, although it is related to scanning time, sensitivity can be increased by narrowing the range of vibration. In other words, with the same inspection time as the conventional method, defect detection sensitivity greater than that of the conventional method can be obtained.

【0015】スキップ走査法を用いる場合も図5に示す
ようにスキップの間隔l2を30ミクロンとすれば、あ
るいはある程度狭くスキップをとれば従来法と同じ検査
時間で従来法以上の欠陥検出感度が得られる。欠陥検出
のためのスレッシュレベルはランド−グルーブ間の深さ
、プリピットのみぞ深さによるフォーカスエラー信号の
変動範囲よりも高いレベルに設定すれば良い。
Even when using the skip scanning method, if the skip interval l2 is set to 30 microns as shown in FIG. 5, or if the skip is narrowed to a certain extent, defect detection sensitivity higher than that of the conventional method can be obtained with the same inspection time as the conventional method. It will be done. The threshold level for defect detection may be set to a level higher than the variation range of the focus error signal depending on the land-groove depth and the pre-pit groove depth.

【0016】但し、スキップ走査法を用いる場合は、フ
ォーカスエラーの検出法として非点収差法、ナイフエッ
ジ法を用いることができる。一方、振動走査法又は数ト
ラックにまたがるようなビーム径を使用する場合は案内
溝、プリピットの影響をあまり受けないようにするため
ナイフエッジ法を用いるのが好ましい。
However, when using the skip scanning method, the astigmatism method or the knife edge method can be used as a focus error detection method. On the other hand, when using the vibration scanning method or a beam diameter that spans several tracks, it is preferable to use the knife edge method in order to avoid being affected by guide grooves and pre-pits.

【0017】このように、上記欠陥検査方法を用いるこ
とにより、通常の記録・再生時に影響がでてくる欠陥、
つまりビットエラーレイトに対応するような欠陥の検出
が高速に行なえる。
[0017] As described above, by using the above defect inspection method, defects that affect normal recording/playback,
In other words, defects corresponding to the bit error rate can be detected at high speed.

【0018】[0018]

【実施例】次に本発明の実施例を述べる。ポリカーボネ
ート基板の記録外内周部にインクジェットによる印字を
行い、この印字文字を覆うようにハードコート層(膜厚
:3μm)をスピンコート法により形成し、インクジェ
ット印字文字による糸引き状の膜厚むら欠陥を作った。 この欠陥を従来法のレーザ走査検査装置(透過光量検出
型)と本発明のフォーカスエラースキップ検査法を適用
した装置とで欠陥検出を行った。その結果を表1に示す
。なお、表中、A/Bは全欠陥数(B)に対する検出で
きた欠陥の数(A)を表す。
[Example] Next, an example of the present invention will be described. Inkjet printing is performed on the inner circumference outside the recording area of the polycarbonate substrate, and a hard coat layer (thickness: 3 μm) is formed using a spin coating method to cover the printed characters. created a defect. This defect was detected using a conventional laser scanning inspection device (transmitted light amount detection type) and a device to which the focus error skip inspection method of the present invention was applied. The results are shown in Table 1. In the table, A/B represents the number of detected defects (A) relative to the total number of defects (B).

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【発明の効果】本発明の光情報記録媒体の欠陥検査方法
を用いることにより従来法では欠陥検出が困難であった
欠陥を検出することができ、従来法よりもビットエラー
レイトに対応した欠陥検出が高速に感度良く行える。
Effects of the Invention: By using the defect inspection method for optical information recording media of the present invention, defects that were difficult to detect using conventional methods can be detected, and defects can be detected that corresponds to bit error rates better than conventional methods. can be performed at high speed and with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】フォーカスエラー信号とデフォーカス量の関係
を示す図である。
FIG. 1 is a diagram showing the relationship between a focus error signal and a defocus amount.

【図2】本発明方法の説明図である。FIG. 2 is an explanatory diagram of the method of the present invention.

【図3】振動走査法の説明図である。FIG. 3 is an explanatory diagram of a vibration scanning method.

【図4】振動走査法の説明図である。FIG. 4 is an explanatory diagram of a vibration scanning method.

【図5】スキップ走査法の説明図である。FIG. 5 is an explanatory diagram of a skip scanning method.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  レーザ光の走査で光情報記録媒体の欠
陥検査を行なう方法において、フォーカスエラー信号の
低周波成分のみを取り出す手段を設け、ある任意の位置
でレーザ光を光情報記録媒体に合焦もしくは合焦に近い
状態になるように光学系を制御させ、その時点でのフォ
ーカスエラー信号の低周波成分を前記手段により予め求
めておいて基準信号とし、前記手段により得られる各位
置でのフォーカスエラー信号の低周波成分と前記フォー
カスエラー信号の低周波成分基準信号とを比較すること
により欠陥の検出を行なうことを特徴とする光情報記録
媒体の欠陥検査方法。
1. In a method for inspecting defects in an optical information recording medium by scanning a laser beam, means is provided for extracting only the low frequency component of a focus error signal, and the laser beam is focused on the optical information recording medium at a certain arbitrary position. The optical system is controlled to be in focus or close to focus, and the low frequency component of the focus error signal at that point is determined in advance by the means described above and used as a reference signal. 1. A defect inspection method for an optical information recording medium, characterized in that defects are detected by comparing a low frequency component of a focus error signal with a low frequency component reference signal of the focus error signal.
【請求項2】  レーザ光の走査で光情報記録媒体の欠
陥検査を行なう方法において、レーザ光のビーム径をト
ラックピッチの2倍以上に設定し、フォーカスエラー信
号の低周波成分のみを取り出す手段を設け、ある任意の
位置でレーザ光を光情報記録媒体に合焦もしくは合焦に
近い状態になるようにフォーカスサーボ系を制御させ、
その時点でのフォーカスエラー信号の低周波成分を前記
手段により予め求めておいて基準信号とし、その後フォ
ーカスサーボ系をオフ状態とし光学系を固定して、前記
手段により得られる各位置でのフォーカスエラー信号の
低周波成分と前記フォーカスエラー信号の低周波成分基
準信号とを比較することにより欠陥の検出を行なうこと
を特徴とする光情報記録媒体の欠陥検査方法。
2. A method of inspecting an optical information recording medium for defects by scanning a laser beam, the beam diameter of the laser beam being set to twice or more the track pitch, and means for extracting only the low frequency component of the focus error signal. and controlling a focus servo system so that the laser beam is focused or nearly focused on the optical information recording medium at a certain arbitrary position,
The low frequency component of the focus error signal at that point is determined in advance by the above means and used as a reference signal, and then the focus servo system is turned off and the optical system is fixed, and the focus error at each position obtained by the above means is determined. 1. A defect inspection method for an optical information recording medium, characterized in that a defect is detected by comparing a low frequency component of the signal with a low frequency component reference signal of the focus error signal.
【請求項3】  レーザ光を光情報記録媒体上の欠陥検
査走査方向に対して垂直方向にスキップ走査させること
を特徴とする請求項1又は2に記載の光情報記録媒体の
欠陥検査方法。
3. The defect inspection method for an optical information recording medium according to claim 1, wherein the laser beam is skip-scanned in a direction perpendicular to the defect inspection scanning direction on the optical information recording medium.
【請求項4】  レーザ光を光情報記録媒体上の欠陥検
査走査方向に対して垂直方向に振動させることを特徴と
する請求項1又は2に記載の光情報記録媒体の欠陥検査
方法。
4. The defect inspection method for an optical information recording medium according to claim 1, wherein the laser beam is vibrated in a direction perpendicular to the defect inspection scanning direction on the optical information recording medium.
【請求項5】  光情報記録媒体によるレーザ光の反射
光を検出する検出系、又はレーザ光の透過光を検出する
検出系、又はその両者を用いることを特徴とする請求項
1〜4のうちのいずれか一項に記載の光情報記録媒体の
欠陥検査方法。
5. A detection system for detecting reflected light of a laser beam by an optical information recording medium, a detection system for detecting transmitted light of a laser beam, or both are used. The defect inspection method for an optical information recording medium according to any one of the above.
JP3178783A 1991-04-02 1991-06-24 Defect inspection method for optical information recording media Expired - Fee Related JP3057211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178783A JP3057211B2 (en) 1991-04-02 1991-06-24 Defect inspection method for optical information recording media

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-96421 1991-04-02
JP9642191 1991-04-02
JP3178783A JP3057211B2 (en) 1991-04-02 1991-06-24 Defect inspection method for optical information recording media

Publications (2)

Publication Number Publication Date
JPH04363649A true JPH04363649A (en) 1992-12-16
JP3057211B2 JP3057211B2 (en) 2000-06-26

Family

ID=26437635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178783A Expired - Fee Related JP3057211B2 (en) 1991-04-02 1991-06-24 Defect inspection method for optical information recording media

Country Status (1)

Country Link
JP (1) JP3057211B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091329A (en) * 2008-10-06 2010-04-22 Sumco Corp Laser scattering defect inspection system and laser scattering defect inspection method
US8007867B2 (en) 2005-08-30 2011-08-30 Panasonic Corporation Multilayered information recording medium and process for producing said multilayered information recording medium, and apparatus for producing multilayered information recording medium and screen constituting said production apparatus for producing multilayered information recording medium
TWI385661B (en) * 2004-07-21 2013-02-11 Panasonic Corp Multilayer information recording medium and method for manufacturing the same
US8472020B2 (en) * 2005-02-15 2013-06-25 Cinram Group, Inc. Process for enhancing dye polymer recording yields by pre-scanning coated substrate for defects

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385661B (en) * 2004-07-21 2013-02-11 Panasonic Corp Multilayer information recording medium and method for manufacturing the same
US8472020B2 (en) * 2005-02-15 2013-06-25 Cinram Group, Inc. Process for enhancing dye polymer recording yields by pre-scanning coated substrate for defects
US8007867B2 (en) 2005-08-30 2011-08-30 Panasonic Corporation Multilayered information recording medium and process for producing said multilayered information recording medium, and apparatus for producing multilayered information recording medium and screen constituting said production apparatus for producing multilayered information recording medium
JP2010091329A (en) * 2008-10-06 2010-04-22 Sumco Corp Laser scattering defect inspection system and laser scattering defect inspection method

Also Published As

Publication number Publication date
JP3057211B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6388744B1 (en) Disc-shaped recording medium inspection apparatus and method
JPH0575262B2 (en)
US4412743A (en) Off-axis light beam defect detector
JPH0243256B2 (en)
US4759007A (en) Storage medium track pitch detector
US5517485A (en) Optical information recording medium having first and second tracks and apparatus for recording to and reproducing from the medium
JPH01124129A (en) Replica base, stamper, or master disk for optical disk
JP3057211B2 (en) Defect inspection method for optical information recording media
JP4586260B2 (en) Surface defect inspection method for discrete track type magnetic storage media
JPH0154778B2 (en)
JPH0572143A (en) Inspection of defect of stamper
JPS58121147A (en) Optical information recording and reproducing device
JPS6057241A (en) Method and device for inspecting defect of discoid information recording medium
JPS62172536A (en) Optical information recording and reproducing method
JPH07286967A (en) Inspecting method and inspecting device for optical disk
JPS61104440A (en) Method and device for detecting deffect of recording medium with no contact
GB2126406A (en) Optical data retrieval system for multi-characteristic reflective data storage media
JP2927515B2 (en) Disk defect inspection method
JP3030424B2 (en) Defect inspection method for optical information recording media
JP2687928B2 (en) Optical disk media
JPH02147845A (en) Method for inspecting stamper for forming optical system information recording medium
JP3908925B2 (en) Optical information recording / reproducing method and optical information recording / reproducing apparatus
JPH0581974B2 (en)
JP3066533B2 (en) Optical information recording / reproducing device
JPS61104439A (en) Method and device for detecting defect of recording medium with no contact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees