JPH04363140A - Catalyst and its production - Google Patents

Catalyst and its production

Info

Publication number
JPH04363140A
JPH04363140A JP3010865A JP1086591A JPH04363140A JP H04363140 A JPH04363140 A JP H04363140A JP 3010865 A JP3010865 A JP 3010865A JP 1086591 A JP1086591 A JP 1086591A JP H04363140 A JPH04363140 A JP H04363140A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
temperature
present
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3010865A
Other languages
Japanese (ja)
Inventor
Toru Numaguchi
徹 沼口
Katsutoshi Kikuchi
菊地 克俊
Kozo Osaki
功三 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP3010865A priority Critical patent/JPH04363140A/en
Publication of JPH04363140A publication Critical patent/JPH04363140A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To efficiently produce a catalyst used for steam reforming of hydrocarbon, etc., using a heat resistant carrier such as alumina or silica and Ni as the principal catalytic component, having high activity and hardly undergoing deposition of carbon. CONSTITUTION:A soln. contg. Ni is impregnated into a catalyst carrier, dried and subjected to reduction treatment. The carrier is then heat-treated at 30-110 deg.C in a CO atmosphere and fired at 150-600 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は炭化水素等を水蒸気改質
して水素、一酸化炭素含有混合ガスを製造する等のため
に使用する、アルミナに代表される担体にニッケルを担
持させた触媒に関する。
[Industrial Application Field] The present invention is a catalyst in which nickel is supported on a support such as alumina, which is used for producing a mixed gas containing hydrogen and carbon monoxide by steam reforming hydrocarbons, etc. Regarding.

【0002】0002

【従来の技術及び発明が解決しようとする課題】炭化水
素等の水蒸気改質用としてアルミナ、シリカなどの耐熱
性担体を使用し、ニッケルを触媒活性の主成分とした触
媒を使用することは既に知られている。しかし、従来の
これらの触媒には活性をより高め炭素析出をより起こし
にくくすることが求められている。斯かる問題に対する
一つの解決策として、本出願人らは先に特願平2−16
4432号において、α−アルミナを主体とするアルミ
ナ多孔体に酸化ニッケルを担持させ、仕込みニッケルの
一部あるいは全部をニッケルアルミネートに変換した水
蒸気改質触媒を提案した。この触媒はニッケルの分散の
向上により上記問題を解決したとみられるものであるが
、更にその後検討した結果、ニッケルアルミネートの生
成に高温処理を要する点及び使用前のニッケルアルミネ
ートのニッケルへの還元に長時間を要する点に多少の問
題があった。
[Prior Art and Problems to be Solved by the Invention] It is already known to use a heat-resistant carrier such as alumina or silica for steam reforming of hydrocarbons, etc., and to use a catalyst containing nickel as the main component for catalytic activity. Are known. However, these conventional catalysts are required to have higher activity and to be less likely to cause carbon deposition. As a solution to this problem, the present applicants previously filed a patent application filed on 2-16
No. 4432 proposed a steam reforming catalyst in which nickel oxide was supported on an alumina porous material mainly composed of α-alumina, and part or all of the charged nickel was converted to nickel aluminate. This catalyst seems to have solved the above problem by improving the dispersion of nickel, but further studies revealed that high-temperature treatment was required to generate nickel aluminate and that nickel aluminate was reduced to nickel before use. There was some problem in that it took a long time.

【0003】0003

【課題を解決するための手段】この問題の解決につき本
発明者等は更に研究を進めた結果、本発明を完成するに
至った。即ち、本発明は触媒の担体に、ニッケルを含有
する溶液を含浸、乾燥させたのち、還元処理し、一酸化
炭素雰囲気下30〜110 ℃の温度で熱処理し、次い
で150〜600 ℃の温度で焼成した触媒、及び触媒
の担体に、ニッケルを含有する溶液を含浸、乾燥させた
のち、還元処理し、一酸化炭素雰囲気下30〜110 
℃の温度で熱処理し、次いで150 〜600 ℃の温
度で焼成することを特徴とする触媒の製法に関する。
[Means for Solving the Problems] As a result of further research into solving this problem, the present inventors have completed the present invention. That is, in the present invention, a catalyst carrier is impregnated with a solution containing nickel, dried, and then subjected to reduction treatment, heat treated at a temperature of 30 to 110 °C in a carbon monoxide atmosphere, and then heated at a temperature of 150 to 600 °C. The calcined catalyst and the catalyst carrier are impregnated with a nickel-containing solution, dried, and then subjected to a reduction treatment to a temperature of 30 to 110% in a carbon monoxide atmosphere.
The present invention relates to a method for producing a catalyst, which is characterized by heat treatment at a temperature of 150 to 600 °C, followed by calcination at a temperature of 150 to 600 °C.

【0004】本発明に適する担体は、SiO2、MgO
 、ZrO2、Al2O3 とSiO2の混合物、ゼオ
ライトなど各種挙げられるが、アルミナが代表的であり
、とりわけ高純度酸化アルミニウム多孔体で、見掛気孔
率50乃至80%、好ましくは50乃至70%の多孔組
織体であり、孔径0.1 乃至0.5 μm の範囲内
の細孔容積が0.2 ml/g以上であり、孔径0.5
 μm 以上10μm 以下の範囲内の細孔容積が0.
05ml/g以上であり、成分中に酸化アルミニウムを
98重量%以上含有するα−アルミナが好ましく用いら
れる。このような担体上に活性成分としてニッケルを与
えてから本発明特有の上記熱処理及び焼成を行うことに
より、ニッケルを酸化ニッケルに換算して触媒全体重量
中一般に3乃至20重量%、好ましくは5乃至15重量
%、特に好ましくは5乃至10重量%含有させると、炭
化水素等の水蒸気改質等に優れた性能を持つ本発明の触
媒が得られる。本発明による触媒の性能が優れるのは、
一酸化炭素による熱処理(以下CO処理と略記する)に
より、担持されているニッケル成分がニッケルカルボニ
ル化合物となり、次の焼成により担体上にニッケル金属
として高分散され、活性の高い微細ニッケル粒子が得ら
れるためと思われる。
Supports suitable for the present invention include SiO2, MgO
, ZrO2, a mixture of Al2O3 and SiO2, zeolite, etc., but alumina is a typical example, and in particular, it is a high-purity aluminum oxide porous body with a porous structure with an apparent porosity of 50 to 80%, preferably 50 to 70%. The pore size is 0.1 to 0.5 μm, the pore volume is 0.2 ml/g or more, and the pore size is 0.5 μm.
The pore volume within the range of μm or more and 10 μm or less is 0.
05 ml/g or more, and α-alumina containing 98% by weight or more of aluminum oxide in its components is preferably used. By providing nickel as an active component on such a carrier and then performing the heat treatment and calcination specific to the present invention, the nickel is generally 3 to 20% by weight, preferably 5 to 20% by weight, based on the total weight of the catalyst, in terms of nickel oxide. When the content is 15% by weight, particularly preferably 5 to 10% by weight, the catalyst of the present invention having excellent performance in steam reforming of hydrocarbons etc. can be obtained. The performance of the catalyst according to the present invention is excellent because
By heat treatment with carbon monoxide (hereinafter abbreviated as CO treatment), the supported nickel component becomes a nickel carbonyl compound, which is then highly dispersed as nickel metal on the support by subsequent firing, yielding highly active fine nickel particles. It seems to be for a reason.

【0005】本発明の触媒はメタン等の低級炭化水素の
水蒸気による改質に好適である。担体とする例えばα−
アルミナ多孔体へのニッケル成分の付加の手段は、特に
制限されるものではないが、ニッケル成分が可及的に大
なる表面積を以て担体の多孔体組織中に均質に分布され
ることが必要であり、周知手段であるニッケル塩溶液へ
の浸漬による方法が適当である。例えば、前記性状を有
するα−アルミナを硝酸ニッケルの水溶液に浸漬し、水
溶液が多孔体中心部分まで浸透した後、自然乾燥し、次
に常法により100 〜130℃程度の強制乾燥、常法
の焼成、還元ののち、一酸化炭素雰囲気下の熱処理、次
いで焼成を施すことにより本発明の触媒が得られる。こ
の熱処理には例えば一酸化炭素雰囲気の流通下、好まし
くは内部循環式の閉鎖系で加熱すればよい。又、一酸化
炭素雰囲気にもたらす前に先ず真空(減圧)雰囲気とす
るのが好ましい。常圧下の熱処理の場合、熱処理温度は
30〜110 ℃が好ましく、50〜90℃がより好ま
しく、60〜80℃が最も好ましい。圧力を上げれば熱
処理時間は短縮できる。熱処理時間は1〜10時間が適
当である。担持されたニッケルが多い程、熱処理温度が
低い程、熱処理時間を長くするとよい。70〜80℃で
焼成し、酸化ニッケル換算8%程度のニッケルを担持す
る触媒を得るには通常4〜8時間程度の熱処理がなされ
ればよい。この後、加熱の温度を150 ℃以上、好ま
しくは200 ℃以上、最も好ましくは250 〜60
0 ℃に1〜2時間以上保持して焼成した後、系内を窒
素置換して常温に降温することにより本発明の触媒が得
られる。焼成温度がこの範囲より低いと触媒活性の向上
が少なく、また高いと触媒使用時の事前還元処理に長時
間を要することになり何れも好ましくない。
The catalyst of the present invention is suitable for reforming lower hydrocarbons such as methane with steam. For example, α-
The means of adding the nickel component to the alumina porous body is not particularly limited, but it is necessary that the nickel component be homogeneously distributed in the porous structure of the carrier with as large a surface area as possible. , a well-known method of immersion in a nickel salt solution is suitable. For example, α-alumina having the above properties is immersed in an aqueous solution of nickel nitrate, and after the aqueous solution penetrates into the center of the porous material, it is naturally dried, and then forced drying at about 100 to 130°C by a conventional method. After calcination and reduction, the catalyst of the present invention is obtained by heat treatment in a carbon monoxide atmosphere and then calcination. This heat treatment may be carried out, for example, by heating in a carbon monoxide atmosphere, preferably in a closed system with internal circulation. Further, it is preferable to first create a vacuum (reduced pressure) atmosphere before introducing the carbon monoxide atmosphere. In the case of heat treatment under normal pressure, the heat treatment temperature is preferably 30 to 110°C, more preferably 50 to 90°C, and most preferably 60 to 80°C. The heat treatment time can be shortened by increasing the pressure. A suitable heat treatment time is 1 to 10 hours. The more nickel supported, the lower the heat treatment temperature, the longer the heat treatment time. In order to obtain a catalyst that is calcined at 70 to 80°C and supports about 8% nickel in terms of nickel oxide, it is sufficient to carry out the heat treatment for about 4 to 8 hours. After this, the heating temperature is increased to 150°C or higher, preferably 200°C or higher, most preferably 250 to 60°C.
The catalyst of the present invention is obtained by maintaining the temperature at 0° C. for 1 to 2 hours or more and calcining it, then purging the system with nitrogen and lowering the temperature to room temperature. If the calcination temperature is lower than this range, the improvement in catalytic activity will be small, and if it is higher than this range, a long time will be required for the pre-reduction treatment when using the catalyst, both of which are unfavorable.

【0006】CO処理及び続いての焼成後触媒中のニッ
ケルの微細化の程度は次の方法で確かめられる。即ち、
触媒のX線回折分析を行い、2θ=44.5°に現れる
0価ニッケルのピークの半値幅(ラジアン)において、
CO処理及び焼成したものの半値幅、CO処理及び焼成
していないものの半値幅に対する比をW比とすると、W
比は1.5以上が好ましく、1.7 以上がより好まし
い。通常、W比を3.0 〜5.0 位までとすれば本
発明の目的は達成される。 尚、例えば前記アルミナ担体に常法によりニッケル塩を
含有させたものに、常法の還元処理を行ったところ、触
媒中のニッケル粒径は、X線回折の半値幅法によれば1
000〜1500Å(オングストローム)であった。本
発明の触媒は、担体に、触媒使用時には、常法による還
元ニッケルに対するCO処理と焼成により生じた微細活
性ニッケルが均一に分散されていることにより、アルカ
リ金属元素等の添加なしで従来品市販品に比べて炭素析
出による活性低下が極めて小となると考えられる。本発
明には、アルカリ金属元素等の添加は必須ではないが、
これらの添加は本発明の目的を害さない範囲で行いうる
The degree of fineness of nickel in the catalyst after CO treatment and subsequent calcination can be ascertained by the following method. That is,
X-ray diffraction analysis of the catalyst was performed, and the half-width (in radians) of the zero-valent nickel peak appearing at 2θ = 44.5° was found to be
If the ratio of the half-value width of the CO-treated and fired product to the half-value width of the CO-treated and unfired product is W ratio, W
The ratio is preferably 1.5 or more, more preferably 1.7 or more. Generally, the object of the present invention can be achieved by setting the W ratio to about 3.0 to 5.0. For example, when the alumina support containing nickel salt was subjected to a conventional reduction treatment, the nickel particle size in the catalyst was determined to be 1 according to the half-width method of X-ray diffraction.
000 to 1500 Å (angstroms). The catalyst of the present invention is commercially available as a conventional product without the addition of alkali metal elements, etc., because fine active nickel generated by CO treatment and calcination of reduced nickel by a conventional method is uniformly dispersed in the carrier when the catalyst is used. It is thought that the decrease in activity due to carbon precipitation is extremely small compared to the product. Although the addition of alkali metal elements etc. is not essential to the present invention,
These additions may be made within a range that does not impair the purpose of the present invention.

【0007】[0007]

【実施例】以下に実施例をあげて本発明を更に詳しく説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

【0008】実施例1 孔径0.1 乃至0.5 μm の細孔容積が0.22
ml/g、孔径0.5 μm 以上10μm 以下の細
孔容積が0.07ml/gの細孔構造を有する平均粒径
5mmの純度98%以上のα−アルミナ多孔体を、硝酸
ニッケル〔Ni(NO3)2・6H2O〕1.3kg 
を水に溶解し全量を1リットルとした溶液に浸漬した後
、一昼夜自然乾燥し、その後120 ℃において6時間
乾燥後、さらに加熱し、5乃至6時間かけて750 ℃
にし、この温度で5時間保持した。その後、加熱の温度
を800 ℃に上昇させて、水蒸気、メタンにて、水蒸
気モル数とメタンが有する炭素数の比S/C=7.0 
、空間速度SVo=1000h−1にて20時間還元し
た。更に、触媒を一旦5mmHg以下の減圧下に1時間
置いてから、一酸化炭素雰囲気下で温度70〜80℃、
圧力0.1kg/cm2・G として、4時間保持した
後、280 ℃で1時間焼成してから窒素置換して本発
明の触媒を得た。この触媒はニッケルを酸化ニッケルに
換算して8.6 重量%含有していた。W比は1.7 
であった。これを触媒Aと略記する。上記触媒Aの製造
に於いてCO処理以降の処理を省いたものを触媒A−0
と略記する。また上記触媒Aの製造に於いてCO処理温
度、CO処理時間を夫々20〜30℃、10時間とした
以外は触媒Aと同様にして得たニッケル含量も同じ触媒
を触媒A−1と略記する。A−0とA−1のW比は1.
0であった。更に上記触媒Aの製造に於いてCO処理温
度、CO処理時間を夫々110 〜120 ℃、4時間
とした以外は触媒Aと同様にして得たニッケル含量も同
じ触媒を触媒A−2と略記する。A−2のW比は1.3
 であった。上記触媒を夫々内径12.3mmの反応管
に充填した後、触媒層の温度を800 ℃に上昇させて
、水蒸気, メタンにて、水蒸気モル数とメタンが有す
る炭素数の比S/C=7.0,空間速度SVo=100
0h−1にて4時間還元した後、水蒸気改質実験に使用
した。反応条件は、S/C=3.0,反応圧力P=0.
1kg/cm2・G, SVo=8000h −1 と
して、メタンと水蒸気を反応管内に供給した。反応生成
物は冷却器, ガス計量器を経て得られ、ガスクロマト
グラフィーによって分析された。この反応を継続して5
00 時間実施した。表1に実験結果を示す。活性低下
の著しいものは、100 時間で実験を打ち切った。な
お反応時間0は還元直後の反応開始時である。
Example 1 Pore volume of 0.22 with pore diameter of 0.1 to 0.5 μm
ml/g, a pore size of 0.5 μm or more and 10 μm or less, and a pore structure with a pore volume of 0.07 ml/g, an average particle size of 5 mm, and a purity of 98% or more. NO3)2.6H2O] 1.3kg
was dissolved in water to make a total volume of 1 liter, then air-dried for a day and night, then dried at 120 °C for 6 hours, further heated, and heated to 750 °C for 5 to 6 hours.
and held at this temperature for 5 hours. After that, the heating temperature was raised to 800 °C, and the ratio of the number of moles of water vapor to the number of carbon atoms in methane was S/C = 7.0 using water vapor and methane.
, reduction was carried out for 20 hours at a space velocity SVo=1000 h-1. Furthermore, the catalyst was once placed under a reduced pressure of 5 mmHg or less for 1 hour, and then heated at a temperature of 70 to 80°C under a carbon monoxide atmosphere.
After maintaining the pressure at 0.1 kg/cm2·G for 4 hours, the mixture was calcined at 280° C. for 1 hour and replaced with nitrogen to obtain the catalyst of the present invention. This catalyst contained 8.6% by weight of nickel in terms of nickel oxide. W ratio is 1.7
Met. This is abbreviated as catalyst A. Catalyst A-0 is obtained by omitting the CO treatment and subsequent treatments in the production of the above catalyst A.
It is abbreviated as In addition, a catalyst with the same nickel content as Catalyst A obtained in the same manner as Catalyst A except that the CO treatment temperature and CO treatment time were 20 to 30°C and 10 hours, respectively, was abbreviated as Catalyst A-1. . The W ratio of A-0 and A-1 is 1.
It was 0. Furthermore, a catalyst with the same nickel content obtained in the same manner as Catalyst A except that the CO treatment temperature and CO treatment time were 110 to 120 °C and 4 hours in the production of Catalyst A is abbreviated as Catalyst A-2. . The W ratio of A-2 is 1.3
Met. After each of the above catalysts was filled into a reaction tube with an inner diameter of 12.3 mm, the temperature of the catalyst layer was raised to 800 °C, and the ratio of the number of moles of water vapor to the number of carbon atoms in methane was S/C = 7 using water vapor and methane. .0, space velocity SVo=100
After being reduced at 0 h-1 for 4 hours, it was used in a steam reforming experiment. The reaction conditions were S/C=3.0, reaction pressure P=0.
Methane and steam were supplied into the reaction tube at 1 kg/cm2·G and SVo=8000 h −1 . The reaction product was obtained via a condenser and a gas meter, and analyzed by gas chromatography. Continue this reaction for 5
It was carried out for 00 hours. Table 1 shows the experimental results. In cases where the activity decreased significantly, the experiment was discontinued after 100 hours. Note that the reaction time 0 is the time when the reaction starts immediately after reduction.

【0009】[0009]

【表1】[Table 1]

【0010】触媒Aでの実験結果は平衡に近い値が示さ
れ活性が高かった。また、活性低下もほとんど見られな
かった。触媒A−0、A−1、A−2は若干のバラツキ
はあるが、ほぼ高い初期活性を示した。しかし、活性低
下が大きかった。
[0010] The experimental results for catalyst A showed a value close to equilibrium, and the activity was high. Further, almost no decrease in activity was observed. Catalysts A-0, A-1, and A-2 showed almost high initial activity, although there was some variation. However, the activity decreased significantly.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  触媒の担体に、ニッケルを含有する溶
液を含浸、乾燥させたのち、還元処理し、一酸化炭素雰
囲気下30〜110 ℃の温度で熱処理し、次いで15
0 〜600 ℃の温度で焼成した触媒。
Claim 1: A catalyst carrier is impregnated with a solution containing nickel, dried, subjected to reduction treatment, heat treated at a temperature of 30 to 110 °C in a carbon monoxide atmosphere, and then heated to 15 °C.
Catalyst calcined at temperatures between 0 and 600°C.
【請求項2】  担体がアルミナである請求項1記載の
触媒。
2. The catalyst according to claim 1, wherein the support is alumina.
【請求項3】  触媒の担体に、ニッケルを含有する溶
液を含浸、乾燥させたのち、還元処理し、一酸化炭素雰
囲気下30〜110 ℃の温度で熱処理し、次いで15
0 〜600 ℃の温度で焼成することを特徴とする触
媒の製法。
3. A catalyst carrier is impregnated with a nickel-containing solution, dried, subjected to reduction treatment, heat treated at a temperature of 30 to 110 °C in a carbon monoxide atmosphere, and then
A method for producing a catalyst, characterized by firing at a temperature of 0 to 600°C.
JP3010865A 1991-01-31 1991-01-31 Catalyst and its production Pending JPH04363140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3010865A JPH04363140A (en) 1991-01-31 1991-01-31 Catalyst and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3010865A JPH04363140A (en) 1991-01-31 1991-01-31 Catalyst and its production

Publications (1)

Publication Number Publication Date
JPH04363140A true JPH04363140A (en) 1992-12-16

Family

ID=11762249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3010865A Pending JPH04363140A (en) 1991-01-31 1991-01-31 Catalyst and its production

Country Status (1)

Country Link
JP (1) JPH04363140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141860A (en) * 2002-10-04 2004-05-20 Japan National Oil Corp Catalyst for hydrocarbon reforming, and its manufacturing method
JP2008055252A (en) * 2006-08-29 2008-03-13 Nippon Oil Corp Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141860A (en) * 2002-10-04 2004-05-20 Japan National Oil Corp Catalyst for hydrocarbon reforming, and its manufacturing method
JP2008055252A (en) * 2006-08-29 2008-03-13 Nippon Oil Corp Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system

Similar Documents

Publication Publication Date Title
US5100857A (en) Catalyst for steam reforming
US4285837A (en) Catalyst for steam reforming of hydrocarbons
JPH01297146A (en) Catalyst held to carrier for non selective oxidation of organic compound and, especially, non-selective oxidation of organic compound
JP2001149780A (en) Method for manufacturing ammonia and ammonia synthesizing gas
JPS6313729B2 (en)
WO2004026474A1 (en) The highly dispersing catalyst from layed precursor and the process for preparing it
JPH05330802A (en) Production of ammonia-cracked gas and production of hydrogen
JPS59199042A (en) Catalyst for reforming methanol
JP4462763B2 (en) Method for producing hydrogen
GB2313070A (en) Improved steam reforming catalysts for lower hydrocarbons
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP3050558B2 (en) Catalyst support material and method for producing such support material
JPH0459052A (en) Catalyst for steam reforming
JPH0679177A (en) Catalyst and process for synthesizing ammonia
JPH04363140A (en) Catalyst and its production
CN109718864B (en) Catalyst carrier, supported catalyst, preparation method and application of supported catalyst, and method for preparing hydrogen by reforming methane steam
JPH0420656B2 (en)
JPH0459048A (en) Catalyst for steam reforming
JPH1057810A (en) Oxidation catalyst for hydrogen, selective oxidation method for hydrogen, and dehydrogenation method for hydrocarbon
RU2449002C2 (en) Method of producing hydrocarbon by reducing carbon monoxide
JP3135539B2 (en) Improved steam reforming catalyst for hydrocarbons
JPH05329370A (en) Ammonia decomposition catalyst
JP2003519105A (en) Olefin production method
KR100911575B1 (en) Titania-palladium compositesand preparing method for the same
JPH0616850B2 (en) Catalyst for steam reforming