JPH0436186B2 - - Google Patents

Info

Publication number
JPH0436186B2
JPH0436186B2 JP59174417A JP17441784A JPH0436186B2 JP H0436186 B2 JPH0436186 B2 JP H0436186B2 JP 59174417 A JP59174417 A JP 59174417A JP 17441784 A JP17441784 A JP 17441784A JP H0436186 B2 JPH0436186 B2 JP H0436186B2
Authority
JP
Japan
Prior art keywords
weight
parts
polycarbonate resin
rubber
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59174417A
Other languages
Japanese (ja)
Other versions
JPS6153354A (en
Inventor
Kenji Yoshino
Hidenori Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP59174417A priority Critical patent/JPS6153354A/en
Publication of JPS6153354A publication Critical patent/JPS6153354A/en
Publication of JPH0436186B2 publication Critical patent/JPH0436186B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は耐熱性、耐油性、耐衝撃性、剛性、寞
法安定性などの芁求される機械郚品、䟋えば電動
工具ハりゞング、カメラ郚品、コネクタヌなどの
成圢材料ずなるガラス繊維匷化ポリカヌボネヌト
暹脂組成物に関するものである。 埓来の技術および問題点 ガラス繊維匷化ポリカヌボネヌト暹脂は寞法安
定性はもちろんのこず、優れた機械的匷床、耐熱
性を有し、電動工具ハりゞング、カメラ郚品など
に広く甚いられおいる。しかしながらガラス繊維
匷化ポリカヌボネヌト暹脂は流動性が悪いために
射出成圢をする堎合、成圢枩床を非垞に高くしな
ければならず、ガラス繊維の衚面凊理剀の分解に
よる成圢物の着色やポリカヌボネヌト暹脂自䜓の
熱分解による分子量䜎䞋やガス発生が起こる。た
た流動性の悪さが原因で成圢品の圢状が厚肉成圢
品たたは小型成圢品に限定される。さらにガラス
繊維匷化によ぀お耐油性は倧幅に向䞊したずは蚀
え、モヌタヌ内蔵郚品に䜿甚される堎合のように
加熱䞋か぀応力䞋では耐油性䞍足によるクラツク
の発生が起こるこずがある。 ガラス繊維匷化ポリカヌボネヌト暹脂の成圢加
工性の問題点を解決するために、ポリカヌボネヌ
ト暹脂ずガラス繊維よりなる系にさらにポリスチ
レンを添加したり特公昭44−28188号、ポリオ
レフむン、ポリオレフむン系゚ラストマヌおよび
スチレン系共重合䜓のうちの皮以䞊ず䞍飜和酞
倉性ポリオレフむンを添加する特開昭58−
17153号等の方法により流動性をあげるこずが
考えられおきた。しかしながらこれらの方法では
機械的匷床、ずりわけ萜球衝撃匷床が著しく䜎䞋
する。ガラス繊維匷化ポリカヌボネヌト暹脂が、
電動工具ハりゞングやカメラ郚品などの埓来アル
ミダむキダストや金属が䜿われおいた郚品の代替
に䜿甚されおきたこずを考えるず衝撃匷床の䜎䞋
は臎呜的な欠点ずなる。さらに、添加する暹脂ず
ポリカヌボネヌト暹脂ずを完党に盞溶させるこず
が難しいために射出成圢品におけるゲヌト郚の剥
離やり゚ルドの生起、倖芳の悪化などの欠点が生
じる。 問題点を解決するための手段 本発明者等はガラス繊維匷化ポリカヌボネヌト
暹脂の機械的匷床を維持しながら成圢加工性ず耐
油性を改良すべく鋭意怜蚎した結果、ポリカヌボ
ネヌト暹脂、ガラス繊維、ゎム倉性されたスチレ
ン−無氎マレむン酞共重合䜓およびビスプノヌ
ル型゚ポキシ暹脂の系よりなる混合物が目的にか
なう暹脂であるこずを芋い出し、本発明を完成す
るに至぀た。 すなわち本発明は、 (A) 芳銙族ポリカヌボネヌト暹脂45〜94.9重量
ず、 (B) ゎム倉性されたスチレン−無氎マレむン酞共
重合䜓〜54.9重量ず、 (C) ビスプノヌル型゚ポキシ暹脂0.1〜15重量
ずからなる暹脂成分100重量郚に察しお、 (D) ガラス繊維0.1〜50重量郚を配合しおなるこ
ずを特城ずするガラス繊維匷化されたポリカヌ
ボネヌト暹脂組成物を提䟛するものである。 ここにおいお、芳銙族ポリカヌボネヌト暹脂(A)
ずは、ビスヒドロキシアリヌルアルカン系ポ
リカヌボネヌト暹脂であ぀お、䟋えばビス−
ヒドロキシプニルメタン、ビス−ヒドロ
キシプニル゚タン、−ビス−ヒド
ロキシプニルプロパン、−ビス−
ヒドロキシ−−ゞクロモプニルプロパ
ン、−ビス−ヒドロキシ−−ゞ
メチルプニルプロパン、−ビス−
ヒドロキシ−−ゞクロロプニルプロパ
ン、ビス−ヒドロキシプニルプニルメ
タンなどの劂きビスヒドロキシアリヌルアル
カンずホスゲンホスゲン法あるいはゞアリヌ
ルカヌボネヌトなどの炭酞゚ステル゚ステル亀
換法ずより埗られるもの等が挙げられ、これら
は単独であるいは混合しお䜿甚される。この芳銙
族ポリカヌボネヌト暹脂(A)は、(A)(B)および(C)か
らなる暹脂成分100重量䞭に通垞45〜94.9重量
、奜たしくは55〜88重量含有される割合で䜿
甚する。 たた前蚘したゎム倉性されたスチレン−無氎マ
レむン酞共重合䜓以䞋、単にゎム倉性共重合䜓
ず称す(B)ずしおは、䟋えば連鎖移動剀、安定剀
およびたたはラゞカル発生剀などの存圚䞋に、
ゎム成分を甚いおスチレンモノマヌず無氎マレむ
ン酞ずを熱重合せしめお埗られるもの等が挙げら
れる。 その補造法の䞀䟋を瀺せば、スチレン無氎マ
レむン酞のモル比が1.4〜49、奜たしくは4.6〜17
なるモノマヌ混合物、ゎム成分、公知慣甚のラゞ
カル発生剀、および連鎖移動剀ずをアセトンやメ
チルむ゜ブチルケトンの劂きケトン系溶剀䞭に加
えお、60〜180℃、奜たしくは75〜140℃なる枩床
条件䞋に熱重合せしめるずいうもので、かくしお
埗られるゎム倉性共重合䜓(B)は、たずえば石油ベ
ンゞンたたはメタノヌルの劂き貧溶剀を甚いお析
出させたものをそのたた、さらには必芁に応じこ
れに酞化防止剀などを添加し、次いで抌出機など
で造粒させたものを甚いおもよい。 前蚘ゎム成分はゎム倉性共重合䜓(B)䞭に通垞
〜25重量、奜たしくは〜12重量含有される
が、ゎム成分ずしお代衚的なものを䟋瀺すれば、
ポリブタゞ゚ンゎム、60〜95重量のブタゞ゚ン
を含むブタゞ゚ン−スチレンゎムもしくはブタゞ
゚ン−アクリルゎム、む゜プレンゎム、60〜95重
量のむ゜プレンを含むむ゜プレン−スチレンゎ
ムもしくはむ゜プレン−アクリルゎム、60〜95重
量のブタゞ゚ンを含むブタゞ゚ン−スチレンの
−型ブロツクゎムもしくは−−型のブ
ロツクゎム、あるいぱチレン−プロピレン共重
合ゎムEPTもしくぱチレン−プロピレン
−シクロペンタゞ゚ン共重合ゎムEPDMな
どであり、これらは䞀皮たたは二皮以䞊の混合物
ずしお䜿甚される。なかでも奜たしいものずしお
はポリブタゞ゚ンゎムが挙げられる。 以䞊、明蚘したゎム倉性共重合䜓(B)ずしおは
「ダむラヌク250、350、700」以䞊、米囜
アヌコ・ポリマヌズ瀟補品なる垂販品などが該
圓するものである。 このゎム倉性共重合䜓(B)は、(A)(B)および(C)か
らなる暹脂成分100重量䞭に通垞〜54.9重量
、奜たしくは10〜35重量含有される割合で䜿
甚する。ゎム倉性共重合䜓(B)の割合が54.9重量
を越えるず埗られるポリカヌボネヌト暹脂組成物
の耐熱性が䜎䞋するばかりでなく機械的匷床も䜎
䞋するので実甚的ではなく。たた重量未満で
は成圢性、耐油性の改善が充分ではない。 次に前蚘したビスプノヌル型゚ポキシ暹脂(C)
ずは、䞀般匏 ただし、匏䞭R1R2R3は氎玠原子たたは
炭玠数〜の䜎玚アルキル基であり、は氎玠
原子たたは塩玠原子たたは臭玠原子であり、は
〜100000なる数である。 で瀺されるビスプノヌル型゚ポキシ暹脂をい
う。 䞊蚘したビスプノヌル型゚ポキシ暹脂の調補
法の䞀䟋を瀺せば、アルカリ觊媒の存圚䞋に
−ビス−ヒドロキシプニルプロパン
ビスプノヌルたたはビス−ヒドロキ
シプニルメタンビスプノヌルのモ
ルに぀き゚ピクロルヒドリンの1.5〜モル、奜
たしくは1.8〜4.4モルを甚いお、50〜140℃なる
枩床条件䞋で反応させ、しかるのち氎局を分離せ
しめるか、あるいは必芁に応じお氎および
NaHPO4の劂き匱酞で䞭和掗浄し、次いで枛圧
蒞留により゚ピクロルヒドリンを陀去しお粟補せ
しめるずいう方法がある。 垂販されおいるビスプノヌル型゚ポキシ暹脂
(C)の具䜓䟋ずしおは、ビスプノヌル型ずしお
「゚ピクロン850、1050、4050、7050および9050」
〔以䞊、倧日本むンキ化孊工業(æ ª)補〕および「フ
゚ノキシ暹脂PKHCPKHHおよびPKHJ」以
䞊、米囜ナニオンカヌバむド瀟補などが、ビス
プノヌル型ずしお「゚ピクロン830および
831」〔以䞊、倧日本むンキ化孊工業(æ ª)補〕など
が、曎にハロゲン化ビスプノヌル型゚ポキシ暹
脂ずしお「゚ピクロン152および1120」〔以䞊、倧
日本むンキ化孊工業(æ ª)補〕などがあり、これらは
いずれも本発明に䜿甚できる。 このビスプノヌル型゚ポキシ暹脂(C)は、(A)
(B)および(C)からなる暹脂成分100重量䞭に通垞
0.1〜15重量、奜たしくは〜10重量含有さ
れる割合で䜿甚する。ビスプノヌル型゚ポキシ
暹脂(C)の割合が0.1重量未満では埗られる組成
物の盞溶性が悪くなり、萜球衝撃匷床が向䞊しな
い。たた15重量を越えるず実甚的な匷床が向䞊
しないばかりか、耐熱性の䜎䞋をきたす事になる
ので奜たしくない。 さらに本発明で甚いるガラス繊維(D)ずしおはチ
ペツプドストランドが奜たしいが、ガラスダヌ
ン、ガラスクロス、ロヌビング、ロヌビングクロ
ス、チペツプドストランドマツト、ミルドフアむ
バヌなどの加工圢態のものも䜿甚できる。たたこ
れらのガラスはカツプリング剀や湿最剀などで、
衚面凊理をしおも良い。ガラス繊維の䜿甚量は
(A)(B)および(C)からなる暹脂成分100重量郚に察
しお通垞0.1〜50重量郚であり、奜たしくは〜
45重量郚である。 本発明のポリカヌボネヌト暹脂組成物の調補
は、単軞たたは倚軞抌出機を甚いお加熱溶融混合
するのが奜たしいが、加熱ロヌル、バンバリヌ・
ミキサヌによる混合、さらには盎接射出成圢機を
甚いおドラむブレンド物を混合、成圢せしめる方
法でもよい。 混合方法ずしおは芳銙族ポリカヌボネヌト暹
脂、ゎム倉性共重合䜓、ビスプノヌル型゚ポキ
シ暹脂およびガラス繊維を同時に混合する方法、
たたはこれらのうちの成分以䞊をあらかじめ溶
融混合し、これに他の成分を混合する方法等があ
る。たた混合時に必芁に応じお酞化防止剀、垯電
防止剀、玫倖線吞収剀、難燃剀、着色剀、可塑
剀、無機充填剀および滑剀などの公知慣甚の添加
剀を添加せしめるこずもできる。 発明の効果 本発明のガラス繊維匷化ポリカヌボネヌト暹脂
組成物は、匕匵り匷床、曲げ匷床、アむゟツト衝
撃匷床、萜球衝撃匷床等の機械的匷床に優れるば
かりでなく、成圢性にも優れる。この良成圢性の
ために本発明による組成物からの射出成圢品はり
゚ルドラむンが目立たない、り゚ルド郚の匷床䜎
䞋がみられない、ガラス繊維の配向が少ない、そ
しおガラス繊維が衚面に浮き出ないため倖芳に優
れるなどの特長がみられる。たた埓来ガラス繊維
ポリカヌボネヌト暹脂では成圢するこずのできな
か぀た圢状の耇雑なもの、薄肉品、り゚ルド郚の
倚数あるものなどの成圢が容易に行なえる。さら
に、䜎いシリンダヌ枩床で成圢可胜であるために
成圢品にやけや倉色がみられない。 電動工具ハりゞングなどに䜿甚される堎合、耐
油性は非垞に重芁な性質であるが、本発明の組成
物は耐油性においおも栌段に優れる。 以䞊述べたように本発明による組成物を甚いる
こずによ぀お耐油性、衝撃匷床および倖芳の優れ
た、圢状の耇雑さ、薄肉を問わず広い圢状範囲の
ガラス繊維匷化の成圢品を提䟛するこずが可胜ず
なる。 実斜䟋 本発明を実斜䟋、比范䟋により具䜓的に説明す
る。尚、䟋䞭で行なわれる各皮詊隓の詳现な方法
を以䞋に瀺す。〈基瀎物性詊隓〉ペレツト化され
た暹脂組成物をオンスむンラむン型射出成圢機
を甚いお射出成圢し、基瀎物性枬定甚の各皮詊隓
片を埗、この詊隓片を甚いお各皮基瀎物性を枬定
する。以䞋に物性枬定項目ず枬定法を瀺す。 匕匵砎断匷床―ASTM −638に準拠しお
枬定。 匕匵砎断䌞び― 〃 曲げ匷床 ―ASTM −790に準拠しお
枬定。 曲げ匟性率 ―ASTM −790に準拠しお
枬定。 アむゟツト衝撃匷床ノツチ付詊隓片厚さ1/
むンチ および1/8むンチ ―ASTM −256に準拠しお
枬定。 熱倉圢枩床 ―ASTM −648に準拠しお
枬定。 〈萜球衝撃詊隓〉ペレツト化された暹脂を10オン
ス射出成圢機を甚いお175×119×40mm、厚み3.3
mmの箱型成圢品を成圢し、この成圢品の䞭倮郚に
重量1.0Kg、先端が32mmの鋌球を萜䞋高さ
cmから始めおcm間隔で萜䞋高さを順次高くしな
がら、、10、15cm、―の劂く繰り返し萜䞋さ
せ、成圢品に砎壊たたはクラツクが発生した時の
高さを萜球衝撃匷床ずしお瀺す。 〈成圢性詊隓〉オンスむンラむン型射出成圢機
で射出圧力600Kgcm2、金型枩床110℃なる条件で
金型のキダビテむヌ内に暹脂が十分に充填され適
圓な成圢品が埗られるに必芁なシリンダヌ枩床を
求める。このシリンダヌ枩床が䜎い皋成圢性は良
奜であるずいえる。 〈耐油性詊隓〉オンスむンラむン型射出成圢機
を甚いお成圢された××むンチの曲げ匷 床枬定甚詊隓片の䞭倮郚にむンチの厚みに察 しお600Kgcm2の曲げ荷重をかけ、23℃の四塩化
炭玠䞭に浞挬し、詊隓片が砎断するたでの時間を
求める。砎断たでの時間が長い皋耐油性に優れ
る。四塩化炭玠を遞んだ理由はポリカヌボネヌト
暹脂を最もおかしやすいからであり、耐油性の促
進詊隓ず考えおよい。 実斜䟋  −ビス−ヒドロキシプニルプロ
パンより補造されたポリカヌボネヌト暹脂「ノバ
レツクス7025A」〔䞉菱化成工業(æ ª)補〕82重量郚、
「ダむラヌク250」アヌコ・ポリマヌズ瀟補ゎ
ム倉性スチレン−無氎マレむン酞共重合䜓14重
量郚および「゚ピクロン9050」〔倧日本むンキ化
孊工業(æ ª)補ビスプノヌル型゚ポキシ暹脂〕
重量郚をドラむブレンドした。かかるドラむブレ
ンド物100重量郚ず長さmm、埄13ÎŒmのアミノシ
ランカツプリング剀で凊理されたガラス繊維17.6
重量郚を混合し、単軞スクリナヌ抌出機におペレ
ツト化しお、本発明のポリカヌボネヌト暹脂組成
物ペレツトを埗た。 このペレツトを甚いお前蚘の各皮詊隓を実斜し
た。結果を衚−に瀺す。尚、オンス射出成圢
機を甚いた詊隓片の成圢条件はシリンダヌ枩床
270℃、金型枩床110℃、射出圧600Kgcm2、射出
時間15秒、冷华時間10秒であり、10オンス射出成
圢機を甚いた萜球衝撃詊隓甚の箱型成圢品の成圢
条件はシリンダヌ枩床270℃、金型枩床110℃、射
出圧800Kgcm2、保持圧700Kgcm2、射出時間20
秒、冷华時間30秒であ぀た。 比范䟋  「ノバレツクス7025A」100重量郚ず実斜䟋
で甚いたものず同様のガラス繊維17.6重量郚を実
斜䟋ず同様の方法でペレツト化しお比范察照甚
のポリカヌボネヌト暹脂組成物ペレツトを埗、次
いでこれを甚いお前蚘の各皮詊隓を実斜した。結
果を衚−に瀺す。尚、詊隓片および箱型成圢品
の射出成圢条件はシリンダヌ枩床を320℃ずした
以倖は実斜䟋ず同様であ぀た。 比范䟋  「ダむラヌク250」14重量郚および「゚ピク
ロン9050」重量郚の代わりに「デむツクスチレ
ンCR−4500」〔倧日本むンキ化孊工業(æ ª)補ポリス
チレン暹脂〕18重量郚を甚いた以倖は実斜䟋ず
同様にしお比范察照甚のポリカヌボネヌト暹脂組
成物ペレツトを埗、次いでこれを甚いお前蚘の各
皮詊隓を実斜した。結果を衚−に瀺す。尚、詊
隓片および箱型成圢品の射出成圢条件はシリンダ
ヌ枩床を275℃ずした以倖は実斜䟋ず同様であ
぀た。 実斜䟋  「ナヌピロン−2000」〔䞉菱瓊斯化孊(æ ª)補ポリ
カヌボネヌト暹脂〕62重量郚ず「ダむラヌク
250」30重量郚ず「゚ピクロン9050」重量郚
をドラむブレンドした。かかるドラむブレンド物
100重量郚ず実斜䟋で甚いたものず同様のガラ
ス繊維43重量郚を単軞スクリナヌ抌出機におペレ
ツト化しお、本発明のポリカヌボネヌト暹脂組成
物ペレツトを埗、次いでこれを甚いお前蚘の各皮
詊隓を実斜した。結果を衚−に瀺す。尚、詊隓
片および箱型成圢品の射出成圢条件はシリンダヌ
枩床を290℃ずした以倖は実斜䟋ず同様であ぀
た。 比范䟋  「ナヌピロン−2000」100重量郚ず実斜䟋
で甚いたものず同様のガラス繊維43重量郚を実斜
䟋ず同様の方法でペレツト化しお比范察照甚の
ポリカヌボネヌト暹脂組成物ペレツトを埗、次い
でこれを甚いお前蚘の各皮詊隓を実斜した。結果
を衚−に瀺す。尚、詊隓片および箱型成圢品の
射出成圢条件はシリンダヌ枩床を330℃ずした以
倖は実斜䟋ず同様であ぀た。
(Industrial Application Field) The present invention uses glass fibers as a molding material for mechanical parts that require heat resistance, oil resistance, impact resistance, rigidity, dimensional stability, etc., such as power tool housings, camera parts, connectors, etc. The present invention relates to a reinforced polycarbonate resin composition. (Prior Art and Problems) Glass fiber-reinforced polycarbonate resin has not only dimensional stability but also excellent mechanical strength and heat resistance, and is widely used in power tool housings, camera parts, etc. However, glass fiber-reinforced polycarbonate resin has poor fluidity, so when injection molding, the molding temperature must be extremely high, resulting in discoloration of the molded product due to the decomposition of the surface treatment agent for the glass fibers, and the heat of the polycarbonate resin itself. Molecular weight decrease and gas generation occur due to decomposition. Moreover, due to poor fluidity, the shape of the molded product is limited to thick-walled molded products or small-sized molded products. Furthermore, although oil resistance has been greatly improved by glass fiber reinforcement, cracks may occur due to insufficient oil resistance when used in parts with built-in motors under heat and stress. In order to solve the problem of moldability of glass fiber reinforced polycarbonate resin, polystyrene was further added to the system consisting of polycarbonate resin and glass fiber (Japanese Patent Publication No. 44-28188), polyolefin, polyolefin elastomer and styrene type elastomer were added. Adding one or more of the copolymers and unsaturated acid-modified polyolefin (Japanese Patent Application Laid-open No. 1983-
17153) and other methods have been considered to increase liquidity. However, these methods significantly reduce the mechanical strength, especially the falling ball impact strength. Glass fiber reinforced polycarbonate resin
Considering that it has been used to replace parts that traditionally used aluminum die-casting or metal, such as power tool housings and camera parts, the reduction in impact strength is a fatal drawback. Furthermore, since it is difficult to make the resin to be added and the polycarbonate resin completely compatible, disadvantages such as peeling of the gate part in injection molded products, occurrence of welds, and deterioration of the appearance occur. (Means for Solving the Problems) As a result of intensive studies to improve the moldability and oil resistance of glass fiber reinforced polycarbonate resin while maintaining its mechanical strength, the present inventors found that polycarbonate resin, glass fiber, and rubber The present inventors have discovered that a mixture consisting of a modified styrene-maleic anhydride copolymer and a bisphenol type epoxy resin is a resin that meets the purpose, and has completed the present invention. That is, the present invention provides (A) aromatic polycarbonate resin 45 to 94.9% by weight
(B) 5 to 54.9% by weight of a rubber-modified styrene-maleic anhydride copolymer, and (C) 0.1 to 15% by weight of a bisphenol-type epoxy resin. D) A glass fiber-reinforced polycarbonate resin composition characterized in that it contains 0.1 to 50 parts by weight of glass fiber. Here, aromatic polycarbonate resin (A)
is a bis(hydroxyaryl)alkane-based polycarbonate resin, such as bis(4-
hydroxyphenyl)methane, bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-
Hydroxy-3,5-dichromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(4-
Bis(hydroxyaryl) alkanes such as hydroxy-3,5-dichlorophenyl)propane, bis(4-hydroxyphenyl)phenylmethane, etc. and carbonic acid esters such as phosgene (phosgene method) or diaryl carbonate (transesterification method). These can be used alone or in combination. This aromatic polycarbonate resin (A) is used at a ratio of usually 45 to 94.9% by weight, preferably 55 to 88% by weight in 100% by weight of the resin component consisting of (A), (B) and (C). do. In addition, as the rubber-modified styrene-maleic anhydride copolymer (hereinafter simply referred to as rubber-modified copolymer) (B), for example, in the presence of a chain transfer agent, a stabilizer, and/or a radical generator, etc. To,
Examples include those obtained by thermally polymerizing styrene monomer and maleic anhydride using a rubber component. An example of the manufacturing method is that the molar ratio of styrene/maleic anhydride is 1.4 to 49, preferably 4.6 to 17.
A monomer mixture, a rubber component, a known and commonly used radical generator, and a chain transfer agent are added to a ketone solvent such as acetone or methyl isobutyl ketone, and the mixture is heated at a temperature of 60 to 180°C, preferably 75 to 140°C. The rubber-modified copolymer (B) obtained in this way is precipitated using a poor solvent such as petroleum benzine or methanol, and is then precipitated as it is, and if necessary, an antioxidant is added thereto. It is also possible to use a product obtained by adding the like, and then granulating it using an extruder or the like. The rubber component is usually 2 in the rubber modified copolymer (B).
It is contained in ~25% by weight, preferably 5 to 12% by weight. Typical examples of rubber components include:
Polybutadiene rubber, butadiene-styrene rubber or butadiene-acrylic rubber containing 60-95% by weight of butadiene, isoprene rubber, isoprene-styrene rubber or isoprene-acrylic rubber containing 60-95% by weight of isoprene, These include butadiene-styrene A-B type block rubber or A-B-A type block rubber containing butadiene, ethylene-propylene copolymer rubber (EPT) or ethylene-propylene-cyclopentadiene copolymer rubber (EPDM), etc. are used singly or as a mixture of two or more. Among them, polybutadiene rubber is preferred. As the rubber-modified copolymer (B) specified above, commercially available products such as "Dylarc #250, #350, #700" (all products of Arco Polymers, Inc., USA) are applicable. This rubber modified copolymer (B) is usually contained in a proportion of 5 to 54.9% by weight, preferably 10 to 35% by weight in 100% by weight of the resin component consisting of (A), (B) and (C). use. The proportion of rubber modified copolymer (B) is 54.9% by weight
If it exceeds this range, not only the heat resistance of the resulting polycarbonate resin composition will decrease, but also the mechanical strength will decrease, which is not practical. Further, if it is less than 5% by weight, moldability and oil resistance are not sufficiently improved. Next, the above-mentioned bisphenol type epoxy resin (C)
is the general formula (However, in the formula, R 1 , R 2 , R 3 are a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms, Q is a hydrogen atom, a chlorine atom, or a bromine atom, and n is a number from 0 to 100,000. ) is a bisphenol type epoxy resin. An example of the method for preparing the above-mentioned bisphenol type epoxy resin is that 2,
Using 1.5 to 8 moles of epichlorohydrin, preferably 1.8 to 4.4 moles of epichlorohydrin per mole of 2-bis(4-hydroxyphenyl)propane (bisphenol A) or bis(4-hydroxyphenyl)methane (bisphenol F). The reaction is carried out at a temperature of 50 to 140°C, and then the aqueous layer is separated, or if necessary, water and
There is a method of purification by neutralizing and washing with a weak acid such as NaHPO 4 and then removing epichlorohydrin by distillation under reduced pressure. Commercially available bisphenol type epoxy resin
Specific examples of (C) include "Epicron 850, 1050, 4050, 7050 and 9050" as bisphenol type A.
[The above products are manufactured by Dainippon Ink and Chemicals Co., Ltd.] and "phenoxy resins PKHC, PKHH, and PKHJ" (the above products are manufactured by Union Carbide Co., Ltd. in the United States) are used as bisphenol F type "Epicron 830 and
831'' [manufactured by Dainippon Ink and Chemicals Co., Ltd.], and halogenated bisphenol type epoxy resins such as ``Epicron 152 and 1120'' [all manufactured by Dainippon Ink and Chemicals Co., Ltd.]. Any of these can be used in the present invention. This bisphenol type epoxy resin (C) is (A),
Normally in 100% by weight of the resin component consisting of (B) and (C)
It is used in an amount of 0.1 to 15% by weight, preferably 2 to 10% by weight. If the proportion of the bisphenol type epoxy resin (C) is less than 0.1% by weight, the resulting composition will have poor compatibility and the falling ball impact strength will not improve. Moreover, if it exceeds 15% by weight, not only the practical strength will not be improved, but also the heat resistance will decrease, which is not preferable. Further, the glass fiber (D) used in the present invention is preferably chopped strand, but processed forms such as glass yarn, glass cloth, roving, roving cloth, chopped strand mat, milled fiber, etc. can also be used. . In addition, these glasses can be treated with coupling agents, wetting agents, etc.
Surface treatment may be applied. The amount of glass fiber used is
It is usually 0.1 to 50 parts by weight, preferably 5 to 50 parts by weight per 100 parts by weight of the resin component consisting of (A), (B) and (C).
45 parts by weight. Preferably, the polycarbonate resin composition of the present invention is prepared by heating and melting mixing using a single-screw or multi-screw extruder.
A method of mixing using a mixer, or even a method of mixing and molding a dry blend using a direct injection molding machine may be used. The mixing method is a method of simultaneously mixing aromatic polycarbonate resin, rubber modified copolymer, bisphenol type epoxy resin, and glass fiber;
Alternatively, there is a method in which two or more of these components are melt-mixed in advance and other components are mixed therewith. Furthermore, known and commonly used additives such as antioxidants, antistatic agents, ultraviolet absorbers, flame retardants, colorants, plasticizers, inorganic fillers, and lubricants may be added as necessary during mixing. (Effects of the Invention) The glass fiber reinforced polycarbonate resin composition of the present invention not only has excellent mechanical strengths such as tensile strength, bending strength, isot impact strength, and falling ball impact strength, but also has excellent moldability. Due to this good moldability, injection molded products made from the composition according to the present invention have inconspicuous weld lines, no decrease in strength at the weld area, less orientation of glass fibers, and no glass fibers rising to the surface. It has features such as excellent appearance. Furthermore, it is possible to easily mold products with complex shapes, thin-walled products, and products with many welded parts that could not be molded using conventional glass fiber polycarbonate resins. Furthermore, since it can be molded at low cylinder temperatures, the molded product does not show any staining or discoloration. Oil resistance is a very important property when used in power tool housings, and the composition of the present invention is also extremely excellent in oil resistance. As described above, by using the composition of the present invention, it is possible to provide glass fiber-reinforced molded products with excellent oil resistance, impact strength, and appearance, and which can be formed in a wide range of shapes regardless of complexity or thinness. becomes possible. (Example) The present invention will be specifically explained with reference to Examples and Comparative Examples. The detailed methods of various tests conducted in the examples are shown below. <Basic physical property test> The pelletized resin composition is injection molded using a 1 oz in-line injection molding machine to obtain various test pieces for measuring basic physical properties, and these test pieces are used to measure various basic physical properties. . The physical property measurement items and measurement methods are shown below. Tensile breaking strength - Measured in accordance with ASTM D-638. Tensile elongation at break - Bending strength - Measured in accordance with ASTM D-790. Flexural modulus - Measured in accordance with ASTM D-790. Izotsu impact strength (notched test piece thickness 1/
4 inches and 1/8 inches) - Measured according to ASTM D-256. Heat Distortion Temperature - Measured in accordance with ASTM D-648. <Falling ball impact test> Using a 10 oz injection molding machine, pelletized resin was made into pellets with a size of 175 x 119 x 40 mm and a thickness of 3.3 mm.
mm box-shaped molded product, and a steel ball weighing 1.0 kg and tip R = 32 mm is placed in the center of the molded product at a falling height of 5 mm.
Starting at 5 cm, the drop height is increased in 5 cm intervals, and the ball is repeatedly dropped at 5, 10, 15 cm, etc., and the height at which breakage or cracks occur in the molded product is indicated as the falling ball impact strength. <Moldability test> Using a 1-ounce in-line injection molding machine at an injection pressure of 600 kg/cm 2 and a mold temperature of 110°C, the mold cavity must be sufficiently filled with resin to obtain a suitable molded product. Find the cylinder temperature. It can be said that the lower the cylinder temperature, the better the moldability. <Oil resistance test> 600 kg/kg was applied to the center of a 1/4 x 1/2 x 5 inch bending strength test piece molded using a 1 oz in-line injection molding machine for a 1/4 inch thickness. Apply a bending load of cm2 , immerse in carbon tetrachloride at 23°C, and determine the time until the test piece breaks. The longer the time until breakage, the better the oil resistance. The reason we chose carbon tetrachloride is that it is the most likely to damage polycarbonate resin, so it can be considered an accelerated test for oil resistance. Example 1 Polycarbonate resin "Novarex 7025A" produced from 2,2-bis(4-hydroxyphenyl)propane [manufactured by Mitsubishi Chemical Industries, Ltd.] 82 parts by weight,
"Dylarc #250" (rubber-modified styrene-maleic anhydride copolymer manufactured by Arco Polymers) 14 parts by weight and "Epicron 9050" [bisphenol A type epoxy resin manufactured by Dainippon Ink & Chemicals Co., Ltd.] 4
Parts by weight were dry blended. 100 parts by weight of such dry blend and 17.6 glass fibers treated with an aminosilane coupling agent having a length of 6 mm and a diameter of 13 ÎŒm.
Parts by weight were mixed and pelletized using a single screw extruder to obtain polycarbonate resin composition pellets of the present invention. The various tests described above were conducted using this pellet. The results are shown in Table-1. The molding conditions for the test piece using a 1 oz injection molding machine were cylinder temperature.
The molding conditions for the box-shaped molded product for the falling ball impact test using a 10-ounce injection molding machine are 270℃, mold temperature 110℃, injection pressure 600Kg/cm 2 , injection time 15 seconds, and cooling time 10 seconds. Temperature 270℃, mold temperature 110℃, injection pressure 800Kg/cm 2 , holding pressure 700Kg/cm 2 , injection time 20
The cooling time was 30 seconds. Comparative Example 1 100 parts by weight of "Novarex 7025A" and Example 1
17.6 parts by weight of the glass fibers similar to those used in Example 1 were pelletized in the same manner as in Example 1 to obtain comparative polycarbonate resin composition pellets, which were then used to conduct the various tests described above. The results are shown in Table-1. The injection molding conditions for the test piece and the box-shaped molded product were the same as in Example 1 except that the cylinder temperature was 320°C. Comparative Example 2 Except for using 18 parts by weight of "Deitsku Styrene CR-4500" [polystyrene resin manufactured by Dainippon Ink & Chemicals Co., Ltd.] instead of 14 parts by weight of "Dylarc #250" and 4 parts by weight of "Epiclon 9050". Comparative polycarbonate resin composition pellets were obtained in the same manner as in Example 1, and then the various tests described above were conducted using the pellets. The results are shown in Table-1. The injection molding conditions for the test piece and the box-shaped molded product were the same as in Example 1 except that the cylinder temperature was 275°C. Example 2 62 parts by weight of "Iupilon S-2000" (polycarbonate resin manufactured by Mitsubishi Gas Chemical Co., Ltd.), 30 parts by weight of "Dylarc #250" and 8 parts by weight of "Epicron 9050" were dry blended. Such dry blend
100 parts by weight and 43 parts by weight of glass fibers similar to those used in Example 1 were pelletized using a single screw extruder to obtain the polycarbonate resin composition pellets of the present invention, which were then used to produce the various types of polycarbonate resin compositions described above. A test was conducted. The results are shown in Table-1. The injection molding conditions for the test piece and the box-shaped molded product were the same as in Example 1 except that the cylinder temperature was 290°C. Comparative Example 3 100 parts by weight of “Iupilon S-2000” and Example 1
43 parts by weight of glass fibers similar to those used in Example 1 were pelletized in the same manner as in Example 1 to obtain comparative polycarbonate resin composition pellets, which were then used to conduct the various tests described above. The results are shown in Table-1. The injection molding conditions for the test piece and the box-shaped molded product were the same as in Example 1 except that the cylinder temperature was 330°C.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (A) 芳銙族ポリカヌボネヌト暹脂45〜94.9重
量ず、 (B) ゎム倉性されたスチレン−無氎マレむン酞共
重合䜓〜54.9重量ず、 (C) ビスプノヌル型゚ポキシ暹脂0.1〜15重量
ずからなる暹脂成分100重量郚に察しお、 (D) ガラス繊維0.1〜50重量郚を配合しおなるこ
ずを特城ずするガラス繊維匷化されたポリカヌ
ボネヌト暹脂組成物。
[Scope of Claims] 1 (A) 45 to 94.9% by weight of aromatic polycarbonate resin, (B) 5 to 54.9% by weight of rubber-modified styrene-maleic anhydride copolymer, and (C) bisphenol type epoxy. 1. A glass fiber-reinforced polycarbonate resin composition, characterized in that (D) 0.1 to 50 parts by weight of glass fiber is blended to 100 parts by weight of a resin component consisting of 0.1 to 15% by weight of a resin.
JP59174417A 1984-08-22 1984-08-22 Polycarbonate resin composition Granted JPS6153354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174417A JPS6153354A (en) 1984-08-22 1984-08-22 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174417A JPS6153354A (en) 1984-08-22 1984-08-22 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JPS6153354A JPS6153354A (en) 1986-03-17
JPH0436186B2 true JPH0436186B2 (en) 1992-06-15

Family

ID=15978184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174417A Granted JPS6153354A (en) 1984-08-22 1984-08-22 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JPS6153354A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627254B2 (en) * 1987-01-29 1994-04-13 䜏友ダり株匏䌚瀟 Resin composition
JP2968388B2 (en) * 1992-04-27 1999-10-25 垝人化成株匏䌚瀟 Polycarbonate resin composition
CN114736499B (en) * 2022-03-07 2023-05-23 金发科技股仜有限公叞 PC composite material and preparation method and application thereof
WO2024053274A1 (en) * 2022-09-05 2024-03-14 垝人株匏䌚瀟 Polycarbonate resin composition and molded article formed of same
KR102549108B1 (en) * 2022-12-12 2023-06-30 대원전Ʞ 죌식회사 Joint sliding lever link type wire clip with open/close operation grip guide function for indirect live wire and wire fixing method for indirect live wire work

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219256A (en) * 1982-06-15 1983-12-20 Dainippon Ink & Chem Inc Thermoplastic resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219256A (en) * 1982-06-15 1983-12-20 Dainippon Ink & Chem Inc Thermoplastic resin composition

Also Published As

Publication number Publication date
JPS6153354A (en) 1986-03-17

Similar Documents

Publication Publication Date Title
US4215032A (en) Polyester composition
KR960016129B1 (en) Aromatic polycarbonate resin composition
JPS5956443A (en) Resin composition for molding material
JPH0436186B2 (en)
JPS62151450A (en) Resin composition
JPS63137956A (en) Polyamide resin for molding
JP3479790B2 (en) Polycarbonate resin composition for injection molding
JP2932904B2 (en) Mica reinforced polypropylene resin composition
JPH07316428A (en) Thermoplastic resin composition
JP3044315B2 (en) Impact resistant polyphenylene sulfide resin composition
JPS6311378B2 (en)
JPH06299071A (en) Thermoplastic resin composition
KR100307336B1 (en) Thermoplastic resin composition
JPS5930185B2 (en) Polycarbonate resin composition
JPH0114940B2 (en)
JP2001172501A (en) Thermoplastic resin composition
JP2001172499A (en) Thermoplastic resin composition
JP3513543B2 (en) Thermoplastic resin composition
JPS59191761A (en) Polyarylene sulfide resin composition
JPH03153757A (en) Polyphenylene sulfide resin composition
KR100557772B1 (en) Flame Retardant Syndiotactic Polystyrene Composition having Improved Impact Strength
JPH037758A (en) Polycarbonate-based resin composition
JP3910671B2 (en) Flame retardant polyamide resin composition
JPH07242808A (en) Resin composition
KR960016130B1 (en) Aromatic polycarbonate resin composition