JPH04360896A - Rapid and asymmetric production of aldose - Google Patents

Rapid and asymmetric production of aldose

Info

Publication number
JPH04360896A
JPH04360896A JP3132621A JP13262191A JPH04360896A JP H04360896 A JPH04360896 A JP H04360896A JP 3132621 A JP3132621 A JP 3132621A JP 13262191 A JP13262191 A JP 13262191A JP H04360896 A JPH04360896 A JP H04360896A
Authority
JP
Japan
Prior art keywords
aldose
metal catalyst
cyanide
polar solvent
protected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3132621A
Other languages
Japanese (ja)
Inventor
Shintaro Nishimura
伸太郎 西村
Nobuyasu Hayashi
林 伸宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI KINOU KENKYUSHO KK
Original Assignee
SEITAI KINOU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI KINOU KENKYUSHO KK filed Critical SEITAI KINOU KENKYUSHO KK
Priority to JP3132621A priority Critical patent/JPH04360896A/en
Publication of JPH04360896A publication Critical patent/JPH04360896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To rapidly obtain the subject compounds containing an additional asymmetric carbon and useful for cyclotron nuclear medicine, etc., in a high yield by reacting a hydroxyl group-protected aldose with a substituted silylcyanide in the presence of a metal catalyst in a polar solvent, subsequently reducing and hydrolyzing it. CONSTITUTION:A hydroxyl-protected aldose (e.g. 2,3,4,5-di-O-isopropylidenD- arabinose) is reacted with a substituted silylcyanide (e.g. trimethylsilylcyanide) in the presence of a metal catalyst (e.g. zinc iodide) in a polar solvent (e.g. dichloromethane) with stirring at room temperatures to obtain a cyanhydrin. The resultant reaction mixture is subsequently filtered and the obtained filtrate is concentrated under a reduced pressure to recover a residue. After addition of ethyl alcohol, 30% formic acid and Raney nickel, the recovered residue is refluxed with heating for 10 min to be reduced and hydrolyzed. The resultant reaction mixture is filtered and the filtrate is concentrated under a reduced pressure. After desalting, the concentrated filtrate is purified by using the high- performance liquid chromatography, thus obtaining the objective aldose (e.g. D-mannose) containing an additional asymmetric carbon.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は水酸基が保護されたアル
ドースを出発原料としてこれよりも炭素数が1個多いア
ルドースを短時間に高収率で製造する方法である。特に
本発明によれば高い立体選択性で目的とするアルドース
立体異性体を得ることができるし、又、寿命の短い11
C標識アルドースを収率よく得ることができる。
FIELD OF INDUSTRIAL APPLICATION The present invention is a method for producing an aldose having one more carbon atoms in a short time and in high yield using an aldose with a protected hydroxyl group as a starting material. In particular, according to the present invention, the desired aldose stereoisomer can be obtained with high stereoselectivity, and the aldose stereoisomer with a short lifetime can be obtained.
C-labeled aldose can be obtained in good yield.

【0002】0002

【従来の技術】アルドースにシアン化物、例えばHCN
を反応させてシアノヒドリンを生成させこれを加水分解
し、次いでナトリウムアマルガム等で還元して、元のア
ルドースよりも炭素数が1個多いアルドースを得ること
はキリアニーフィッシャー合成(Killiani−F
isher  Synthesis)として古くから知
られている。
[Prior Art] Cyanide, such as HCN, is added to aldose.
is reacted to produce cyanohydrin, which is hydrolyzed, and then reduced with sodium amalgam etc. to obtain an aldose having one more carbon than the original aldose.
isher synthesis).

【0003】しかしながらこの方法では立体異性体の収
率もよくないし、目的のアルドースは立体異性体混合物
としてしか得られない。立体異性体混合物の分離精製は
極めて面倒である。又、放射性同位元素11Cをポジト
ロン放出核種とする標識アルドースは、たとえば医薬の
画像診断を行なうために必要な放射薬剤の中でもとりわ
け脳をはじめとする各臓器の定量的、動態的診断等サイ
クロトロン核医学上欠かせないものである。しかしなが
ら11Cは、寿命が極めて短い(その半減期はわずかに
20分である)うえ、サイクロトロン等を用いることに
より合成した11Cを構成元素とする無機ガスなどの構
造が単純な分子を生成させ、これを原料としてより複雑
な構造の標識アルドースを合成するものである。従って
出来るだけ短時間のうちに目的物質に導かねばならない
。又、標識アルドースの生理活性を有する化合物である
以上、合成途上において化学的立体制御が達成され、な
おかつ標識位置が特定できるものであることが望ましい
。しかるに、従来方法ではそれが不可能であって、例え
ばD−グルコースの場合を例にとると、11Cによる標
識化方法として光合成反応による製法(ジェイ.エフ.
リフトン及びエム・ジェイ・ウェルク、ラジエイション
・リサーチ(Radiat.Res.)、45、35(
1971)が知られているが、この方法は、目的物の標
識位置が不特定であるうえ、生合成反応に由来する種々
の不純物や発熱物質が混存するするためこれを除去する
必要があるといった欠点がある。又、これらの欠点を改
善しようとする化学合成も試みられ、H11CNとアラ
ビノースとのキリアニーフィッシャー合成による方法(
シー・ワイ・シュー及びエイ・ピー・ウルフ、ジャーナ
ル・オブ・レイベルド・コンパウンズ・ラジオファーマ
シューティカルズ(J.Labelled Compd
s.Radiopharm.)、22、171(198
5)などが知られているが、かかる方法は、シアノヒド
リン化反応における立体制御が完全でなく、そのため、
目的物質は立体異性体の混合物となり、その単離精製が
難かしいという欠点がある。
However, in this method, the yield of stereoisomers is not good, and the target aldose can only be obtained as a mixture of stereoisomers. Separation and purification of stereoisomer mixtures is extremely troublesome. In addition, labeled aldose, which uses the radioactive isotope 11C as a positron-emitting nuclide, is useful for example in cyclotron nuclear medicine, such as quantitative and dynamic diagnosis of various organs including the brain, among the radiopharmaceuticals necessary for image diagnosis of medicines. It is indispensable. However, 11C has an extremely short lifespan (its half-life is only 20 minutes), and it produces molecules with simple structures such as inorganic gases whose constituent elements are 11C synthesized using cyclotrons, etc. This is to synthesize a labeled aldose with a more complex structure using as a raw material. Therefore, it is necessary to lead to the target substance in as short a time as possible. Furthermore, since the compound has the physiological activity of labeled aldose, it is desirable that chemical stereocontrol be achieved during the synthesis process and that the labeling position can be specified. However, this is not possible with conventional methods; for example, in the case of D-glucose, a production method using a photosynthetic reaction (JF.
Lifton and M. J. Welk, Radiation Research (Radiat. Res.), 45, 35 (
(1971), but in this method, the labeling position of the target product is unspecified, and various impurities and pyrogens derived from biosynthetic reactions are present, which must be removed. There are drawbacks. Chemical synthesis has also been attempted to improve these shortcomings, and a method using Killiany-Fischer synthesis of H11CN and arabinose (
C. Y. Hsu and A. P. Wolf, Journal of Labeled Compounds Radiopharmaceuticals (J. Labeled Compd.
s. Radiopharm. ), 22, 171 (198
5) etc. are known, but in such methods, the stereocontrol in the cyanohydrination reaction is not complete, and therefore,
The disadvantage is that the target substance is a mixture of stereoisomers, making it difficult to isolate and purify it.

【0004】0004

【発明が解決しようとする課題】このように従来法は反
応時間が長いうえアルドースの収率が悪い。不純物の分
離精製が困難である。立体異性体を単離精製手段を経る
ことなく、直接得ることができない。特に11C標識ア
ルドースを収率よく得ることができない。といった欠点
があった。
Problems to be Solved by the Invention As described above, in the conventional method, the reaction time is long and the yield of aldose is poor. It is difficult to separate and purify impurities. Stereoisomers cannot be obtained directly without undergoing isolation and purification procedures. In particular, 11C-labeled aldose cannot be obtained in good yield. There were some drawbacks.

【0005】[0005]

【課題を解決するための手段】本発明は、極性溶媒中、
金属触媒の存在下、水酸基を保護したアルドースとトリ
置換シリルシアニドを反応させてシアノヒドリンを生成
させ、これを還元加水分解することを特徴とする不斉炭
素数が1個増加したアルドースの製造法である。
[Means for Solving the Problems] The present invention provides that in a polar solvent,
This is a method for producing an aldose with an increased number of asymmetric carbon atoms by one, which is characterized by reacting an aldose with a protected hydroxyl group with a trisubstituted silyl cyanide in the presence of a metal catalyst to produce cyanohydrin, and then reductively hydrolyzing this. .

【0006】原料物質、水酸基を保護したアルドース(
(I)以下、保護されたアルドースと称することがある
)のアルドースとしてはアルデヒド基を有する単糖類の
いずれでもよい。例えば、アルドトリオース、アルドテ
トロース、アルドペントース、アルドヘキソース、アル
ドヘプトースなどが挙げられる。又、その保護基として
は、この分野で用いられるものが全て適用しうるが、例
えばイソプロピリデン基などが好ましい。保護されたア
ルドースは、例えばヘルムート・チンナー、エカルド・
ヴィッテンバーグ及びゲルハルト・レンバルツ、ヘミル
シェ・ベリヒテ(Chem.Ber.)92、1614
(1959)に記載される方法又はこれに準じる方法に
よってアルドースから合成できる。又、置換シリルシア
ニドとしては、目的物質のアルドースとして立体異性体
を得るにはバルキーな置換基を有するものがよく、例え
ばトリアルキルシリルシアニド、より好ましくはトリ低
級アルキルシリルシアニド、例えばトリメチルシリルシ
アニドが挙げられる。極性溶媒としては、保護されたア
ルドースとアルドースは溶解するが金属触媒は全くない
しほとんど溶解しないものがよく、かかる溶媒としては
、例えばハロゲン化アルキル(ジクロロメタン、ジクロ
ロエタン、クロロホルム、四塩化炭素、ジブロモメタン
等)やテトラヒドロフランなどが挙げられる。金属触媒
としてはカルボニル基への求核付加反応に通常用いられ
る無機金属塩や有機金属、特にハロゲン化亜鉛(例えば
ヨウ化亜鉛、臭化亜鉛など)、ハロゲン化マグネシウム
(例えば臭化マグネシウムなど)そしてシアン化金属(
例えばシアン化第一銅など)などが挙げられる。保護さ
れたアルドースとトリ置換シリルシアニドとの反応モル
比は特に限定されないが通常ほぼ1:3程度の割合でよ
い。 又、極性溶媒及び金属触媒の使用量も特に限定されない
が、それぞれ原料物質保護されたアルドースの当モル程
度でよい。反応は、室温で、常圧下に行ないうるが、所
望により加温加圧下に行なってもよい。反応時間は一般
に極めて短時間、長くても数分以内に完了する。この反
応により生成するシアノヒドリン(II)を次に還元加
水分解して、目的物質である元のアルドースより炭素数
が1個増加したアルドース((III)以下、目的のア
ルドースと称することがある)を生成させる。還元加水
分解は、シアノ基のアルデヒド基への還元並びに水酸基
における保護基の離脱であり、この分野における常法に
より容易に行ないうる。還元は例えばラネーニッケルな
どの不均一系金属触媒、ジイソブチルアルミニウムヒド
リドなどのアルミニウム系還元剤や水素化ホウ素ナトリ
ウムなどのホウ素系還元剤を用いて行ないうる。又、加
水分解は、例えば蟻酸、酢酸などの有機酸や塩酸などの
鉱酸を用いて行ないうる。還元と加水分解は、個々に行
なうこともできるが一挙に行なうのが便宜上好ましい。 例えば、低級アルコール(メタノール、エタノール等)
を溶媒とし、蟻酸及びラネーニッケルの存在下、加熱還
流するなどの手段を取りうる。目的のアルドースは、常
法により採取しうるが、特に本発明においては、副生成
物が生成しないので、単に生成溶液から固形分を除去し
て得られる溶液ないしシロップ状溶液を目的のアルドー
ス含有物として次の目的に使用しうる。
Raw material, aldose with protected hydroxyl group (
The aldose in (I) (hereinafter sometimes referred to as protected aldose) may be any monosaccharide having an aldehyde group. Examples include aldtriose, aldotetrose, aldopentose, aldohexose, and aldoheptose. Further, as the protecting group, all those used in this field can be used, but for example, isopropylidene group is preferable. Protected aldoses are, for example, Helmut Chinner, Ecardo
Wittenberg and Gerhard Lembarz, Chem. Ber. 92, 1614.
(1959) or a method analogous thereto. In addition, the substituted silyl cyanide preferably has a bulky substituent in order to obtain a stereoisomer as the aldose of the target substance, such as trialkylsilyl cyanide, more preferably tri-lower alkylsilyl cyanide, such as trimethylsilyl cyanide. can be mentioned. The polar solvent is preferably one that dissolves the protected aldose and aldose, but does not dissolve the metal catalyst at all or hardly dissolves it. Examples of such a solvent include alkyl halides (dichloromethane, dichloroethane, chloroform, carbon tetrachloride, dibromomethane, etc.). ) and tetrahydrofuran. Metal catalysts include inorganic metal salts and organic metals commonly used in nucleophilic addition reactions to carbonyl groups, especially zinc halides (e.g. zinc iodide, zinc bromide, etc.), magnesium halides (e.g. magnesium bromide, etc.), and Metal cyanide (
Examples include cuprous cyanide, etc.). The reaction molar ratio between the protected aldose and the trisubstituted silyl cyanide is not particularly limited, but is usually about 1:3. Further, the amounts of the polar solvent and the metal catalyst to be used are not particularly limited, but each may be about the same mole of the protected aldose as the raw material. The reaction may be carried out at room temperature under normal pressure, but may also be carried out under heating and pressure, if desired. The reaction time is generally very short, at most within a few minutes. The cyanohydrin (II) produced by this reaction is then reductively hydrolyzed to produce the target substance, an aldose (hereinafter sometimes referred to as the target aldose), which has one more carbon number than the original aldose. Generate. Reductive hydrolysis is the reduction of a cyano group to an aldehyde group and the removal of a protecting group from a hydroxyl group, and can be easily carried out by conventional methods in this field. Reduction can be carried out using, for example, a heterogeneous metal catalyst such as Raney nickel, an aluminum-based reducing agent such as diisobutylaluminum hydride, or a boron-based reducing agent such as sodium borohydride. Hydrolysis can also be carried out using, for example, an organic acid such as formic acid or acetic acid, or a mineral acid such as hydrochloric acid. Although reduction and hydrolysis can be carried out individually, it is preferable for convenience to carry them out all at once. For example, lower alcohols (methanol, ethanol, etc.)
may be used as a solvent, and heated under reflux in the presence of formic acid and Raney nickel. The target aldose can be collected by a conventional method, but especially in the present invention, since no by-products are produced, the solution or syrupy solution obtained by simply removing the solid content from the produced solution is used as the target aldose-containing product. It can be used for the following purposes:

【0007】本発明は以下の反応式で示すことができる
The present invention can be represented by the following reaction formula.

【化1】 (式中、Rは水酸基の保護基であり、nは0または正の
整数である。)
[Formula 1] (wherein, R is a hydroxyl protecting group, and n is 0 or a positive integer.)

【0008】[0008]

【発明の効果】本発明によれば、短時間での反応により
収率よく目的のアルドースを生成しうる。特にS配置体
/R配置体比が3以上という立体特異性を有するので、
立体異性体の単離精製を必要としない。特に目的のアル
ドースが11C標識化合物の場合、反応時間が短く、精
製を要しないので寿命の短い化合物を最大限に利用しう
る。さらに低能度での反応が可能であるので、目的の標
識アルドースを含む反応精製物をそのままサイクロトロ
ン核医学の目的に適用しうる。といったすぐれた効果を
奏しうる。
According to the present invention, the desired aldose can be produced in high yield through a short reaction time. In particular, it has stereospecificity with an S configuration/R configuration ratio of 3 or more,
No isolation and purification of stereoisomers is required. In particular, when the target aldose is a 11C-labeled compound, the reaction time is short and no purification is required, making it possible to make maximum use of short-lived compounds. Furthermore, since the reaction can be performed at a low efficiency, the reaction purified product containing the target labeled aldose can be applied as it is for the purpose of cyclotron nuclear medicine. It can produce excellent effects.

【0009】[0009]

【実施例】【Example】

実施例1 (D−マンノースの合成単離例)2,3:4,5−ジ−
O−イソプロピリデン−D−アラビノース(V)(20
mg,0.087mmol)を乾燥ジクロロメタン(0
.5ml)に溶解後、ヨウ化亜鉛(31mg,0.09
7mmol)を加えた。この混合物に室温下、撹はんし
ながらトリメチルシリルシアニド(37μl,0.28
mmol)を滴下し、室温下3分間撹はんした。反応混
合物をろ過し、ろ液を減圧濃縮して残渣を得た。この残
渣にエチルアルコール(1ml)、30%蟻酸(1ml
)およびラネーニッケル(80mg)を加えて100℃
下にて10分間還流した。反応混合物をろ過し、ろ液を
減圧濃縮し、得られた残渣を蒸留水(3ml)に溶解し
て脱塩装置(旭化成工業社製、マイクロアシライザーS
−1型)により脱塩操作を行ない、得られた水溶液を減
圧濃縮することにより、D−マンノース(11mg,7
0%)をシロップとして得た。この得られた化合物は高
速液体カラムクロマトグラフィーにて標品と比較分析す
ることにより同定された。 高速液体カラムクロマトグラフィー分析:ポンプ:島津
製作所(株)製、LC−9A型示差屈折率検出器:昭和
電工(株)製、RISE−61型イオン交換樹脂型カラ
ム:昭和電工(株)製、イオンパックKS−801型 展開溶媒:脱炭酸水 流速:1.0ml/min. カラム温度:70℃ 保持時間:8.46min.
Example 1 (Synthesis and isolation example of D-mannose) 2,3:4,5-di-
O-isopropylidene-D-arabinose (V) (20
mg, 0.087 mmol) in dry dichloromethane (0.
.. Zinc iodide (31 mg, 0.09
7 mmol) was added. Trimethylsilyl cyanide (37 μl, 0.28 μl) was added to this mixture while stirring at room temperature.
mmol) was added dropwise, and the mixture was stirred at room temperature for 3 minutes. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to obtain a residue. Ethyl alcohol (1 ml) and 30% formic acid (1 ml) were added to this residue.
) and Raney nickel (80 mg) at 100°C.
The mixture was refluxed for 10 minutes at a lower temperature. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure, and the resulting residue was dissolved in distilled water (3 ml) using a desalting device (manufactured by Asahi Kasei Corporation, Microacylizer S).
D-mannose (11 mg, 7
0%) was obtained as syrup. The obtained compound was identified by comparative analysis with a standard product using high performance liquid column chromatography. High performance liquid column chromatography analysis: Pump: Shimadzu Corporation, LC-9A differential refractive index detector: Showa Denko KK, RISE-61 ion exchange resin column: Showa Denko KK, Ionpack KS-801 type Developing solvent: Decarbonated water Flow rate: 1.0ml/min. Column temperature: 70°C Retention time: 8.46min.

【0010】実施例2 (シアノヒドリン誘導体の分析例)2,3:4,5−ジ
−O−イソプロピリデン−D−アラビノース(IV)(
20mg,87μmol)を各溶媒(500μl)に溶
解後、室温下、各金属触媒(1.1当量)を加え、続い
てトリメチルシリルシアニド(37μl,0.28mm
ol)を滴下して3分間室温撹拌後、反応液50μlを
取って、1.0M  n−Bu4NF  THF溶液:
10%クエン酸メタノール溶液=1:3混合液(150
μl)を加えて処理を行なった後、HPLC分析した。 尚、この脱シリル化の条件ではシアノヒドリン誘導体の
ラセミ化が除々に進行するため、HPLC分析はすべて
室温1分間処理後に統一した(第1表参照)。 高速液体カラムクロマトグラフィー分析:ポンプ:島津
製作所(株)製、LC−9A型示差屈折率検出器:島津
製作所(株)製、RID−6A型カラム:Waters
社製ラジアルパックC18(8mm×10cm,5μ) 展開溶媒:アセトニトリル:0.003M  KH2P
O4水溶液=2:3 流速:1.5ml/min. カラム温度:室温 保持時間:3,4:5,6−ジ−O−イソプロピリデン
−D−グルコノニトリル (R体、V):6.5616min. 保持時間:3,4:5,6−ジ−O−イソプロピリデン
−D−マンノノニトリル (S体、VI):6.035min.
Example 2 (Analysis example of cyanohydrin derivative) 2,3:4,5-di-O-isopropylidene-D-arabinose (IV) (
After dissolving 20 mg, 87 μmol) in each solvent (500 μl), each metal catalyst (1.1 equivalent) was added at room temperature, followed by trimethylsilyl cyanide (37 μl, 0.28 mm
After stirring at room temperature for 3 minutes, take 50 μl of the reaction solution and add 1.0 M n-Bu4NF THF solution:
10% citric acid methanol solution = 1:3 mixture (150
After treatment, HPLC analysis was performed. Note that under these desilylation conditions, racemization of the cyanohydrin derivative progresses gradually, so all HPLC analyzes were performed after treatment at room temperature for 1 minute (see Table 1). High performance liquid column chromatography analysis: Pump: manufactured by Shimadzu Corporation, LC-9A type differential refractive index detector: manufactured by Shimadzu Corporation, RID-6A type column: Waters
Radial Pack C18 (8mm x 10cm, 5μ) Developing solvent: Acetonitrile: 0.003M KH2P
O4 aqueous solution = 2:3 flow rate: 1.5ml/min. Column temperature: room temperature holding time: 3,4:5,6-di-O-isopropylidene-D-glucononitrile (R form, V): 6.5616 min. Retention time: 3,4:5,6-di-O-isopropylidene-D-mannononitrile (S form, VI): 6.035 min.

【0011】                       第1表
                シアノヒドリン化反
応条件    反応例      金属触媒     
   溶媒              VI/V  
    1        Znl2        
CH2Cl2        6.01      2
        Znl2    ClCH2CH2C
l    3.34      3        Z
nl2        CHCl3        1
6.7      4        Znl2   
     CCl4            4.0 
     5        ZnBr2      
CH2Cl2      11.0      6  
      ZnBr2      CCl4    
        6.80      7      
  MgBr2      CH2Cl2      
  6.44      8        CuCN
        CH2Cl2        6.5
Table 1 Cyanohydrination reaction conditions Reaction example Metal catalyst
Solvent VI/V
1 Znl2
CH2Cl2 6.01 2
Znl2 ClCH2CH2C
l 3.34 3 Z
nl2 CHCl3 1
6.7 4 Znl2
CCl4 4.0
5 ZnBr2
CH2Cl2 11.0 6
ZnBr2 CCl4
6.80 7
MgBr2 CH2Cl2
6.44 8 CuCN
CH2Cl2 6.5
0

【化2】[Chemical 2]

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  極性溶媒中、金属触媒の存在下、水酸
基を保護したアルドースと置換シリルシアニドを反応さ
せてシアノヒドリンを生成させ、これを還元加水分解す
ることを特徴とする不斉炭素数が1個増加したアルドー
スの製造法。
[Claim 1] A method having one asymmetric carbon, characterized by reacting an aldose with a protected hydroxyl group with a substituted silyl cyanide in a polar solvent in the presence of a metal catalyst to produce cyanohydrin, which is then reductively hydrolyzed. Method for producing increased aldoses.
【請求項2】  水酸基が保護されたアルドースがイソ
プロビリデン基で保護されたものである請求項1の製造
法。
2. The method according to claim 1, wherein the aldose with a protected hydroxyl group is protected with an isopropylidene group.
【請求項3】  置換シリルシアニドがトリアルキルシ
リルシアニドである請求項1の製造法。
3. The method according to claim 1, wherein the substituted silyl cyanide is a trialkylsilyl cyanide.
【請求項4】  極性溶媒がハロゲン化アルキルである
請求項1の製造法。
4. The method according to claim 1, wherein the polar solvent is an alkyl halide.
【請求項5】  金属触媒がハロゲン化亜鉛である請求
項1の製造法。
5. The method according to claim 1, wherein the metal catalyst is zinc halide.
【請求項6】  中間体シアノヒドリンを分離すること
なく反応を連続的に行なう請求項1の製造法。
6. The production method according to claim 1, wherein the reaction is carried out continuously without separating the intermediate cyanohydrin.
【請求項7】  アルドースが立体異性体である請求項
1の製造法。
7. The method according to claim 1, wherein the aldose is a stereoisomer.
【請求項8】  置換シリルシアニドとして11Cシア
ニドを用い目的物質11C標識アルドースを得る請求項
1の製造法。
8. The production method according to claim 1, wherein the target substance 11C-labeled aldose is obtained using 11C cyanide as the substituted silyl cyanide.
JP3132621A 1991-06-04 1991-06-04 Rapid and asymmetric production of aldose Pending JPH04360896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132621A JPH04360896A (en) 1991-06-04 1991-06-04 Rapid and asymmetric production of aldose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132621A JPH04360896A (en) 1991-06-04 1991-06-04 Rapid and asymmetric production of aldose

Publications (1)

Publication Number Publication Date
JPH04360896A true JPH04360896A (en) 1992-12-14

Family

ID=15085611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132621A Pending JPH04360896A (en) 1991-06-04 1991-06-04 Rapid and asymmetric production of aldose

Country Status (1)

Country Link
JP (1) JPH04360896A (en)

Similar Documents

Publication Publication Date Title
US10953112B2 (en) Precursor compound of radioactive halogen-labeled organic compound
JP2016204314A (en) Compound and method for producing 4-boronophenylalanine derivative
KR101842989B1 (en) Process for producing fluorinated compounds using alcohol solvent having carbonyl group
JPH04360896A (en) Rapid and asymmetric production of aldose
CN112778189A (en) (3R,4S) -N-substituent-3-carboxylic acid-4-ethyl pyrrolidine, intermediate and lapatinib
JP2607896B2 (en) Method for producing isotope-labeled 3,4: 5,6-di-O-isopropylidene-D-glucononitrile
JP4895510B2 (en) Method for producing variolamine
JPH05279305A (en) Production of 3'-amino-2'-hydroxyacetophenone
JP2894366B2 (en) Method for producing deacetylcolchicine
JP2890755B2 (en) Cyclic host compound
JPH07107041B2 (en) Oxime derivative and method for producing the same
CN115477628A (en) Synthesis method of ramelteon dimer
KR101136961B1 (en) The preparation method of Valiolamine
CN114671836A (en) Synthesis method of amiodarone impurity C
CN110804065A (en) Method for preparing desoxytazobactam diphenylmethyl ester (M7) by using resin and new application of resin
JPH09104663A (en) Production of optically active 1-(m-benzyloxyphenyl) alkylamine compounds
JP2003146921A (en) Method for producing perfluoroalkyl compound
JPH05140202A (en) Cyclic oligosaccharide and its production and intermediate thereof
JPS62111952A (en) Production of (2-(4-acetoxy-2-isopropyl-5-methylphenoxy)-ethyl)-dimethylamine) hydrochloride
JP2001048850A (en) Production of norstatine derivative
JPH0251417B2 (en)
KR20020088703A (en) A process for preparing L-valine as radioabled compound