JPH043607A - Wide band amplifier - Google Patents

Wide band amplifier

Info

Publication number
JPH043607A
JPH043607A JP2104543A JP10454390A JPH043607A JP H043607 A JPH043607 A JP H043607A JP 2104543 A JP2104543 A JP 2104543A JP 10454390 A JP10454390 A JP 10454390A JP H043607 A JPH043607 A JP H043607A
Authority
JP
Japan
Prior art keywords
frequency
gain
amplifier
low
band amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2104543A
Other languages
Japanese (ja)
Inventor
Masaaki Matsuzaki
正明 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP2104543A priority Critical patent/JPH043607A/en
Publication of JPH043607A publication Critical patent/JPH043607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To smooth high band and low band characteristic and to obtain an excellent overall characteristic by providing a high band amplifier, a low band amplifier, and an equalizer amplifier by coupling an amplified low band signal and an amplified high band signal so as to obtain a smooth frequency characteristic. CONSTITUTION:When the frequency characteristics of a high band amplifier 21 and a low band amplifier 22 are allowed to overlap, there are an area (a) where the gain of the high band amplifier does not exist but only that of the low band amplifier exists, an area (b) where the gain of the high band amplifier starts to appear and the low band amplifier has the same frequency characteristic as the gain for a DC signal, an area (c) where frequency characteristics of gains of both amplifiers are flat, an area (d) where the gain of the high band amplifier is flat and that of the low band amplifier is reduced in accordance with the rise of the frequency, and an area (e) where the gain of the low band amplifier does not exist but the flat frequency characteristic of the high band amplifier exists. The open loop gain of an equalizer amplifier 20 is so set that it is sufficiently high in areas (a) and (b) and is sufficiently low in areas (d) and (e). Thus, the smooth frequency characteristic from a DC to a high frequency is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は広帯域増幅器に関する。さらに具体的には、高
帯域の交流増幅器と低帯域の直流増幅器を組合せた高入
力インピーダンスで低出力インピーダンスの広帯域の直
流増幅器を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wideband amplifier. More specifically, the present invention aims to provide a broadband DC amplifier with high input impedance and low output impedance, which is a combination of a high-band AC amplifier and a low-band DC amplifier.

[従来の技術] 直流から1GH7近くまで平坦な周波数特性を有する高
入力インピーダンスで低い出力インピーダンスの増幅器
が、オシロスコープなどの入力部分に使用されてあり、
その回路例が第3図(a)および(b)に示されている
[Prior Art] Amplifiers with high input impedance and low output impedance, which have flat frequency characteristics from DC to nearly 1GH7, are used in the input section of oscilloscopes, etc.
An example of the circuit is shown in FIGS. 3(a) and 3(b).

第3図において、入力信号は高インピーダンスの入力端
子13に印加され、ソース・ホロワをなす電界効果トラ
ンジスタ36と抵抗46を介して出力端子19から低イ
ンピーダンスで出力される。
In FIG. 3, an input signal is applied to a high impedance input terminal 13, and is outputted at a low impedance from an output terminal 19 via a field effect transistor 36 and a resistor 46, which form a source follower.

電界効果トランジスタ37は電界効果トランジスタ36
と同じ特性のものであり、抵抗47の抵抗値は、抵抗4
6の抵抗値に等しい。そのため、直流オフセットおよび
温度ドリフトは出力端子19には現れない。
The field effect transistor 37 is the field effect transistor 36
The resistance value of the resistor 47 is the same as that of the resistor 4.
equal to the resistance value of 6. Therefore, DC offset and temperature drift do not appear at the output terminal 19.

第3図(b)の従来例では、入力端子13に印加された
信号のうち、高周波成分はコンデンサ67を介してソー
ス・ホロワをなす電界効果トランジスタ36に印加され
、その出力は抵抗46を介して出力端子19に得られる
。入力端子13に印加された信号のうち、直流を含む低
周波成分は抵抗53を介してオペアンプ(演算増幅器)
24に印加され、その出力はトランジスタ32で増幅さ
れて、出力はそのコレクタ側の出力端子19に得られる
。出力端子19からは、抵抗52によってオペアンプ2
4に負帰還がかけられているために、たとえば抵抗53
と52の各抵抗値が等しいものであれば、入力端子13
と出力端子1つとの間の低周波成分に対する電圧増幅度
は1となる。抵抗48と抵抗46とで電界効果トランジ
スタ36の自己バイアス回路が構成され、電界効果トラ
ンジスタ36およびトランジスタ32のソース電流およ
びエミッタ電流が決定される。
In the conventional example shown in FIG. 3(b), the high frequency component of the signal applied to the input terminal 13 is applied to the field effect transistor 36, which serves as a source follower, via the capacitor 67, and the output thereof is applied via the resistor 46. is obtained at the output terminal 19. Among the signals applied to the input terminal 13, low frequency components including direct current are passed through a resistor 53 to an operational amplifier (operational amplifier).
24, its output is amplified by the transistor 32, and the output is obtained at the output terminal 19 on its collector side. From the output terminal 19, an operational amplifier 2 is connected via a resistor 52.
For example, since negative feedback is applied to resistor 53
If the resistance values of and 52 are equal, the input terminal 13
The voltage amplification degree for low frequency components between the output terminal and one output terminal is 1. Resistor 48 and resistor 46 constitute a self-bias circuit for field effect transistor 36, and determine the source current and emitter current of field effect transistor 36 and transistor 32.

[発明が解決しようとする課題] 第3図(a)に示した従来例は回路構成が極めて簡単で
あるという特徴はあるが、直流オフセットおよび温度ド
リフトを小さくするためには電界効果トランジスタ36
.37の特性かよく揃ったものでなければならず、非常
に高価になる。また、広帯域のソース・ホロワを)qる
ために、ガリウム砒素の電界効果トランジスタを用いる
と、出力インピーダンスが周波数により変化するために
、直流から高周波数に至るまで、平坦な周波数特性を得
ることは困難であった。
[Problems to be Solved by the Invention] Although the conventional example shown in FIG. 3(a) is characterized by an extremely simple circuit configuration, the field effect transistor 36 is
.. It must have a good set of 37 characteristics, making it very expensive. Furthermore, if a gallium arsenide field effect transistor is used to generate a broadband source follower, it is difficult to obtain flat frequency characteristics from direct current to high frequencies because the output impedance changes with frequency. It was difficult.

第3図(b)に示した従来例は、(a)に示した従来例
の問題点を解決するためのものであり、周波数特性に優
れたガリウム砒素の電界効果トランジスタ36と、直流
特性に優れたオペアンプ24とを用いて、それぞれ高周
波領域と低周波領域とを分担して増幅するものであり、
高性能の回路を低いコストで実現できるという特徴を有
しでいる。しかしながら、例えば超小型化等の物理的条
件のためにコンデンサ63の容量値が大きくできず、低
域カットオフ周波数を十分下げられないような場合や、
抵抗53に非常に大きな抵抗を使用し、オペアンプ24
に入力される信号の高域カットオフ周波数を十分上げら
れないような場合には、合成した総合周波数特性を平坦
にすることか非常に困難になるという解決されるべき課
題が残されていた。
The conventional example shown in FIG. 3(b) is intended to solve the problems of the conventional example shown in FIG. 3(a), and uses a gallium arsenide field effect transistor 36 with excellent frequency characteristics and It uses an excellent operational amplifier 24 to divide and amplify the high frequency region and the low frequency region, respectively.
It is characterized by the ability to realize high-performance circuits at low cost. However, for example, there are cases where the capacitance value of the capacitor 63 cannot be increased due to physical conditions such as ultra-miniaturization, and the low cutoff frequency cannot be lowered sufficiently;
A very large resistor is used as the resistor 53, and the operational amplifier 24
If the high-frequency cutoff frequency of the input signal cannot be raised sufficiently, it becomes extremely difficult to flatten the synthesized overall frequency characteristic, which remains a problem to be solved.

[課題を解決するための手段] 本発明はこの課題を解決するためになされたものであり
、高域信号を増幅する高域用増幅器と、低域信号を増幅
する低域用増幅器と、増幅された低域信号を増幅された
高域信号と結合して平坦な周波数特性を得るためのイコ
ライザ・アンプを設けた。
[Means for Solving the Problem] The present invention has been made to solve this problem, and includes a high-frequency amplifier that amplifies a high-frequency signal, a low-frequency amplifier that amplifies a low-frequency signal, and an amplifier. An equalizer amplifier was provided to combine the amplified low-frequency signal with the amplified high-frequency signal to obtain a flat frequency characteristic.

[作用コ 高域用増幅器と低域用増幅器の周波数特性をオーバラッ
プせしめると、高域用増幅器の利得は実質的には無く、
低域用増幅器の利得のみか存在する領域aと、高域用増
幅器の利得も現れはじめ、低域用増幅器の周波数特性は
直流信号に対する利得と実質的に同じである領域すと、
高域用増幅器および低域用増幅器の利得の周波数特性が
ともに平坦である領域Cと、高域用増幅器の利得は平坦
で低域用増幅器の利得が周波数の増加とともに下降する
領域dと、低域用増幅器の利得は実質的に無く、高域用
増幅器の平坦な周波数特性の存在する領域eが存在する
。ここで、イコライザ・アンプのオープン・ループ利得
か領域a、bにおいて十−分に大であり、領域d、eに
おいて十分に小であるように設定した。これによって、
直流から高周波に至るまで、極めて平坦な周波数特性を
得ることが可能となった。
[Effects] If the frequency characteristics of the high-frequency amplifier and the low-frequency amplifier are made to overlap, the gain of the high-frequency amplifier is virtually nonexistent;
There is a region a where only the gain of the low-frequency amplifier exists, and a region where the gain of the high-frequency amplifier also begins to appear, and the frequency characteristics of the low-frequency amplifier are substantially the same as the gain for DC signals.
There is a region C in which the frequency characteristics of the gains of the high-frequency amplifier and the low-frequency amplifier are both flat; a region d in which the gain of the high-frequency amplifier is flat and the gain of the low-frequency amplifier decreases as the frequency increases; There is a region e in which the high frequency amplifier has substantially no gain and the high frequency amplifier has flat frequency characteristics. Here, the open loop gain of the equalizer amplifier was set to be sufficiently large in regions a and b, and sufficiently small in regions d and e. by this,
It has become possible to obtain extremely flat frequency characteristics from direct current to high frequencies.

[実施例] 本発明による広帯域増幅器を高入力インピーダンスで低
出力インピーダンスの差動プローブに適用した一実施例
を第1図に示し説明する。ここにおいて、第3図に示し
た従来例の構成要素に対応するものについては、同じ記
号を付した。
[Embodiment] An embodiment in which a wideband amplifier according to the present invention is applied to a differential probe having high input impedance and low output impedance is shown in FIG. 1 and will be described. Here, components corresponding to those of the conventional example shown in FIG. 3 are given the same symbols.

第1図の入力端子11.12には差動入力信号が印加さ
れ、入力信2号の高周波成分は交流結合用のコンデンサ
61.62を介して差動型の高域用増幅器2って増幅さ
れ、その出力は同軸ケーブルである伝送線路71を介し
てエミッタ・ホロワをなすトランジスタ31のベースに
印加される。抵抗43は、同軸ケーブルである伝送線路
71の特性インピーダンスに等しい抵抗値を有しており
、終端抵抗として作用する。トランジスタ31のエミッ
タからの高周波成分出力は抵抗44(抵抗値RS)を介
して出力端子19に得られる。
A differential input signal is applied to the input terminals 11 and 12 in FIG. The output thereof is applied to the base of the transistor 31 which forms an emitter follower via a transmission line 71 which is a coaxial cable. The resistor 43 has a resistance value equal to the characteristic impedance of the transmission line 71, which is a coaxial cable, and acts as a terminating resistor. A high frequency component output from the emitter of the transistor 31 is obtained at the output terminal 19 via a resistor 44 (resistance value RS).

入力端子11.12に印加された差動入力信号のうち、
低周波成分は、高抵抗41.42および伝送線路(同軸
ケーブルである必要はない)72゜73を介して差動型
の低域用増幅器22で増幅され、その出力は抵抗51を
介して破線で示すイコライザ・アンプ20に印加される
。イコライザ・アンプ20には、オペアンプ(演算増幅
器)23とローパス・フィルタ59が含まれており、こ
こを通過した低周波成分はトランジスタ32のベースに
印加され、増幅されて、出力端子19に得られる。出力
端子19に得られた信号は、抵抗52を介してオペアン
プ23に負帰還される。
Of the differential input signals applied to input terminals 11 and 12,
The low frequency component is amplified by a differential low frequency amplifier 22 via a high resistance 41, 42 and a transmission line (not necessarily a coaxial cable) 72, 73, and its output is output via a resistor 51 via a broken line. It is applied to the equalizer amplifier 20 shown by . The equalizer amplifier 20 includes an operational amplifier (operational amplifier) 23 and a low-pass filter 59, and the low frequency components that have passed through these are applied to the base of the transistor 32, amplified, and obtained at the output terminal 19. . The signal obtained at the output terminal 19 is negatively fed back to the operational amplifier 23 via the resistor 52.

入力端子11側の信号の極性を基準にすると、高域用増
幅器21は非反転増幅器であり、低域用増幅器22は反
転増幅器である。オペアンプ23とトランジスタ32か
らなる増幅器は、その出力端子19から抵抗52で負帰
還をかけてあり、入力信号は抵抗51を介して印加され
ているから、反転増幅器であり、その利得は抵抗52の
値(R2)と抵抗51の値(R1)の比(R2/R1)
によって定まる。
Based on the polarity of the signal on the input terminal 11 side, the high-frequency amplifier 21 is a non-inverting amplifier, and the low-frequency amplifier 22 is an inverting amplifier. The amplifier consisting of the operational amplifier 23 and the transistor 32 has negative feedback applied from its output terminal 19 through the resistor 52, and the input signal is applied through the resistor 51, so it is an inverting amplifier, and its gain is the value of the resistor 52. Ratio (R2/R1) of the value (R2) and the value (R1) of the resistor 51
Determined by

入力信号の高周波成分の経路、すなわちコンデンサ61
,62.高域用増幅器21.伝送線路71、トランジス
タ31.抵抗41の経路の伝達関数をGH(s) 、低
周波成分の経路のうち、抵抗41.42.伝送線路72
.73.低域用増幅器22の伝達関数をGL (s) 
、オペアンプ23.ローパス・フィルタ59.かうなる
イコライザ・アンプのオープン・ループ利得の伝達関数
をA (S)として、入力嫡子11.12から出力端子
19に至る総合伝達関数G(S)を求めると、次式のよ
うになる。
The high frequency component path of the input signal, that is, the capacitor 61
,62. High frequency amplifier 21. Transmission line 71, transistor 31. The transfer function of the path of the resistor 41 is GH(s), and among the paths of the low frequency component, the resistors 41, 42 . Transmission line 72
.. 73. The transfer function of the low-frequency amplifier 22 is GL (s)
, operational amplifier 23. Low-pass filter 59. Assuming that the open loop gain transfer function of the equalizer amplifier is A (S), the overall transfer function G (S) from the input heirs 11 and 12 to the output terminal 19 is determined by the following equation.

±R3−1GH(S)コ x (R1+R2> ”A(s) 2−’この式を簡単
にするために、R1=R2=Rとし、かつ2R〉〉R8
、すなわち、イコライザ・アンプ20とトランジスタ3
2および抵抗51゜52からなる負帰還増幅器の利得を
−1として、抵抗52 (R2>が出力端子19におけ
る負荷とならないような値にするならば、 G(s) ”” [(2RE) −’R3A(s) G
1 (S)+GH(S)コ x  [(2RE  )  −1R8A(s)  +1
 ]  −1が得られる。この式から、すべての周波数
帯域で利得がたとえば1、すなわち総合伝達関数G(S
)−1となる平坦な特性を得るためのオープン・ループ
伝達関数A(S)の条件を求める。
±R3-1GH(S) cox (R1+R2>"A(s)2-' To simplify this equation, set R1=R2=R, and 2R>>R8
, that is, equalizer amplifier 20 and transistor 3
If the gain of the negative feedback amplifier consisting of 2 and resistors 51 and 52 is set to -1, and the value is set such that the resistor 52 (R2> does not become a load at the output terminal 19), then G(s) "" [(2RE) - 'R3A(s) G
1 (S)+GH(S)kox [(2RE) -1R8A(s) +1
] −1 is obtained. From this equation, it can be seen that the gain is, for example, 1 in all frequency bands, that is, the overall transfer function G(S
) -1 to obtain a flat characteristic for the open loop transfer function A(S).

第2図には低域伝達関数GL (s) 、 GH(s)
が実線で、オープン・ループ伝達関数A(S)が破線で
小されている。
Figure 2 shows the low-frequency transfer functions GL (s) and GH (s).
is the solid line, and the open loop transfer function A(S) is reduced by the dashed line.

横軸の周波数の領域aにおいては、高域伝達関数GH(
s)の値は実質的にOであり、低域伝達関数GE(S)
の値は1である。
In the frequency region a on the horizontal axis, the high-frequency transfer function GH (
s) is substantially O, and the low-frequency transfer function GE(S)
The value of is 1.

周波数の領域すにおいては、高域伝達関数GH(S)の
値は大きくなり始めるが1よりは小さく、低域伝達関数
G1 (s)は1である。
In the frequency domain, the value of the high-frequency transfer function GH(S) starts to increase but is smaller than 1, and the value of the low-frequency transfer function G1 (s) is 1.

周波数の領域Cにおいては、高域伝達関数GH(S)お
よび低域伝達関数G、(S)の値はともに1である。
In the frequency region C, the values of the high-frequency transfer function GH(S) and the low-frequency transfer functions G,(S) are both 1.

周波数の領域dにおいては、高域伝達関数GH(S)の
値は1であるが、低域伝達関数GL(S)は減少し始め
ており、その値は1より小さい。
In the frequency region d, the value of the high-frequency transfer function GH(S) is 1, but the low-frequency transfer function GL(S) has begun to decrease and its value is smaller than 1.

周波数の領域eにおいては、高域伝達関数GH(S)の
値は1のまま平坦な特性か高い周波数に至るまで続くが
、低域伝達関数G、(S)の値は十分に減衰して実質的
にOである。尚、ここで伝達関数が1でおるといった時
の意味は、単にその絶対値(ゲイン)が1に近いという
だけでなく、位相回りも無視できるぐらい小さいという
ことに留意する必要がある。
In the frequency region e, the value of the high-frequency transfer function GH (S) remains 1 and remains flat until reaching high frequencies, but the value of the low-frequency transfer function G, (S) is sufficiently attenuated. It is substantially O. It should be noted that here, when we say that the transfer function is 1, we mean not only that its absolute value (gain) is close to 1, but also that the phase rotation is so small that it can be ignored.

この5つの周波数の領域a、b、c、d、eについて総
合伝達関数G (s)を求めると、領域aにおいて、 G1 (s) =1. GH(s) =0だからG(s
)= (R3/2RE > (R3/2RE+ 1 /
A(s) ) −1 ここで△(S)−閃なら G(s)=1 領域すにおいて、 GL (S) = 1 、 GH(S) =g(0<Q
< 1 )だから ここでA(s)=■なら G(s)=1 領域Cにおいて、 GL(s) −1、GH(S) = 1だから領域dに
おいて、 G1 (s)=g(0<Ω<1>、GH(S)=1だか
ら ここでA(S)=Oなら G(S)=1 領域eにおいて、 ここでA(s)=Oなら G(s)=1 が得られる。
When calculating the overall transfer function G (s) for these five frequency regions a, b, c, d, and e, in region a, G1 (s) = 1. Since GH(s) = 0, G(s
) = (R3/2RE > (R3/2RE+ 1 /
A(s) ) -1 Here, if △(S) - flash, G(s) = 1 In the area, GL (S) = 1, GH(S) = g(0<Q
< 1) Therefore, if A(s) = ■, then G(s) = 1 In area C, GL(s) -1, GH(S) = 1, so in area d, G1 (s) = g(0 <Ω<1>, GH(S)=1, so if A(S)=O then G(S)=1 In region e, if A(s)=O then G(s)=1 is obtained.

各領域a−eにおけるイコライザ・アンプのオープン・
ループ伝達関数A(S)の条件を図示するならば、第2
図の破線で示すようになり、ループ伝達関数A(S)が
領域a、b!、:おいて実質的に無限大であるとみなせ
る程に十分に大きく、領域d。
Open equalizer amplifier in each region a-e
To illustrate the condition of the loop transfer function A(S), the second
As shown by the broken line in the figure, the loop transfer function A(S) is in the areas a, b! , : is sufficiently large that it can be considered to be essentially infinite in the area d.

eにおいてはOとみなせる程に十分に小さくなれば、領
域Cにおいてはどのような値であろうとも、すべての周
波数領域a〜eにおいて総合伝達関数G (s)は1を
示すことがわかる。但し、このイコライザ・アンプは、
外部帰還抵抗により帰還増幅器として動作するので、そ
の帰還ループにおける位相余裕も十分考慮する必要があ
る。
It can be seen that if the value is small enough to be regarded as O in e, the overall transfer function G (s) exhibits 1 in all frequency regions a to e, regardless of the value in region C. However, this equalizer amplifier is
Since it operates as a feedback amplifier using an external feedback resistor, it is necessary to consider the phase margin in the feedback loop.

第1図においては、オシロスコープなどの使用に適した
プローブに本発明を実施した例を示した。
FIG. 1 shows an example in which the present invention is implemented in a probe suitable for use in an oscilloscope or the like.

そのために、プローブの先端部と出力部との間に伝送線
路71〜73が用いられている。したがって、この伝送
線路71〜73を必要としない場合には伝送線路71〜
73と抵抗43を省略してもよい。低域用増幅器22は
負帰還をかけたオペアンプを含む回路で構成可能である
。高域用増幅器21はたとえば広帯域オシロスコープの
増幅器と同じものによって容易に実説することができる
For this purpose, transmission lines 71 to 73 are used between the tip of the probe and the output section. Therefore, when the transmission lines 71 to 73 are not required, the transmission lines 71 to 73 are not required.
73 and the resistor 43 may be omitted. The low-frequency amplifier 22 can be configured with a circuit including an operational amplifier with negative feedback. The high-frequency amplifier 21 can be easily demonstrated by, for example, the same amplifier as that of a wideband oscilloscope.

また、ローパス・フィルタ59は抵抗とコンデンサある
いはインダクタンスとコンデンサなどの組合せによって
容易に突環することができる。第1図には差動型の入力
端子11.12を例示したが、1つの入力端子の場合で
あっても本発明を適用することかできることは以上の説
明から明らかであろう。
Further, the low-pass filter 59 can be easily formed into a ring by combining a resistor and a capacitor or an inductance and a capacitor. Although differential input terminals 11 and 12 are illustrated in FIG. 1, it will be clear from the above description that the present invention can be applied even to a single input terminal.

[発明の効果] 以上の説明から明らかなように、本発明によるならば、
高域特性に優れた高域用増幅器と低域特性に優れた低域
用増幅器とを用いて両特性をイコライザ・アンプによっ
て平坦にして優れた総合特性を得ることができるように
なったから本発明の効果は極めて大きい。
[Effect of the invention] As is clear from the above explanation, according to the present invention,
This invention makes it possible to obtain excellent overall characteristics by using a high-frequency amplifier with excellent high-frequency characteristics and a low-frequency amplifier with excellent low-frequency characteristics and flattening both characteristics with an equalizer amplifier. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の広帯域増幅器の一実施例の回路図、 第2図は第1図に示した広帯域増幅器の周波数特性を説
明するための周波数特性図、 第3図は従来の広帯域増幅器の回路図である。 1〜48.51〜53・・−抵抗 9・・・ローパス・フィルタ 1〜63・・・コンデンサ 1〜73・・・伝送線路。
Fig. 1 is a circuit diagram of an embodiment of the wideband amplifier of the present invention, Fig. 2 is a frequency characteristic diagram for explaining the frequency characteristics of the wideband amplifier shown in Fig. 1, and Fig. 3 is a diagram of the conventional wideband amplifier. It is a circuit diagram. 1-48.51-53...-Resistor 9...Low-pass filter 1-63...Capacitor 1-73...Transmission line.

Claims (1)

【特許請求の範囲】 高域信号を増幅する高域用増幅手段(21、31)と 前記高域用増幅手段の平坦部の利得に等しい平坦部の利
得を有する低域信号を増幅する低域増幅手段(22)と
、 前記高域用増幅手段の利得は実質的には無く、前記低域
用増幅手段の利得のみが存在する周波数の領域aと、前
記高域用増幅手段が前記平坦部の利得よりは小さい利得
を示し、前記低域用増幅手段が前記平坦部の利得を有す
る周波数の領域bと、前記高域用増幅手段および前記低
域用増幅手段がともに前記平坦部の利得を有する周波数
の領域cと、前記高域用増幅手段が平坦部の利得を有し
、前記低域用増幅手段が前記平坦部の利得よりは小さい
利得を示す周波数の領域dと、前記高域用増幅手段が平
坦部の利得を有し、前記低域用増幅手段の利得は実質的
に無い周波数の領域eが存在し、オープン・ループ利得
が前記領域aおよびbにおいては前記平坦部の利得に対
して十分大きな利得を有し、前記領域dおよびeにおい
ては前記平坦部の利得に対して十分に小なる利得を示し
て、前記高域用増幅手段と前記低域用増幅手段のそれぞ
れの出力を結合して平坦な周波数特性を得るためのイコ
ライザ手段、(20、32、51、52)とを含む広帯
域増幅器。
[Claims] A high-frequency amplification means (21, 31) for amplifying a high-frequency signal and a low-frequency amplification means for amplifying a low-frequency signal having a flat part gain equal to the flat part gain of the high-frequency amplification means. an amplifying means (22); a frequency region a in which there is substantially no gain of the high-frequency amplifying means and only a gain of the low-frequency amplifying means; and a frequency region a in which the high-frequency amplifying means has substantially no gain; in a frequency region b in which the low-frequency amplification means has a gain in the flat part, and the high-frequency amplification means and the low-frequency amplification means both have a gain in the flat part. a frequency region c in which the high frequency amplifying means has a gain in a flat portion, and a frequency region d in which the low frequency amplifying means has a gain smaller than the gain in the flat portion; There is a frequency region e in which the amplifying means has a flat gain and the low frequency amplifying means has substantially no gain, and the open loop gain is equal to the flat gain in the regions a and b. In the regions d and e, the gains are sufficiently large relative to the gains in the flat portions, and the respective outputs of the high-frequency amplification means and the low-frequency amplification means are and equalizer means (20, 32, 51, 52) for obtaining a flat frequency characteristic by combining.
JP2104543A 1990-04-20 1990-04-20 Wide band amplifier Pending JPH043607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104543A JPH043607A (en) 1990-04-20 1990-04-20 Wide band amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104543A JPH043607A (en) 1990-04-20 1990-04-20 Wide band amplifier

Publications (1)

Publication Number Publication Date
JPH043607A true JPH043607A (en) 1992-01-08

Family

ID=14383403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104543A Pending JPH043607A (en) 1990-04-20 1990-04-20 Wide band amplifier

Country Status (1)

Country Link
JP (1) JPH043607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005184628A (en) * 2003-12-22 2005-07-07 Yokogawa Electric Corp Input circuit
JP2008544250A (en) * 2005-06-13 2008-12-04 カスケード マイクロテック インコーポレイテッド Wideband active / passive differential signal probe
US7735660B2 (en) 2002-10-23 2010-06-15 Sumitomo Electric Fine Polymer, Inc. Porous multilayered hollow fiber and filtration module, and method of manufacturing porous multilayered hollow fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7735660B2 (en) 2002-10-23 2010-06-15 Sumitomo Electric Fine Polymer, Inc. Porous multilayered hollow fiber and filtration module, and method of manufacturing porous multilayered hollow fiber
JP2005184628A (en) * 2003-12-22 2005-07-07 Yokogawa Electric Corp Input circuit
JP2008544250A (en) * 2005-06-13 2008-12-04 カスケード マイクロテック インコーポレイテッド Wideband active / passive differential signal probe

Similar Documents

Publication Publication Date Title
US5300896A (en) Bootstrapped, AC-coupled differential amplifier
US5568561A (en) Differential line receiver with common-mode AC bootstrapping
US5379457A (en) Low noise active mixer
JP2005345469A (en) Wide bandwidth input attenuation circuit for measuring probe
KR100427878B1 (en) Amplifier circuit
US5736899A (en) Fully differential voltage controlled operational transconductance amplifier
US4381487A (en) Resonator coupled differential amplifier
US4940949A (en) High efficiency high isolation amplifier
JPS626722Y2 (en)
JP3953590B2 (en) An electronic circuit that converts a differential input voltage to a single-ended output voltage
JPS6315764B2 (en)
JPH043607A (en) Wide band amplifier
NL8204024A (en) OPERATIONAL AMPLIFIER.
JPS5931048Y2 (en) low noise amplifier
JPH0237723B2 (en)
JPH0677739A (en) Gain control circuit
JPS6330012A (en) Differential amplifier circuit
JPH0310244B2 (en)
US10116269B1 (en) Differential amplifier with extended bandwidth and THD reduction
JP2607678B2 (en) Differential amplifier circuit
JPS63279607A (en) Level shift circuit
JP3854118B2 (en) Composite electronic circuit
JPS58181304A (en) Wide band amplifying circuit
JP4221131B2 (en) Variable gain amplifier circuit
JP2991727B2 (en) Active filter circuit