JPH04360112A - Automatic focusing system - Google Patents

Automatic focusing system

Info

Publication number
JPH04360112A
JPH04360112A JP3135133A JP13513391A JPH04360112A JP H04360112 A JPH04360112 A JP H04360112A JP 3135133 A JP3135133 A JP 3135133A JP 13513391 A JP13513391 A JP 13513391A JP H04360112 A JPH04360112 A JP H04360112A
Authority
JP
Japan
Prior art keywords
image
focus
section
shift plate
focus shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135133A
Other languages
Japanese (ja)
Inventor
Shinichi Fuji
藤 ▲慎▼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3135133A priority Critical patent/JPH04360112A/en
Publication of JPH04360112A publication Critical patent/JPH04360112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To accomplish automatic focusing based on output from one or a few photodetectors. CONSTITUTION:This system is provided with a photoelectric conversion part 1, an image-formation part 2 which forms the image of an object on the conversion part 1, a focus shifting plate 3 which is constituted of a light transmissive material having specified thickness and which is allowed to get in and out of an optical path between the conversion part 1 and the image-formation part 2 to shift a position where the image of the object is formed, a focus divergence detection part 4 which detects the fluctuation amount E of the output from the conversion part 1 caused by allowing the plate 3 to get in and out of the optical path, and a focusing control part 5 which controls the focusing of the image-formation part 2 in a direction where the fluctuation amount E is reduced based on the fluctuation amount E. Then, the photoelectric conversion part 1, the image-formation part 2, and the focus shifting plate 3 are constituted of a member which makes infrared rays symmetric.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は自動焦点調節方式に関し
、更に詳しくは視野内のある対象物に対して自動的に焦
点を合わせる自動焦点調節方式に関する。一般に、撮像
装置では視野に入ってくる画像信号に基づいて焦点の自
動調節を行う方式(受動形)が好ましい。今日、可視光
の領域では2次元の撮像素子(CCD等)が容易に得ら
れるので、焦点の自動調節は画像信号の2次元的処理に
基づいて行うことが可能である。一方、長波長赤外の領
域では2次元の高速撮像素子を得ることは未だ困難な状
況にあり、このために赤外線撮像装置では1列に並べた
受光素子に対して視野を機械的に走査する方式が採られ
る。従って、このような撮像装置では、1又は少数の受
光素子の出力に基づいて焦点の自動調節を行う方式の提
供が望まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing system, and more particularly to an automatic focusing system that automatically focuses on an object within a field of view. Generally, it is preferable for an imaging device to use a method (passive type) in which the focus is automatically adjusted based on an image signal that enters the field of view. Nowadays, two-dimensional imaging devices (such as CCDs) are easily available in the visible light region, so automatic focus adjustment can be performed based on two-dimensional processing of image signals. On the other hand, in the long-wavelength infrared region, it is still difficult to obtain two-dimensional high-speed imaging devices, and for this reason, infrared imaging devices mechanically scan the field of view with respect to a line of light-receiving elements. method is adopted. Therefore, in such an imaging device, it is desired to provide a method for automatically adjusting the focus based on the output of one or a small number of light receiving elements.

【0002】0002

【従来の技術】従来の赤外線撮像装置では、受動形の適
当な自動焦点調節方式がないために、オペレータは表示
画面を見ながら画像が鮮明になるようにフォーカシング
制御ボタンを手動で操作していた。しかし、対象物まで
の距離が変動する度に焦点調節を手動で行う必要がある
ので、オペレータの負担が大きい。特に航空機のパイロ
ットが使用する赤外線撮像装置については、パイロット
に負荷をかけ過ぎることが重大事故につながりかねない
という点で手動による焦点調節は問題が多い。
2. Description of the Related Art Conventional infrared imaging devices do not have a suitable passive automatic focusing method, so the operator manually operates the focusing control button while looking at the display screen to obtain a clear image. . However, it is necessary to manually adjust the focus every time the distance to the object changes, which places a heavy burden on the operator. In particular, manual focus adjustment of infrared imaging devices used by aircraft pilots is problematic in that overloading the pilot can lead to serious accidents.

【0003】0003

【発明が解決しようとする課題】上記のように従来の赤
外線撮像装置では、焦点調節を手動で行うのでオペレー
タの負担が大きいという問題があった。本発明の目的は
、1又は少数の受光素子の出力に基づいて焦点の自動調
節が行える自動焦点調節方式を提供することにある。
SUMMARY OF THE INVENTION As described above, the conventional infrared imaging apparatus has a problem in that focus adjustment is performed manually, which places a heavy burden on the operator. An object of the present invention is to provide an automatic focus adjustment method that can automatically adjust the focus based on the output of one or a small number of light receiving elements.

【0004】0004

【課題を解決するための手段】上記の課題は図1の構成
により解決される。即ち、本発明の自動焦点調節方式は
、光電変換部1と、対象物の像を光電変換部1に結像す
る結像部2と、所定厚の光透過材から成ると共に光電変
換部1と結像部2との間の光路に出し入れされて対象物
の結像位置をずらす焦点ずらし板3と、焦点ずらし板3
の出し入れによる光電変換部1の出力の変動分Eを検出
する焦点ずれ検出部4と、変動分Eに基づいて該変動分
Eが少なくなる方向に結像部2のフォーカシング制御を
行うフォーカシング制御部5とを備える。
[Means for Solving the Problems] The above problems are solved by the configuration shown in FIG. That is, the automatic focus adjustment method of the present invention consists of a photoelectric conversion section 1, an imaging section 2 that forms an image of an object on the photoelectric conversion section 1, and a light transmitting material having a predetermined thickness. a focus shift plate 3 that is inserted into and taken out of the optical path between the image forming unit 2 and shifts the image formation position of the object; and a focus shift plate 3;
a focus shift detection section 4 that detects a variation E in the output of the photoelectric conversion section 1 due to the insertion and removal of the lens; and a focusing control section that controls the focusing of the imaging section 2 in a direction in which the variation E is reduced based on the variation E. 5.

【0005】[0005]

【作用】本発明の自動焦点調節方式は、光電変換部1と
結像部2との間の光路に所定厚の光透過材3を入れるこ
とにより対象物の結像位置がずれることを利用したもの
である。例えば、対象物からの光線(実線)が無限遠か
ら来ているのにもかかわらず結像部2が近くに合焦して
いる場合には、対象物の像が光電変換部1の手前で結像
してしまう。この状態では、受光面における結像径が合
焦時よりも広がり、受光面サイズよりも大きくなるので
光電変換部1の出力は相対的に小さくなる。この状態で
、例えば周囲よりも光学的に密(屈折率の大きい)な所
定厚の焦点ずらし板3を挿入すると、対象物の像は図の
点線で示す位置までずれて結像するから、その結果結像
径は小さくなり、受光面サイズに近づく。従って、この
場合は光電変換部1の出力は焦点ずらし板3の挿入によ
り大きくなる関係にある。かかる関係は、結像部2の合
焦位置が対象物よりも手前にある限り成り立つので、焦
点ずらし板3を入れた時に光電変換部1の出力が高くな
る時は、結像部2の合焦位置を遠くするようにフォーカ
シング制御することにより、最終的には対象物に対して
結像部2をフォーカシングできる。
[Operation] The automatic focus adjustment method of the present invention utilizes the fact that the imaging position of the object is shifted by inserting a light transmitting material 3 of a predetermined thickness in the optical path between the photoelectric conversion section 1 and the imaging section 2. It is something. For example, if the light ray (solid line) from the object is coming from an infinite distance but the imaging section 2 focuses on a nearby object, the image of the object will be focused in front of the photoelectric conversion section 1. I image it. In this state, the image diameter on the light-receiving surface becomes wider than when focused, and becomes larger than the size of the light-receiving surface, so the output of the photoelectric conversion unit 1 becomes relatively small. In this state, for example, if a focusing plate 3 with a predetermined thickness that is optically denser than the surroundings (higher refractive index) is inserted, the image of the object will be shifted to the position shown by the dotted line in the figure and will be formed. As a result, the imaging diameter becomes smaller and approaches the size of the light receiving surface. Therefore, in this case, the output of the photoelectric conversion section 1 is increased by inserting the focus shift plate 3. This relationship holds true as long as the focus position of the image forming section 2 is in front of the object, so when the output of the photoelectric conversion section 1 increases when the focus shift plate 3 is inserted, the focus position of the image forming section 2 increases. By controlling the focusing so that the focal position is moved further away, the imaging section 2 can finally be focused on the object.

【0006】逆に、対象物からの光線が近地点から来て
いるのにもかかわらず結像部2が無限遠に合焦している
場合は、対象物の像が光電変換部1の後ろ側で結像して
しまう。この状態では受光面における結像径が合焦時よ
りも広がり、受光面サイズよりも大きくなるので光電変
換部1の出力は相対的に小さくなる。この状態で上記の
ような焦点ずらし板3を挿入すると、対象物の像は更に
後ろの位置にずれて結像するから、その結果結像径は更
に大きくなる。従って、この場合は光電変換部1の出力
は焦点ずらし板3の挿入により小さくなる関係にある。 かかる関係は、結像部2の合焦位置が対象物よりも遠く
にある限り成り立つので、焦点ずらし板3を入れた時に
光電変換部1の出力が低くなる時は、結像部2の合焦位
置を近くなるようにフォーカシング制御することにより
、最終的には対象物に対して結像部2をフォーカシング
できる。
On the other hand, if the imaging unit 2 is focused at infinity even though the light ray from the object is coming from the perigee, the image of the object will be on the back side of the photoelectric conversion unit 1. It forms an image. In this state, the image diameter on the light-receiving surface becomes wider than when focused, and becomes larger than the size of the light-receiving surface, so the output of the photoelectric conversion section 1 becomes relatively small. If the focus shift plate 3 as described above is inserted in this state, the image of the object will be formed with a further shift to the rear position, resulting in an even larger image diameter. Therefore, in this case, the output of the photoelectric conversion section 1 is reduced by inserting the focus shift plate 3. This relationship holds true as long as the focal position of the imaging section 2 is far away from the object, so if the output of the photoelectric conversion section 1 becomes low when the focal shift plate 3 is inserted, the focal position of the imaging section 2 will be lower. By controlling the focusing so that the focal position becomes close, the imaging section 2 can finally be focused on the object.

【0007】好ましくは、光電変換部1、結像部2及び
焦点ずらし板3を赤外線を対称とする部材で構成するこ
とにより、走査形赤外線撮像装置における上記の自動焦
点調節を実現する。
[0007] Preferably, the photoelectric conversion section 1, the imaging section 2, and the focus shift plate 3 are constructed of members that are symmetrical with respect to infrared rays, thereby realizing the above-mentioned automatic focus adjustment in the scanning infrared imaging device.

【0008】[0008]

【実施例】以下、添付図面に従って本発明による実施例
を詳細に説明する。図2は実施例の自動焦点調節方式の
構成を示す図で、図において1は赤外線の受光素子アレ
ー(DET)、11〜13は受光素子毎に設けたビデオ
アンプ、21は赤外線光学系のアフォーカル部、22は
赤外線の走査鏡、23は走査鏡の駆動モータ、24は赤
外線光学系の結像部、3は焦点ずらし板、31は回転伝
達機構部、32は焦点ずらし板の駆動モータ、33は駆
動モータ32の回転軸に直結したフォトエンコーダ、4
は焦点ずれ検出部、41はビデオ信号VSからノイズ成
分を除去するためのローパスフィルタ(LPF)、42
はA/D変換器、43,44はレジスタ、45,46は
減算器、47はセンタクリッピング回路、47aはコン
パレータ(CMP)、47bはスイッチ回路、48はD
/A変換器、49はタイミング発生回路、51はフォー
カシング駆動部、52はアフォーカル部の駆動モータで
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 is a diagram showing the configuration of the automatic focusing system of the embodiment. In the figure, 1 is an infrared light receiving element array (DET), 11 to 13 are video amplifiers provided for each light receiving element, and 21 is an infrared optical system array. a focal section, 22 an infrared scanning mirror, 23 a scanning mirror drive motor, 24 an infrared optical system imaging section, 3 a focus shift plate, 31 a rotation transmission mechanism section, 32 a focus shift plate drive motor, 33 is a photo encoder directly connected to the rotating shaft of the drive motor 32;
41 is a defocus detection unit; 41 is a low-pass filter (LPF) for removing noise components from the video signal VS; 42
is an A/D converter, 43 and 44 are registers, 45 and 46 are subtracters, 47 is a center clipping circuit, 47a is a comparator (CMP), 47b is a switch circuit, and 48 is D
49 is a timing generation circuit, 51 is a focusing drive section, and 52 is an afocal section drive motor.

【0009】焦点ずらし板の駆動モータ32は所定速度
で回転しており、この状態でフォトエンコーダ33から
は回転角に応じたエンコード信号PEが出力され、タイ
ミング発生回路49に入力する。タイミング発生回路4
9はエンコード信号PEに基づいて各種のタイミング信
号を発生する。例えば、モータ32の1回転に4サイク
ルの割合で鋸歯状波の走査信号SAWを出力し、これに
より走査鏡22は4往復する。更に、走査鏡22の各復
路の中心付近ではサンプリング信号SPを出力し、これ
によりA/D変換器42は各復路の視野中の中心付近の
ビデオ信号VSをサプリングする。更にタイミング発生
回路49は、サンプリング信号SPに同期して転送信号
XPを出力し、これにより各A/D変換出力はレジスタ
43,44に順次シフトインされる。
The focus shift plate drive motor 32 is rotating at a predetermined speed, and in this state, the photo encoder 33 outputs an encode signal PE corresponding to the rotation angle, and inputs it to the timing generation circuit 49. Timing generation circuit 4
9 generates various timing signals based on the encode signal PE. For example, the sawtooth wave scanning signal SAW is output at a rate of four cycles per one rotation of the motor 32, and the scanning mirror 22 thus makes four reciprocations. Further, a sampling signal SP is output near the center of each return path of the scanning mirror 22, so that the A/D converter 42 samples the video signal VS near the center in the field of view of each return path. Furthermore, the timing generation circuit 49 outputs a transfer signal XP in synchronization with the sampling signal SP, whereby each A/D conversion output is sequentially shifted into the registers 43 and 44.

【0010】ところで、焦点ずらし板3は、後述するよ
うに走査鏡22の1回おきの復路に挿入されるので、結
局、レジスタ43には焦点ずらし板3を挿入した時のサ
ンプリングデータが、またレジスタ44には焦点ずらし
板3を挿入しない時のサンプリングデータがそれぞれ保
持される。減算器46は、この時点でタイミング発生回
路49から出力される減算付勢信号ENにより付勢され
て、レジスタ43の内容からレジスタ44の内容を引く
演算を行う。なお、その際に減算器45はレジスタ44
の内容からオフセット分(OFS)を引く動作を行って
いるがその理由は後述の説明により明らかになる。
By the way, since the focus shift plate 3 is inserted in every other return pass of the scanning mirror 22, as will be described later, the sampling data when the focus shift plate 3 is inserted is stored in the register 43 again. The registers 44 each hold sampling data when the focus shift plate 3 is not inserted. The subtracter 46 is activated by the subtraction activation signal EN outputted from the timing generation circuit 49 at this point, and performs an operation of subtracting the contents of the register 44 from the contents of the register 43. Note that at this time, the subtracter 45 uses the register 44
The reason for subtracting the offset (OFS) from the contents will become clear from the explanation below.

【0011】そして、比較器47aは、減算器46の出
力の誤差信号Eのうち、絶対値|E|と所定閾値thと
を比較して|E|<thの時はスイッチ信号を出力し、
これによりスイッチ回路47bは接続をa側からb側に
変える。即ち、センタクリッピング回路47は|E|<
thでない時は誤差信号Eをそのまま出力し、|E|<
thの時は出力を0にクリップして微小誤差によるサー
ボハンチングの発生を防止している。こうして、誤差信
号E又は0がD/A変換器48でD/A変換され、フォ
ーカシング駆動部51に入力する。
The comparator 47a compares the absolute value |E| of the error signal E output from the subtractor 46 with a predetermined threshold th, and outputs a switch signal when |E|<th.
This causes the switch circuit 47b to change the connection from the a side to the b side. That is, the center clipping circuit 47 has |E|<
When it is not th, the error signal E is output as is, and |E|<
At the time of th, the output is clipped to 0 to prevent occurrence of servo hunting due to minute errors. In this way, the error signal E or 0 is D/A converted by the D/A converter 48 and input to the focusing drive section 51.

【0012】フォーカシング駆動部51は、誤差信号E
の入力に応じて該誤差信号Eが小さく成る方向(極性)
にモータ52を駆動し、これによりアフォーカル部21
は対象物に合焦するように自動的に調節される。図3は
実施例の焦点ずらし板の構成を示す図で、図3の(A)
は図2の結像部24の側から見た焦点ずらし板の正面図
、図3の(B)は図3の(A)の底面図である。図にお
いて、焦点ずらし板3は、各所定厚dの赤外線透過材(
例えばゲルマニウム)から成る2枚のブレード3a,3
bを回転軸に対して対称に有し、円滑な回転を可能にし
ている。焦点ずらし板3は、例えば矢印C方向に回転し
、その1回転は走査鏡22の4往復に対応する。これを
4象限(1)〜(4)に分けると、第1及び第3象限に
はブレードが無く、第2象限にはブレード3bが、第4
象限にはブレード3aがそれぞれ有る。従って、走査鏡
22の2往復に1回の割合で焦点ずらし板3が挿入され
る。
The focusing drive section 51 receives an error signal E.
The direction (polarity) in which the error signal E becomes smaller according to the input of
The motor 52 is driven to
automatically adjusts to focus on the object. FIG. 3 is a diagram showing the configuration of the focus shift plate of the embodiment, and (A) of FIG.
3 is a front view of the focus shift plate seen from the side of the image forming section 24 in FIG. 2, and FIG. 3B is a bottom view of FIG. 3A. In the figure, the focus shift plate 3 is made of infrared transmitting material (
For example, two blades 3a, 3 made of germanium)
b is symmetrical with respect to the rotation axis, allowing smooth rotation. The focus shift plate 3 rotates, for example, in the direction of arrow C, and one rotation corresponds to four reciprocations of the scanning mirror 22. Dividing this into four quadrants (1) to (4), there is no blade in the first and third quadrants, blade 3b is in the second quadrant, and blade 3b is in the fourth quadrant.
Each quadrant has a blade 3a. Therefore, the focus shift plate 3 is inserted once every two reciprocations of the scanning mirror 22.

【0013】走査形赤外線撮像装置では、走査鏡22の
1サイクルの前半の略70%を映像取得期間(往走査期
間)とし、残りの略30%を走査鏡22がリターンする
期間(復走査期間)とし、復路のビデオ信号VSは映像
表示には使っていない。この30%の復走査期間では、
走査方向が逆になるものの、同一視野を見ているわけで
あるから、逆走査のビデオ信号VSを取り出せる。そこ
で、各残りの30%のうち一部の期間を利用して焦点ず
らし板31を出し入れした状態を交互に作り、各復路の
略中間におけるビデオ信号VSをサンプリングすること
により、焦点の自動調節に利用する。
In the scanning infrared imaging device, approximately 70% of the first half of one cycle of the scanning mirror 22 is an image acquisition period (forward scanning period), and the remaining approximately 30% is a period during which the scanning mirror 22 returns (backward scanning period). ), and the video signal VS on the return trip is not used for video display. In this 30% backward scanning period,
Although the scanning direction is reversed, since the same field of view is being viewed, a reversely scanned video signal VS can be extracted. Therefore, by using a part of the remaining 30% of each period to alternately move the focus shift plate 31 in and out, and sample the video signal VS approximately in the middle of each return path, automatic focus adjustment is possible. Make use of it.

【0014】なお、赤外線の受光素子アレー1には図示
の如く赤外線受光素子が縦1列に並んでおり、本実施例
では略中央の赤外線受光素子1aを焦点ずれの検出にも
使用する。従って、本実施例では視野の略中心にフォー
カシング制御の対象物があることになる。図4は実施例
の焦点ずらし板の作用を説明する図で、図4の(A)は
対象物の像が受光素子1aの手前で結像している場合を
示している。このような状態は対象物からの赤外線(実
線)が無限遠から来ているのにもかかわらず光学系が近
くに合焦している場合に起こる。図より明らかなように
、この状態では受光面での結像径aが受光素子1aのサ
イズよりも大きくなるので受光素子1aの出力は相対的
に小さくなる。そこで、この状態で焦点ずらし板3を挿
入すると、対象物の像は点線で示す位置まで後方にずれ
て結像するから、その結像径はbと小さくなり、この例
では受光素子1aのサイズと略等しくなっている。従っ
て、上記の状態では受光素子1aの出力は焦点ずらし板
3の挿入により大きくなる関係にあり、このような関係
は、光学系を徐々に遠くに合焦させることにより対象物
の像が徐々に受光素子1aに近づいていく過程でも、a
>bの関係が有る限りは成り立つ。従って、焦点ずらし
板3の出し入れに応じた受光素子1aの出力を比較する
ことにより、光学系を精密に合焦に導くことが可能にな
る。
In the infrared light receiving element array 1, infrared light receiving elements are arranged in a vertical line as shown in the figure, and in this embodiment, the infrared light receiving element 1a located approximately in the center is also used for detecting defocus. Therefore, in this embodiment, the object to be controlled for focusing is located approximately at the center of the field of view. FIG. 4 is a diagram illustrating the function of the focus shift plate of the embodiment, and (A) of FIG. 4 shows a case where an image of the object is formed in front of the light receiving element 1a. This situation occurs when the optical system focuses on a nearby object even though the infrared rays (solid line) from the object are coming from an infinite distance. As is clear from the figure, in this state, the imaging diameter a on the light-receiving surface is larger than the size of the light-receiving element 1a, so the output of the light-receiving element 1a becomes relatively small. Therefore, when the focus shift plate 3 is inserted in this state, the image of the object is shifted backward to the position shown by the dotted line and formed, so the diameter of the image becomes small, b, which is the size of the light receiving element 1a in this example. are almost equal. Therefore, in the above state, there is a relationship in which the output of the light receiving element 1a increases due to the insertion of the focusing plate 3, and this relationship means that by gradually focusing the optical system on a distant object, the image of the object gradually changes. Even in the process of approaching the light receiving element 1a, a
>b holds true as long as there is a relationship. Therefore, by comparing the output of the light receiving element 1a according to the insertion and removal of the focus shift plate 3, it is possible to precisely guide the optical system to focus.

【0015】図4の(B)はa=bとなった状態を示し
ており、この状態では受光素子1aの出力は焦点ずらし
板3の出し入れにもかかわらず略同一になるから、これ
が対象物に対する合焦位置である。なお、焦点ずらし板
3を挿入した時の受光素子1aの出力は、図4の(A)
から図4の(B)に至る過程でも略一定の最大値に保た
れる。
FIG. 4B shows a state where a=b, and in this state, the output of the light receiving element 1a is approximately the same regardless of whether the focus shift plate 3 is inserted or removed. This is the in-focus position for The output of the light receiving element 1a when the focus shift plate 3 is inserted is shown in (A) in FIG.
Even in the process from 1 to 4 (B) in FIG. 4, the maximum value is maintained at a substantially constant value.

【0016】図5は実施例の焦点ずらし板の作用を説明
する図で、図5の(A)は対象物の像が受光素子1aの
後ろ側で結像している場合を示している。このような状
態は対象物からの赤外線(実線)が近地点から来ている
のにもかかわらず光学系が無限遠に合焦している場合に
起こる。図より明らかなように、この状態では受光面で
の結像径aが受光素子1aのサイズよりも大きくなるの
で受光素子1aの出力は相対的に小さくなる。そこで、
この状態で焦点ずらし板3を挿入すると、対象物の像は
点線で示す位置まで更に後ろ側にずれて結像するから、
その結像径はbとなりこれは結像径aよりも更に大きい
。従って、この場合は受光素子1aの出力は焦点ずらし
板3の挿入により更に小さくなる関係にあり、このよう
な関係は、光学系を徐々に近地点に合焦させることによ
り対象物の像が徐々に受光素子1aに近づいていく過程
でも、a>bの関係が有る限り成りは立つ。従って、こ
の場合も焦点ずらし板3の出し入れに応じた受光素子1
aの出力を比較することにより、光学系を精密に合焦に
導くことが可能になる。
FIG. 5 is a diagram illustrating the function of the focus shift plate of the embodiment, and (A) in FIG. 5 shows the case where the image of the object is formed behind the light receiving element 1a. This situation occurs when the optical system focuses on infinity even though the infrared rays (solid line) from the object are coming from the perigee. As is clear from the figure, in this state, the imaging diameter a on the light-receiving surface is larger than the size of the light-receiving element 1a, so the output of the light-receiving element 1a becomes relatively small. Therefore,
If the focus shift plate 3 is inserted in this state, the image of the object will be shifted further back to the position shown by the dotted line.
Its imaging diameter is b, which is even larger than the imaging diameter a. Therefore, in this case, the output of the light-receiving element 1a is further reduced by inserting the focus shift plate 3, and this relationship means that by gradually focusing the optical system on the perigee, the image of the object is gradually reduced. Even in the process of approaching the light receiving element 1a, this holds as long as the relationship a>b holds. Therefore, in this case as well, the light receiving element 1 corresponds to the insertion and removal of the focus shift plate 3.
By comparing the outputs of a, it becomes possible to bring the optical system into focus precisely.

【0017】図5の(B)はa=bとなった状態を示し
ており、この状態では受光素子1aの出力は焦点ずらし
板3の出し入れにもかかわらず略同一になるから、これ
が対象物に対する合焦位置であり、合焦位置では図4の
(B)と同一の関係になっている。かくして、この実施
例によれば、赤外線の光学系が対象物より遠点を見てい
る場合でも近点を見ている場合でも正しく対象物に合焦
できる。
FIG. 5B shows a state where a=b, and in this state, the output of the light receiving element 1a is approximately the same regardless of whether the focus shift plate 3 is inserted or removed. The relationship is the same as that in FIG. 4B at the focused position. Thus, according to this embodiment, it is possible to accurately focus on the object whether the infrared optical system is looking at a far point or near point from the object.

【0018】なお、焦点ずらし板3の挿入による結像の
ずれの度合いは焦点ずらし板3の厚みdに依存する。従
って、この厚みdが大きければ合焦位置への収束は速い
が合焦精度は制限される。一方、厚みdが小さければ合
焦位置への収束は遅いが合焦精度は高くなる。また、図
4の(A)及び図5の(B)では合焦時の結像点につい
て一定のオフセット分(OFS)が生じているが、これ
は受光素子1aの受光面積を小さく、かつ焦点ずらし板
3の厚みdを小さくすればオフセット分も非常に小さく
なる。あるいは、受光面積や焦点ずらし板3の厚みdを
小さくしなくても、図2に示すように、焦点ずらし板3
を挿入していない時の受光素子1aの出力からオフセッ
ト分(OFS)に相当する電圧を引くようにすれば、図
4の(A)及び図5の(B)のオフセット結像位置を右
にずらすことができる。
Note that the degree of deviation in image formation due to the insertion of the focus shift plate 3 depends on the thickness d of the focus shift plate 3. Therefore, if the thickness d is large, the convergence to the in-focus position is fast, but the focusing accuracy is limited. On the other hand, if the thickness d is small, the convergence to the in-focus position will be slow, but the focusing accuracy will be high. In addition, in FIGS. 4(A) and 5(B), a certain offset (OFS) occurs regarding the image forming point during focusing, but this reduces the light receiving area of the light receiving element 1a and If the thickness d of the shifting plate 3 is made small, the offset amount will also become very small. Alternatively, without reducing the light receiving area or the thickness d of the focus shift plate 3, as shown in FIG.
If the voltage corresponding to the offset (OFS) is subtracted from the output of the light receiving element 1a when the light receiving element 1a is not inserted, the offset imaging position in Fig. 4 (A) and Fig. 5 (B) can be moved to the right. It can be shifted.

【0019】図6は実施例のオート・フォーカシング制
御のタイミングチャートで、対象物からの赤外線が無限
遠から来ているのにもかかわらず光学系が近くに合焦し
ている場合のオート・フォーカシング制御を示している
。この場合は、第1象限(1)におけるサンプリング信
号SSよりも、次の第4象限(4)において焦点ずらし
板3を挿入して得たサンプリング信号SSの方が高い。 減算器46は、減算付勢信号ENの期間に誤差信号Eを
出力し、該誤差信号Eは、閾値thよりも大きいので、
フォーカシング制御部51には対応するモータ制御信号
MCが送られ、これによりアフォーカル部21は誤差信
号Eが小さくなる方向に駆動される。そして、これによ
り第3象限(3)におけるサンプリング信号SSは高く
なるが、この例では未だ十分ではないので、更に次の第
2象限(2)におけるサンプリング信号SSの方が高く
現れる。これにより、上記同様にしてアフォーカル部2
1は誤差信号Eが更に小さくなる方向に駆動され、こう
してアフォーカル部21は対象物に対する合焦位置に導
かれる。
FIG. 6 is a timing chart of auto-focusing control according to an embodiment. Auto-focusing control is performed when the optical system focuses on a nearby object even though the infrared rays from the object are coming from an infinite distance. It shows. In this case, the sampling signal SS obtained by inserting the focus shift plate 3 in the next fourth quadrant (4) is higher than the sampling signal SS in the first quadrant (1). The subtracter 46 outputs the error signal E during the period of the subtraction energizing signal EN, and the error signal E is larger than the threshold th.
A corresponding motor control signal MC is sent to the focusing control section 51, whereby the afocal section 21 is driven in a direction in which the error signal E becomes smaller. As a result, the sampling signal SS in the third quadrant (3) becomes higher, but in this example, it is still not sufficient, so the sampling signal SS in the next second quadrant (2) appears higher. As a result, the afocal part 2
1 is driven in the direction in which the error signal E is further reduced, and the afocal section 21 is thus guided to the in-focus position with respect to the object.

【0020】図7は実施例のオート・フォーカシング制
御のタイミングチャートで、対象物からの赤外線が近地
点から来ているのにもかかわらず光学系が無限遠に合焦
している場合のオート・フォーカシング制御を示してい
る。この場合は、第1象限(1)におけるサンプリング
信号SSよりも、次の第4象限(4)において焦点ずら
し板3を挿入して得たサンプリング信号SSの方が低い
。減算器46は、減算付勢信号ENの期間に誤差信号−
Eを出力し、該誤差信号−Eは、閾値thよりも大きい
ので、フォーカシング制御部51には対応するモータ制
御信号−MCが送られ、これによりアフォーカル部21
は誤差信号−Eが小さくなる方向に駆動される。そして
、これにより第3象限(3)におけるサンプリング信号
SSは高くなるが、この例では未だ十分ではないので、
更に次の第2象限(2)におけるサンプリング信号SS
の方が低く現れる。これにより、上記同様にしてアフォ
ーカル部21は誤差信号−Eが更に小さくなる方向に駆
動され、こうしてアフォーカル部21は対象物に対する
合焦位置に導かれる。
FIG. 7 is a timing chart of auto-focusing control according to the embodiment, and shows auto-focusing when the optical system is focused at infinity even though the infrared rays from the object are coming from the perigee. Shows control. In this case, the sampling signal SS obtained by inserting the focus shift plate 3 in the next fourth quadrant (4) is lower than the sampling signal SS in the first quadrant (1). The subtracter 46 outputs an error signal - during the period of the subtraction activation signal EN.
Since the error signal -E is larger than the threshold value th, the corresponding motor control signal -MC is sent to the focusing control section 51, thereby causing the afocal section 21
is driven in the direction in which the error signal -E becomes smaller. Although this increases the sampling signal SS in the third quadrant (3), it is still not sufficient in this example, so
Furthermore, the sampling signal SS in the next second quadrant (2)
appears lower. As a result, the afocal section 21 is driven in the direction in which the error signal -E is further reduced in the same manner as described above, and the afocal section 21 is thus guided to the in-focus position with respect to the object.

【0021】なお、上記実施例では単一の受光素子1a
の出力に基づいてフォーカシング制御を行ったが、隣接
する又は離散的な複数の受光素子の出力に基づいてフォ
ーカシング制御を行うように構成してもよい。また、上
記実施例では焦点ずらし板3が周囲より光学的に密(屈
折率が大)の場合を述べたが、逆に、焦点ずらし板3が
周囲より光学的に粗(屈折率が小)の場合は、このよう
な焦点ずらし板3の挿入によって対象物の結像位置は結
像部2の側に近づくから、上記実施例と逆の考え方によ
り本発明を実現できる。
Note that in the above embodiment, a single light receiving element 1a
Although the focusing control is performed based on the outputs of the light receiving elements, the focusing control may be performed based on the outputs of a plurality of adjacent or discrete light receiving elements. Furthermore, in the above embodiment, a case has been described in which the focus shift plate 3 is optically denser than the surroundings (larger refractive index), but conversely, the focus shift plate 3 is optically coarser than the surroundings (lower refractive index). In this case, the insertion of the focus shift plate 3 brings the imaging position of the object closer to the imaging section 2, so the present invention can be realized by a concept opposite to that of the above embodiment.

【0022】[0022]

【発明の効果】以上述べた如く本発明によれば、1又は
少数の受光素子の出力に基づいて焦点の自動調節が行え
、特に本発明を走査形の赤外線撮像装置に適用すること
により、航空機等におけるオペレータのワークロードを
大幅に削減でき、安全な航行を可能にする。
As described above, according to the present invention, the focus can be automatically adjusted based on the output of one or a small number of light receiving elements, and in particular, by applying the present invention to a scanning type infrared imaging device, This greatly reduces the operator's workload and enables safe navigation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の原理的構成図である。FIG. 1 is a diagram showing the basic configuration of the present invention.

【図2】図2は実施例の自動焦点調節方式の構成を示す
図である。
FIG. 2 is a diagram showing the configuration of an automatic focus adjustment method according to an embodiment.

【図3】図3は実施例の焦点ずらし板の構成を示す図で
ある。
FIG. 3 is a diagram showing the configuration of a focus shift plate according to an embodiment.

【図4】図4は実施例の焦点ずらし板の作用を説明する
図である。
FIG. 4 is a diagram illustrating the function of the focus shift plate of the embodiment.

【図5】図5は実施例の焦点ずらし板の作用を説明する
図である。
FIG. 5 is a diagram illustrating the function of the focus shift plate of the embodiment.

【図6】図6は実施例のオート・フォーカシング制御の
タイミングチャートである。
FIG. 6 is a timing chart of auto-focusing control in the embodiment.

【図7】図7は実施例のオート・フォーカシング制御の
タイミングチャートである。
FIG. 7 is a timing chart of auto-focusing control in the embodiment.

【符号の説明】[Explanation of symbols]

1  光電変換部 2  結像部 3  焦点ずらし板 4  焦点ずれ検出部 5  フォーカシング制御部 1 Photoelectric conversion section 2 Imaging section 3 Focus shift plate 4 Defocus detection section 5 Focusing control section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光電変換部(1)と、対象物の像を光
電変換部(1)に結像する結像部(2)と、所定厚の光
透過材から成ると共に光電変換部(1)と結像部(2)
との間の光路に出し入れされて対象物の結像位置をずら
す焦点ずらし板(3)と、焦点ずらし板(3)の出し入
れによる光電変換部(1)の出力の変動分(E)を検出
する焦点ずれ検出部(4)と、変動分(E)に基づいて
該変動分(E)が少なくなる方向に結像部(2)のフォ
ーカシング制御を行うフォーカシング制御部(5)とを
備えることを特徴とする自動焦点調節方式。
1. A photoelectric conversion section (1), an imaging section (2) for forming an image of an object on the photoelectric conversion section (1), and a light transmitting material having a predetermined thickness. ) and imaging section (2)
The focus shift plate (3) is moved in and out of the optical path between the two to shift the imaging position of the object, and the variation (E) in the output of the photoelectric conversion unit (1) due to the focus shift plate (3) being moved in and out is detected. and a focusing control section (5) that performs focusing control of the imaging section (2) in a direction in which the variation (E) is reduced based on the variation (E). An automatic focus adjustment system featuring
【請求項2】  光電変換部(1)、結像部(2)及び
焦点ずらし板(3)が赤外線を対称とする部材で構成さ
れていることを特徴とする請求項1の自動焦点調節方式
2. The automatic focusing system according to claim 1, wherein the photoelectric conversion section (1), the imaging section (2), and the focus shift plate (3) are made of members that are symmetrical to infrared rays. .
JP3135133A 1991-06-06 1991-06-06 Automatic focusing system Pending JPH04360112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135133A JPH04360112A (en) 1991-06-06 1991-06-06 Automatic focusing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135133A JPH04360112A (en) 1991-06-06 1991-06-06 Automatic focusing system

Publications (1)

Publication Number Publication Date
JPH04360112A true JPH04360112A (en) 1992-12-14

Family

ID=15144582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135133A Pending JPH04360112A (en) 1991-06-06 1991-06-06 Automatic focusing system

Country Status (1)

Country Link
JP (1) JPH04360112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100254A1 (en) * 1999-11-12 2001-05-16 Noritsu Koki Co., Ltd. Apparatus for reading images from photographic film
EP1273950A2 (en) * 2001-06-15 2003-01-08 Nokia Corporation Focusing method for a camera and a camera
CN100344143C (en) * 1999-11-12 2007-10-17 诺日士钢机株式会社 Apparatus for reading images from photographic film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100254A1 (en) * 1999-11-12 2001-05-16 Noritsu Koki Co., Ltd. Apparatus for reading images from photographic film
CN100344143C (en) * 1999-11-12 2007-10-17 诺日士钢机株式会社 Apparatus for reading images from photographic film
EP1273950A2 (en) * 2001-06-15 2003-01-08 Nokia Corporation Focusing method for a camera and a camera
EP1273950A3 (en) * 2001-06-15 2005-05-25 Nokia Corporation Focusing method for a camera and a camera

Similar Documents

Publication Publication Date Title
US4920420A (en) Automatic focusing system
US4563705A (en) Automatic focus controlling apparatus and method
JPH0321892B2 (en)
JPH0783446B2 (en) Autofocus device such as video camera
JP2821214B2 (en) Automatic focusing device
EP0127451A1 (en) Automatic focus control system for video camera
JP2833169B2 (en) Imaging device
US4314150A (en) Apparatus for detecting the in-focusing conditions
US5406345A (en) Optical system controlling apparatus
US5172150A (en) Apparatus for correcting image blur caused by camera shake
US5267044A (en) Automatic focusing system for use in cameras having zooming function
JPH04360112A (en) Automatic focusing system
JPS6236632A (en) Lens device for automatic focusing
US4831405A (en) Auto-focus arithmetic device
JPH1026725A (en) Automatic focusing device
JPS63163312A (en) Automatic focusing device and its lens driving mechanism
US5867216A (en) Image sensing apparatus
JPH05134163A (en) Focus control device
JPH05281459A (en) Automatic focusing device
JPS6160080A (en) Auto focusing device
JP3490747B2 (en) Automatic focusing device for still video camera
JP5463635B2 (en) Focus adjustment device and imaging device
KR910005236Y1 (en) Optical apparatus of video camera
JP2021067911A (en) Imaging device
JP2615586B2 (en) Lens drive control method for automatic focusing device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000613