JP2021067911A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2021067911A
JP2021067911A JP2019195350A JP2019195350A JP2021067911A JP 2021067911 A JP2021067911 A JP 2021067911A JP 2019195350 A JP2019195350 A JP 2019195350A JP 2019195350 A JP2019195350 A JP 2019195350A JP 2021067911 A JP2021067911 A JP 2021067911A
Authority
JP
Japan
Prior art keywords
light
receiving lens
threshold value
light receiving
event data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019195350A
Other languages
Japanese (ja)
Other versions
JP7427912B2 (en
Inventor
勇介 三谷
yusuke Mitani
勇介 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2019195350A priority Critical patent/JP7427912B2/en
Priority to CN202011110893.7A priority patent/CN112689082B/en
Priority to EP20202301.6A priority patent/EP3809692B1/en
Priority to CN202210146060.9A priority patent/CN114567725B/en
Priority to US17/073,998 priority patent/US11412127B2/en
Publication of JP2021067911A publication Critical patent/JP2021067911A/en
Priority to US17/701,832 priority patent/US11812145B2/en
Application granted granted Critical
Publication of JP7427912B2 publication Critical patent/JP7427912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a structure with which it is possible to achieve an auto-focus function without utilizing the event data outputted from an imaging element.SOLUTION: An imaging element 21 is adopted that outputs event data including two-dimensional point data with which the position of a pixel is specified in correspondence to a pixel the luminance change of which increased to or above a prescribed threshold when light is received via a light-receiving lens 22. Meanwhile, a portion of light heading from the light-receiving lens 22 toward the imaging element 21 is spectrally separated by a half mirror 24, and a phase difference AF sensor 25 having received this spectrally separated light detects, by a phase difference AF scheme, the amount of shift of the light-receiving lens 22 from an in-focus position when said light is received. The drive of an adjustment mechanism 23 is controlled by a control unit 11 on the basis of this detected amount of shift, so that the focus position of the light-receiving lens 22 is adjusted toward the in-focus position.SELECTED DRAWING: Figure 1

Description

本発明は、撮像装置に関するものである。 The present invention relates to an imaging device.

近年、より高速に計測対象物の画像を生成する技術として、下記特許文献1に開示されるイベントカメラが知られている。このイベントカメラは、生物の網膜構造にヒントを得て開発された輝度値差分出力カメラであり、画素ごとに輝度の変化を感知してその座標、時間、そして輝度変化の極性を出力するように構成されている。このような構成により、イベントカメラは、従来のカメラのように輝度変化のない画素情報、つまり冗長なデータは出力しないといった特徴があるため、データ通信量の軽減や画像処理の軽量化等が実現されることで、より高速に計測対象物の画像を生成することができる。 In recent years, an event camera disclosed in Patent Document 1 below is known as a technique for generating an image of a measurement object at a higher speed. This event camera is a brightness value difference output camera developed by taking inspiration from the retinal structure of living organisms, so that it senses the change in brightness for each pixel and outputs its coordinates, time, and polarity of the change in brightness. It is configured. With such a configuration, the event camera has a feature that it does not output pixel information that does not change in brightness, that is, redundant data like a conventional camera, so that it is possible to reduce the amount of data communication and the weight of image processing. By doing so, it is possible to generate an image of the measurement object at a higher speed.

米国特許出願公開第2016/0227135号明細書U.S. Patent Application Publication No. 2016/0227135

ところで、通常のカメラで取得される画像データは、各画素が必ず何らかの輝度情報を有しており、その輝度情報を使用したオートフォーカス機能が標準機能として多くのカメラに搭載されている。その一方で、イベントカメラでは、輝度の変化に応じたイベントデータを取得できても輝度情報自体は取得できないため、輝度情報を利用したオートフォーカス機能を採用することができない。このため、イベントカメラであっても、フォーカスが合っていないために計測対象物がぼやけて撮像されると、計測対象物の光が分散されるため正確にイベントデータを得ることができないという問題がある。 By the way, in the image data acquired by a normal camera, each pixel always has some kind of luminance information, and an autofocus function using the luminance information is installed in many cameras as a standard function. On the other hand, in the event camera, even if the event data corresponding to the change in the brightness can be acquired, the brightness information itself cannot be acquired, so that the autofocus function using the brightness information cannot be adopted. For this reason, even with an event camera, if the object to be measured is blurred because it is out of focus, the light of the object to be measured is dispersed and the event data cannot be obtained accurately. is there.

本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、撮像素子から出力されるイベントデータを利用することなくオートフォーカス機能を実現可能な構成を提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a configuration capable of realizing an autofocus function without using event data output from an image sensor. It is in.

上記目的を達成するため、特許請求の範囲の請求項1に記載の発明に係る撮像装置(10)は、
受光レンズ(22)を介して受光した際に輝度変化が所定の閾値以上となった画素に対応して当該画素の位置が特定される二次元点データを含めたイベントデータを出力する撮像素子(21)と、
前記受光レンズの焦点位置を調整するための調整機構(23)と、
前記調整機構を駆動制御する制御部(11)と、
前記受光レンズを介して受光した際に位相差AF方式により当該受光レンズの合焦位置からのずれ量を検出するずれ量検出部(25)と、
前記受光レンズから前記撮像素子に向かう光の一部を分光して前記ずれ量検出部に受光させる分光部(24)と、
を備え、
前記制御部は、前記ずれ量検出部により検出される前記ずれ量に基づいて前記調整機構を駆動制御することで、前記焦点位置を合焦位置に向けて調整することを特徴とする。
なお、上記各括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
In order to achieve the above object, the imaging device (10) according to the invention according to claim 1 of the claims is
An image sensor that outputs event data including two-dimensional point data in which the position of the pixel is specified corresponding to a pixel whose brightness change is equal to or greater than a predetermined threshold value when light is received through the light receiving lens (22). 21) and
An adjustment mechanism (23) for adjusting the focal position of the light receiving lens, and
A control unit (11) that drives and controls the adjustment mechanism, and
A shift amount detection unit (25) that detects the amount of deviation from the focusing position of the light receiving lens by the phase difference AF method when light is received through the light receiving lens.
A spectroscopic unit (24) that disperses a part of the light directed from the light receiving lens toward the image sensor and causes the deviation amount detection unit to receive light.
With
The control unit is characterized in that the focus position is adjusted toward the in-focus position by driving and controlling the adjustment mechanism based on the deviation amount detected by the deviation amount detection unit.
The reference numerals in the parentheses indicate the correspondence with the specific means described in the embodiments described later.

請求項1の発明では、受光レンズを介して受光した際に輝度変化が所定の閾値以上となった画素に対応して当該画素の位置が特定される二次元点データを含めたイベントデータを出力する撮像素子が採用される。そして、受光レンズから撮像素子に向かう光の一部が分光部により分光され、この分光された光を受光したずれ量検出部では、受光した際に位相差AF方式により当該受光レンズの合焦位置からのずれ量が検出される。この検出されるずれ量に基づいて制御部により調整機構が駆動制御されることで、焦点位置が合焦位置に向けて調整される。 According to the first aspect of the present invention, event data including two-dimensional point data in which the position of the pixel is specified corresponding to the pixel whose brightness change becomes equal to or higher than a predetermined threshold value when the light is received through the light receiving lens is output. An image sensor is used. Then, a part of the light directed from the light receiving lens to the image sensor is dispersed by the spectroscopic unit, and the deviation amount detecting unit that receives the dispersed light receives the focused position of the light receiving lens by the phase difference AF method. The amount of deviation from is detected. The adjustment mechanism is driven and controlled by the control unit based on the detected deviation amount, so that the focal position is adjusted toward the in-focus position.

このように、分光部にて分光された光を利用して受光レンズの合焦位置からのずれ量を検出して焦点位置を調整できるので、撮像素子から出力されるイベントデータを利用することなくオートフォーカス機能を実現することができる。 In this way, the amount of deviation from the focusing position of the light receiving lens can be detected and the focal position can be adjusted by using the light dispersed by the spectroscopic unit, so that the event data output from the image sensor is not used. The autofocus function can be realized.

請求項2の発明では、上記所定の閾値は、分光部による光量減衰比に応じて設定されるので、分光部によって撮像素子にて受光される光量が減るためにイベントデータの出力頻度が低下することを抑制することができる。 In the invention of claim 2, since the predetermined threshold value is set according to the light amount attenuation ratio by the spectroscopic unit, the light amount received by the image sensor by the spectroscopic unit is reduced, so that the output frequency of event data is reduced. It can be suppressed.

請求項3の発明では、上記所定の閾値は、ずれ量検出部にて検出されるずれ量に応じて閾値変更部により変更される。計測対象物が移動していると、ピントが合い難くなってイベントデータの出力頻度が低下する状態が継続してしまう場合がある。このため、ずれ量が大きくなる場合に上記所定の閾値を下げることで、ピントが合っていない状態が継続する場合でも、イベントデータの出力頻度の低下を抑制することができる。その一方で、ピントが合っている場合に上記所定の閾値を上げることで、過剰なイベントデータの出力を抑制することができる。 In the invention of claim 3, the predetermined threshold value is changed by the threshold value changing unit according to the deviation amount detected by the deviation amount detecting unit. If the object to be measured is moving, it may become difficult to focus and the output frequency of event data may continue to decrease. Therefore, by lowering the predetermined threshold value when the amount of deviation becomes large, it is possible to suppress a decrease in the output frequency of event data even if the out-of-focus state continues. On the other hand, when the focus is on, the output of excessive event data can be suppressed by raising the predetermined threshold value.

第1実施形態に係る撮像装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the image pickup apparatus which concerns on 1st Embodiment. ハーフミラーによって分光された状態での輝度変化と分光されない状態での輝度変化とを比較する説明図である。It is explanatory drawing which compares the luminance change in the state which is separated by a half mirror, and the luminance change in the state which is not spectroscopic. 図3(A)は、計測対象物を例示する説明図であり、図3(B)は、図3(A)の計測対象物からの光を受光した場合において、ピントが合っている状態で測定された輝度の位置変化とピントがずれている状態で測定された輝度の位置変化とを説明する説明図である。FIG. 3 (A) is an explanatory diagram illustrating an object to be measured, and FIG. 3 (B) shows a state in which the light from the object to be measured of FIG. 3 (A) is received and is in focus. It is explanatory drawing explaining the position change of the measured luminance and the position change of the luminance measured in the state of being out of focus. 図4(A)は、ピントが合っている状態で、図3(A)に示す計測対象物が図面右方向に移動する場合に変化する輝度の位置変化を説明する説明図であり、図4(B)は、ピントがずれている状態で、図3(A)に示す計測対象物が図面右方向に移動する場合に変化する輝度の位置変化を説明する説明図であり、図4(C)は、図4(B)の受光状態において閾値変更前のイベントデータが出力される範囲を例示する説明図であり、図4(D)は、図4(B)の受光状態において閾値変更後のイベントデータが出力される範囲を例示する説明図である。FIG. 4A is an explanatory diagram illustrating a change in the position of the brightness that changes when the measurement object shown in FIG. 3A moves to the right in the drawing while the object is in focus. FIG. 4B is an explanatory diagram illustrating a change in the position of the brightness that changes when the measurement object shown in FIG. 3A moves to the right in the drawing in a state of being out of focus, and FIG. 4C. ) Is an explanatory diagram illustrating the range in which the event data before the threshold value change is output in the light receiving state of FIG. 4 (B), and FIG. 4 (D) shows the event data after the threshold value change in the light receiving state of FIG. 4 (B). It is explanatory drawing which illustrates the range which the event data of is output.

[第1実施形態]
以下、本発明の撮像装置を具現化した第1実施形態について、図面を参照して説明する。
本実施形態に係る撮像装置10は、いわゆるイベントカメラとして機能する装置である。この撮像装置10は、輝度変化のあった画素に対応して当該画素の位置が特定される二次元点データと時間と輝度変化の極性とを含めるようにイベントデータを出力し、一定期間内に出力される複数のイベントデータの二次元点データをそれぞれ点として所定の平面にプロットするようにして、計測対象物を撮像した画像データを生成する。
[First Embodiment]
Hereinafter, the first embodiment embodying the image pickup apparatus of the present invention will be described with reference to the drawings.
The imaging device 10 according to the present embodiment is a device that functions as a so-called event camera. The image pickup device 10 outputs event data so as to include two-dimensional point data in which the position of the pixel is specified corresponding to the pixel whose brightness has changed, time, and the polarity of the brightness change, and within a certain period of time. By plotting the two-dimensional point data of the plurality of output event data as points on a predetermined plane, image data obtained by capturing an image of the measurement target is generated.

図1に示すように、撮像装置10は、CPU等からなる制御部11及び半導体メモリ等からなる記憶部12に加えて、制御部11によって表示内容が制御される表示部13、入力操作に応じた操作信号を制御部11に出力する操作部14、外部機器等と通信するための通信部15などを備えている。 As shown in FIG. 1, in addition to a control unit 11 including a CPU and the like and a storage unit 12 including a semiconductor memory and the like, the image pickup apparatus 10 responds to an input operation and a display unit 13 whose display contents are controlled by the control unit 11. It includes an operation unit 14 that outputs the operation signal to the control unit 11, a communication unit 15 for communicating with an external device, and the like.

また、撮像装置10は、撮像部として、撮像素子21、受光レンズ22、調整機構23、ハーフミラー24、位相差AFセンサ25等を備えている。撮像素子21は、受光レンズ22を介して受光した際に輝度変化が所定の閾値以上となった画素に対応して当該画素の位置が特定される二次元点データを含めたイベントデータを制御部11に出力するように構成されている。すなわち、撮像素子21は、輝度変化が所定の閾値以上となった画素に対応するイベントデータ(二次元点データ、時間、輝度変化の極性)を制御部11に出力し、輝度変化のない画素に関してデータを出力しないように機能する。調整機構23は、受光レンズ22の焦点位置を調整するための公知の機構であって、制御部11により駆動制御されて、受光レンズ22を光軸に沿う方向(調整方向)の一側又は他側に移動させることで、受光レンズ22の焦点位置を調整する。 Further, the image pickup device 10 includes an image pickup element 21, a light receiving lens 22, an adjustment mechanism 23, a half mirror 24, a phase difference AF sensor 25, and the like as an image pickup unit. The image sensor 21 controls event data including two-dimensional point data in which the position of the pixel is specified corresponding to the pixel whose brightness change is equal to or greater than a predetermined threshold value when the light is received through the light receiving lens 22. It is configured to output to 11. That is, the image pickup element 21 outputs event data (two-dimensional point data, time, polarity of brightness change) corresponding to the pixel whose brightness change is equal to or more than a predetermined threshold value to the control unit 11, and refers to the pixel having no brightness change. It works so that no data is output. The adjustment mechanism 23 is a known mechanism for adjusting the focal position of the light receiving lens 22, and is driven and controlled by the control unit 11 to move the light receiving lens 22 to one side (adjustment direction) along the optical axis or another. By moving it to the side, the focal position of the light receiving lens 22 is adjusted.

ハーフミラー24は、受光レンズ22から撮像素子21に向かう光の一部を所定の光量減衰比に応じて分光して位相差AFセンサ25に受光させるための分光部として構成されている。このため、本実施形態では、撮像素子21における上記所定の閾値は、ハーフミラー24による所定の光量減衰比に応じて設定される。 The half mirror 24 is configured as a spectroscopic unit for splitting a part of the light directed from the light receiving lens 22 toward the image sensor 21 according to a predetermined light amount attenuation ratio and causing the phase difference AF sensor 25 to receive the light. Therefore, in the present embodiment, the predetermined threshold value in the image sensor 21 is set according to the predetermined light amount attenuation ratio by the half mirror 24.

以下、撮像素子21における上記所定の閾値をハーフミラー24による所定の光量減衰比に応じて設定する理由について、図2を参照して説明する。なお、図2は、ハーフミラー24によって分光された状態での輝度変化と分光されない状態での輝度変化とを比較する説明図である。 Hereinafter, the reason for setting the predetermined threshold value in the image pickup device 21 according to the predetermined light amount attenuation ratio by the half mirror 24 will be described with reference to FIG. Note that FIG. 2 is an explanatory diagram for comparing the brightness change in the state of being separated by the half mirror 24 and the brightness change in the state of not being separated.

輝度変化が所定の閾値以上となった画素に対応してイベントデータを出力する撮像素子21では、ハーフミラー24によって受光量が減少しても、センサノイズの影響を受けることはない。しかしながら、受光量自体が減少するために輝度変化幅が減少することで、イベントデータの出力頻度が低下する場合がある。例えば、図2に示すように、分光していない状態での輝度変化がΔL1aとして検出される場合に、分光することで受光量が上記所定の光量減衰比に応じて減少して輝度変化がΔL1bとして検出される場合を想定する。このような場合、上記所定の閾値に対して、輝度変化ΔL1aが大きくなる一方で、輝度変化ΔL1bが小さくなると、分光しているためにイベントデータが出力されなくなる。 The image sensor 21 that outputs event data corresponding to pixels whose brightness changes are equal to or greater than a predetermined threshold is not affected by sensor noise even if the amount of received light is reduced by the half mirror 24. However, since the light receiving amount itself is reduced, the brightness change width is reduced, so that the output frequency of event data may be reduced. For example, as shown in FIG. 2, when a change in brightness in a non-spectroscopic state is detected as ΔL1a, the amount of light received is reduced according to the predetermined light amount attenuation ratio by spectroscopy, and the change in brightness is ΔL1b. It is assumed that it is detected as. In such a case, when the brightness change ΔL1a becomes large with respect to the predetermined threshold value, while the brightness change ΔL1b becomes small, the event data is not output because the spectrum is performed.

このため、本実施形態では、撮像素子21における上記所定の閾値をハーフミラー24による所定の光量減衰比に応じて設定する。具体的には、分光しない場合の閾値に対してΔL1b/ΔL1aを乗算して減少させるようにして、上記所定の閾値を設定する。これにより、ハーフミラー24による分光に起因するイベントデータの出力頻度の低下を抑制することができる。 Therefore, in the present embodiment, the predetermined threshold value in the image sensor 21 is set according to the predetermined light amount attenuation ratio by the half mirror 24. Specifically, the predetermined threshold value is set by multiplying the threshold value in the case of no spectroscopy by ΔL1b / ΔL1a to reduce the threshold value. As a result, it is possible to suppress a decrease in the output frequency of event data due to spectroscopy by the half mirror 24.

位相差AFセンサ25は、受光レンズ22を介して受光した際に位相差AF方式により当該受光レンズ22の合焦位置からのずれ量を検出する公知のセンサである。この位相差AFセンサ25は、ハーフミラー24にて分光された光を受光した際に、上記ずれ量に相当する信号を制御部11に出力するように構成されている。なお、位相差AFセンサ25は、受光レンズ22の合焦位置からのずれ量を検出する「ずれ量検出部」の一例に相当し得る。 The phase difference AF sensor 25 is a known sensor that detects the amount of deviation of the light receiving lens 22 from the in-focus position by the phase difference AF method when light is received through the light receiving lens 22. The phase-difference AF sensor 25 is configured to output a signal corresponding to the above-mentioned deviation amount to the control unit 11 when the light dispersed by the half mirror 24 is received. The phase difference AF sensor 25 can correspond to an example of a "shift amount detection unit" that detects the deviation amount of the light receiving lens 22 from the focusing position.

このように構成される撮像装置10では、制御部11にてなされる焦点位置調整処理において、位相差AFセンサ25にて検出される受光レンズ22の合焦位置からのずれ量が小さくなるように調整機構23が駆動制御されることで、受光レンズ22の焦点位置が合焦位置に向けて調整される。 In the image pickup apparatus 10 configured in this way, in the focus position adjustment process performed by the control unit 11, the amount of deviation of the light receiving lens 22 detected by the phase difference AF sensor 25 from the in-focus position is reduced. By driving and controlling the adjusting mechanism 23, the focal position of the light receiving lens 22 is adjusted toward the focusing position.

以上説明したように、本実施形態に係る撮像装置10では、受光レンズ22を介して受光した際に輝度変化が所定の閾値以上となった画素に対応して当該画素の位置が特定される二次元点データを含めたイベントデータを出力する撮像素子21が採用される。そして、受光レンズ22から撮像素子21に向かう光の一部がハーフミラー24により分光され、この分光された光を受光した位相差AFセンサ25では、受光した際に位相差AF方式により当該受光レンズ22の合焦位置からのずれ量が検出される。この検出されるずれ量に基づいて制御部11により調整機構23が駆動制御されることで、受光レンズ22の焦点位置が合焦位置に向けて調整される。 As described above, in the image pickup device 10 according to the present embodiment, the position of the pixel is specified corresponding to the pixel whose brightness change is equal to or more than a predetermined threshold value when the light is received through the light receiving lens 22. An image sensor 21 that outputs event data including dimension point data is adopted. Then, a part of the light directed from the light receiving lens 22 to the image sensor 21 is dispersed by the half mirror 24, and the phase difference AF sensor 25 that receives the dispersed light receives the separated light by the phase difference AF method. The amount of deviation from the focusing position of 22 is detected. The adjustment mechanism 23 is driven and controlled by the control unit 11 based on the detected deviation amount, so that the focal position of the light receiving lens 22 is adjusted toward the in-focus position.

このように、ハーフミラー24にて分光された光を利用して受光レンズ22の合焦位置からのずれ量を検出してその焦点位置を調整できるので、撮像素子21から出力されるイベントデータを利用することなくオートフォーカス機能を実現することができる。 In this way, the amount of deviation from the focusing position of the light receiving lens 22 can be detected and the focal position can be adjusted by using the light dispersed by the half mirror 24, so that the event data output from the image sensor 21 can be obtained. The autofocus function can be realized without using it.

特に、上記所定の閾値は、ハーフミラー24による光量減衰比に応じて設定されるので、ハーフミラー24によって撮像素子21にて受光される光量が減るためにイベントデータの出力頻度が低下することを抑制することができる。 In particular, since the predetermined threshold value is set according to the light amount attenuation ratio by the half mirror 24, the amount of light received by the image sensor 21 by the half mirror 24 is reduced, so that the output frequency of event data is reduced. It can be suppressed.

[第2実施形態]
次に、本第2実施形態に係る撮像装置について、図面を参照して説明する。
本第2実施形態では、位相差AFセンサ25を利用して検出されるずれ量に応じて上記所定の閾値を変更する点が、上記第1実施形態と主に異なる。したがって、第1実施形態と実質的に同一の構成部分には、同一符号を付し、その説明を省略する。なお、図3(A)は、計測対象物を例示する説明図であり、図3(B)は、図3(A)の計測対象物からの光を受光した場合において、ピントが合っている状態で測定された輝度の位置変化とピントがずれている状態で測定された輝度の位置変化とを説明する説明図である。図4(A)は、ピントが合っている状態で、図3(A)に示す計測対象物が図面右方向に移動する場合に変化する輝度の位置変化を説明する説明図であり、図4(B)は、ピントがずれている状態で、図3(A)に示す計測対象物が図面右方向に移動する場合に変化する輝度の位置変化を説明する説明図であり、図4(C)は、図4(B)の受光状態において閾値変更前のイベントデータが出力される範囲を例示する説明図であり、図4(D)は、図4(B)の受光状態において閾値変更後のイベントデータが出力される範囲を例示する説明図である。
[Second Embodiment]
Next, the image pickup apparatus according to the second embodiment will be described with reference to the drawings.
The second embodiment is mainly different from the first embodiment in that the predetermined threshold value is changed according to the amount of deviation detected by using the phase difference AF sensor 25. Therefore, the same components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. Note that FIG. 3A is an explanatory diagram illustrating an object to be measured, and FIG. 3B is in focus when light from the object to be measured in FIG. 3A is received. It is explanatory drawing explaining the position change of the luminance measured in the state and the position change of the luminance measured in the state of being out of focus. FIG. 4A is an explanatory diagram illustrating a change in the position of the brightness that changes when the measurement object shown in FIG. 3A moves to the right in the drawing while the object is in focus. FIG. 4B is an explanatory diagram illustrating a change in the position of the brightness that changes when the measurement object shown in FIG. 3A moves to the right in the drawing in a state of being out of focus, and FIG. 4C. ) Is an explanatory view illustrating the range in which the event data before the threshold value change is output in the light receiving state of FIG. 4 (B), and FIG. 4 (D) shows the event data after the threshold value change in the light receiving state of FIG. 4 (B). It is explanatory drawing which illustrates the range which the event data of is output.

上述した撮像素子21を採用する構成では、計測対象物が移動していると、ピントが合い難くなってイベントデータの出力頻度が低下する状態が継続してしまう場合がある。例えば、図3(A)に示すように、白黒が一方向に沿って波形状に変化する面を計測対象物としてその面からの光を受光する場合を想定する。このような計測対象物を静止状態で撮像する場合、ピントが合っている状態(焦点位置が合焦位置に一致している状態)で受光すると、図3(B)に示す輝度L2のように、輝度帯域(図3(B)の符号ΔL2m参照)が広くなるように輝度値が変化する。一方、ピントがずれている状態(焦点位置が合焦位置からずれている状態)で受光すると、ぼけが大きくなるため、図3(B)に示す輝度L3のように、輝度L2に対して輝度帯域(図3(B)の符号ΔL3m参照)が狭くなるように輝度値が変化する。 In the configuration that employs the image sensor 21 described above, if the object to be measured is moving, it may be difficult to focus and the output frequency of event data may continue to decrease. For example, as shown in FIG. 3A, it is assumed that a surface in which black and white changes into a wave shape along one direction is used as a measurement target and light from that surface is received. When such a measurement object is imaged in a stationary state, when light is received in a state of being in focus (a state in which the focal position coincides with the in-focus position), the brightness L2 shown in FIG. 3 (B) is obtained. , The luminance value changes so that the luminance band (see the reference numeral ΔL2m in FIG. 3B) becomes wider. On the other hand, if the light is received in a state of being out of focus (a state in which the focal position is out of focus), the blur becomes large. The luminance value changes so that the band (see the reference numeral ΔL3m in FIG. 3B) becomes narrower.

このため、図3(A)に示す計測対象物が図面右方向に移動する場合、ピントが合っている状態では、図4(A)からわかるように輝度変化が比較的大きくなり、ピントがずれている状態では、図4(B)からわかるように輝度変化が比較的小さくなる。例えば、最小輝度値近傍では、ピントがずれている状態での輝度変化(図4(B)の符号ΔL3参照)は、ピントが合っている状態での輝度変化(図4(A)の符号ΔL2参照)よりも小さくなる。 Therefore, when the measurement object shown in FIG. 3 (A) moves to the right in the drawing, the brightness change becomes relatively large and the focus shifts as can be seen from FIG. 4 (A) when the object is in focus. In this state, as can be seen from FIG. 4B, the change in brightness is relatively small. For example, in the vicinity of the minimum brightness value, the brightness change in the out-of-focus state (see the symbol ΔL3 in FIG. 4B) is the brightness change in the in-focus state (reference numeral ΔL2 in FIG. 4A). See).

このように、計測対象物が移動する場合、ピントがずれている状態では、ピントが合っている状態よりも、輝度変化が小さくなるため、イベントデータの出力頻度が低下する。例えば、図4(B)の受光状態では、最大輝度値近傍と最小輝度値近傍とで特に輝度変化が小さくなるために、閾値変更前では、図4(C)のイベントデータ出力範囲Saにて示すように、最大輝度値近傍及び最小輝度値近傍でイベントデータが出力されなくなる。 In this way, when the object to be measured moves, the change in brightness becomes smaller in the out-of-focus state than in the in-focus state, so that the output frequency of the event data decreases. For example, in the light receiving state of FIG. 4 (B), the change in luminance is particularly small between the vicinity of the maximum luminance value and the vicinity of the minimum luminance value. Therefore, before the threshold value is changed, the event data output range Sa of FIG. 4 (C) is used. As shown, the event data is not output near the maximum luminance value and the minimum luminance value.

そこで、本実施形態では、制御部11による撮像素子21の閾値制御により、撮像素子21においてイベントデータを出力する際の基準となる上記所定の閾値を、位相差AFセンサ25を利用して検出されるずれ量に応じて変更する。具体的には、例えば、検出されるずれ量が予め設定された所定量以上であれば、上記所定の閾値を規定値だけ下げるように、撮像素子21が制御部11により閾値制御される。なお、撮像素子21に対して上記閾値制御を行なう制御部11は、「閾値変更部」の一例に相当し得る。 Therefore, in the present embodiment, the threshold value of the image sensor 21 is controlled by the control unit 11, and the predetermined threshold value, which is a reference when the image sensor 21 outputs event data, is detected by using the phase difference AF sensor 25. Change according to the amount of slippage. Specifically, for example, if the detected deviation amount is equal to or more than a preset predetermined amount, the image sensor 21 is threshold-controlled by the control unit 11 so as to lower the predetermined threshold value by a predetermined value. The control unit 11 that controls the threshold value for the image sensor 21 may correspond to an example of the “threshold value changing unit”.

これにより、例えば、図4(B)の受光状態であっても、閾値変更後において、図4(D)のイベントデータ出力範囲Sbにて示すように、閾値変更前の図4(C)のイベントデータ出力範囲Saよりも出力範囲が広くなり、イベントデータの出力頻度を高めることができる。すなわち、ずれ量が大きくなる場合に上記所定の閾値を下げることで、ピントが合っていない状態が継続する場合でも、イベントデータの出力頻度の低下を抑制することができる。 As a result, for example, even in the light receiving state of FIG. 4 (B), after the threshold value is changed, as shown in the event data output range Sb of FIG. 4 (D), in FIG. 4 (C) before the threshold value is changed. The output range is wider than the event data output range Sa, and the output frequency of event data can be increased. That is, by lowering the predetermined threshold value when the amount of deviation becomes large, it is possible to suppress a decrease in the output frequency of event data even when the out-of-focus state continues.

その一方で、検出されるずれ量が所定量以下である場合、すなわち、ピントがほぼ合っている場合には上記所定の閾値を上げることで、過剰なイベントデータの出力を抑制することができる。 On the other hand, when the detected deviation amount is less than or equal to a predetermined amount, that is, when the focus is substantially adjusted, the excessive output of event data can be suppressed by raising the predetermined threshold value.

なお、本発明は上記各実施形態等に限定されるものではなく、例えば、以下のように具体化してもよい。
(1)上記第2実施形態では、撮像素子21においてイベントデータを出力する際の基準となる上記所定の閾値は、検出されるずれ量が大きくなるほど、その減少幅を大きくするように変更されてもよい。
The present invention is not limited to each of the above embodiments, and may be embodied as follows, for example.
(1) In the second embodiment, the predetermined threshold value, which is a reference when the image sensor 21 outputs event data, is changed so that the decrease amount increases as the detected deviation amount increases. May be good.

(2)受光レンズ22の合焦位置からのずれ量は、位相差AFセンサ25により検出されることに限らず、他の検出方式を採用するずれ量検出部によって検出されてもよい。 (2) The amount of deviation of the light receiving lens 22 from the in-focus position is not limited to being detected by the phase difference AF sensor 25, but may be detected by a deviation amount detection unit that employs another detection method.

10…撮像装置
11…制御部(閾値変更部)
21…撮像素子
22…受光レンズ
23…調整機構
24…ハーフミラー(分光部)
25…位相差AFセンサ(ずれ量検出部)
10 ... Imaging device 11 ... Control unit (threshold change unit)
21 ... Image sensor 22 ... Light receiving lens 23 ... Adjustment mechanism 24 ... Half mirror (spectroscopic part)
25 ... Phase difference AF sensor (displacement amount detection unit)

Claims (3)

受光レンズを介して受光した際に輝度変化が所定の閾値以上となった画素に対応して当該画素の位置が特定される二次元点データを含めたイベントデータを出力する撮像素子と、
前記受光レンズの焦点位置を調整するための調整機構と、
前記調整機構を駆動制御する制御部と、
前記受光レンズを介して受光した際に位相差AF方式により当該受光レンズの合焦位置からのずれ量を検出するずれ量検出部と、
前記受光レンズから前記撮像素子に向かう光の一部を分光して前記ずれ量検出部に受光させる分光部と、
を備え、
前記制御部は、前記ずれ量検出部により検出される前記ずれ量に基づいて前記調整機構を駆動制御することで、前記焦点位置を合焦位置に向けて調整することを特徴とする撮像装置。
An image sensor that outputs event data including two-dimensional point data in which the position of the pixel is specified corresponding to a pixel whose brightness change is equal to or greater than a predetermined threshold value when light is received through the light receiving lens.
An adjustment mechanism for adjusting the focal position of the light receiving lens and
A control unit that drives and controls the adjustment mechanism,
A shift amount detection unit that detects the amount of deviation from the focusing position of the light receiving lens by the phase difference AF method when receiving light through the light receiving lens.
A spectroscopic unit that disperses a part of the light directed from the light receiving lens toward the image sensor and causes the deviation amount detection unit to receive light.
With
The control unit is an imaging device characterized in that the focus position is adjusted toward a focusing position by driving and controlling the adjustment mechanism based on the deviation amount detected by the deviation amount detecting unit.
前記所定の閾値は、前記分光部による光量減衰比に応じて設定されることを特徴とする請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the predetermined threshold value is set according to the light amount attenuation ratio by the spectroscopic unit. 前記所定の閾値を前記ずれ量検出部にて検出される前記ずれ量に応じて変更する閾値変更部を備えることを特徴とする請求項1に記載の撮像装置。 The imaging apparatus according to claim 1, further comprising a threshold value changing unit that changes the predetermined threshold value according to the deviation amount detected by the deviation amount detecting unit.
JP2019195350A 2019-10-17 2019-10-28 Imaging device Active JP7427912B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019195350A JP7427912B2 (en) 2019-10-28 2019-10-28 Imaging device
CN202011110893.7A CN112689082B (en) 2019-10-17 2020-10-16 Imaging device with event camera
EP20202301.6A EP3809692B1 (en) 2019-10-17 2020-10-16 Imaging device provided with event-based camera
CN202210146060.9A CN114567725B (en) 2019-10-17 2020-10-16 Image pickup apparatus having event camera
US17/073,998 US11412127B2 (en) 2019-10-17 2020-10-19 Imaging device provided with event-based camera
US17/701,832 US11812145B2 (en) 2019-10-17 2022-03-23 Imaging device provided with event-based camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019195350A JP7427912B2 (en) 2019-10-28 2019-10-28 Imaging device

Publications (2)

Publication Number Publication Date
JP2021067911A true JP2021067911A (en) 2021-04-30
JP7427912B2 JP7427912B2 (en) 2024-02-06

Family

ID=75637155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019195350A Active JP7427912B2 (en) 2019-10-17 2019-10-28 Imaging device

Country Status (1)

Country Link
JP (1) JP7427912B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203346A (en) * 2005-01-18 2006-08-03 Nikon Corp Electronic camera
JP2010019632A (en) * 2008-07-09 2010-01-28 Sharp Corp Inspection condition selecting apparatus for color display device, display device inspection apparatus, and inspection condition selection method for the color display device
JP2012010006A (en) * 2010-06-23 2012-01-12 Nikon Corp Imaging apparatus
WO2016203692A1 (en) * 2015-06-18 2016-12-22 ソニー株式会社 Display control apparatus, display control method, and display control program
CN109151315A (en) * 2018-09-19 2019-01-04 信利光电股份有限公司 A kind of focus adjustment method and device of DVS camera module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203346A (en) * 2005-01-18 2006-08-03 Nikon Corp Electronic camera
JP2010019632A (en) * 2008-07-09 2010-01-28 Sharp Corp Inspection condition selecting apparatus for color display device, display device inspection apparatus, and inspection condition selection method for the color display device
JP2012010006A (en) * 2010-06-23 2012-01-12 Nikon Corp Imaging apparatus
WO2016203692A1 (en) * 2015-06-18 2016-12-22 ソニー株式会社 Display control apparatus, display control method, and display control program
CN109151315A (en) * 2018-09-19 2019-01-04 信利光电股份有限公司 A kind of focus adjustment method and device of DVS camera module

Also Published As

Publication number Publication date
JP7427912B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
CN111107263B (en) Image pickup apparatus and monitoring system
US20080024649A1 (en) Imaging apparatus
JP4094458B2 (en) Image input device
US11582394B2 (en) Control apparatus, control method, and storage medium for providing tilt control
US11190675B2 (en) Control apparatus, image pickup apparatus, control method, and storage medium
US11457148B2 (en) Image processing apparatus, imaging apparatus, and control method
JP2013083843A (en) Optical instrument, lens barrel, and automatic focus adjustment method
WO2017085802A1 (en) Image projection device
US11812145B2 (en) Imaging device provided with event-based camera
JP6486098B2 (en) Imaging apparatus and control method thereof
JP2001141982A (en) Automatic focusing device for electronic camera
JP2001036799A (en) Method and device for adjusting position of optical lens for fixed focus type image pickup device and computer readable recording medium storage program concerned with the method
US20200045215A1 (en) Control apparatus, imaging apparatus, and storage medium
JP7427912B2 (en) Imaging device
JP2021067710A (en) Lens control device, optical instrument, and lens control method
JP2001141984A (en) Automatic focusing device for electronic camera
US11394867B2 (en) Lens apparatus, camera, and non-transitory computer-readable storage medium
WO2016167142A1 (en) Imaging device and method for controlling same
JP2001141983A (en) Automatic focusing device for electronic camera
JP2012042869A (en) Imaging apparatus, focus lens position determining method, and program
JP2021067704A (en) Imaging device
JP4900134B2 (en) Focus adjustment device, camera
JP5930979B2 (en) Imaging device
JPS60142678A (en) Automatic focus matching device
JP2010224165A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R150 Certificate of patent or registration of utility model

Ref document number: 7427912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150