JPH0436000B2 - - Google Patents

Info

Publication number
JPH0436000B2
JPH0436000B2 JP60005477A JP547785A JPH0436000B2 JP H0436000 B2 JPH0436000 B2 JP H0436000B2 JP 60005477 A JP60005477 A JP 60005477A JP 547785 A JP547785 A JP 547785A JP H0436000 B2 JPH0436000 B2 JP H0436000B2
Authority
JP
Japan
Prior art keywords
torque
main shaft
electric element
rotational speed
hermetic compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60005477A
Other languages
Japanese (ja)
Other versions
JPS61164494A (en
Inventor
Yozo Nakamura
Naoyuki Tanaka
Shigeru Machida
Tooru Arai
Yoshihisa Uneyama
Kazuo Ikeda
Akihiko Ishama
Taketoshi Kato
Tsunehiro Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60005477A priority Critical patent/JPS61164494A/en
Priority to US06/817,670 priority patent/US4726738A/en
Priority to KR1019860000238A priority patent/KR910000097B1/en
Publication of JPS61164494A publication Critical patent/JPS61164494A/en
Publication of JPH0436000B2 publication Critical patent/JPH0436000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は密閉形圧縮機に係り、特に電動要素の
電磁トルクを制御することにより低振動化を図つ
たトルク制御式密閉形圧縮機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hermetic compressor, and more particularly to a torque-controlled hermetic compressor that achieves low vibration by controlling the electromagnetic torque of an electric element.

〔従来技術〕[Prior art]

従来の密閉形圧縮機の一例を第16図および第1
7図に示す。これらの図は、電動要素2と圧縮要
素10とをケース1内に収納したロータリ圧縮機
を示している。電動要素2は、ケース1に固定さ
れたステータ3と、主軸受4、端部軸受5とに支
承された主軸6と、この主軸6に固定されたロー
タ8とから主として構成されており、圧縮要素1
0は、ケース1に固定されたシリンダブロツク1
2と、主軸6と連動しシリンダブロツク12内に
配置され圧縮作動室14を画成するローラ16と
から主として構成さている。なお、符号17は圧
力作動室14内に突出しローラ16表面に当接し
ているベーンで、ばね19によつて付勢され常に
ローラ16に当接状態となつている。符号20は
吸入アキユムレータで、主軸6が回転すると冷媒
ガスがこのアキユムレータ20から吸入され、圧
縮作動室14内で所定圧に加圧され、第16図に
矢印で示す方向に流れてケース1外へ吐出される
ようになつている。
An example of a conventional hermetic compressor is shown in Figure 16 and Figure 1.
It is shown in Figure 7. These figures show a rotary compressor in which an electric element 2 and a compression element 10 are housed in a case 1. The electric element 2 mainly includes a stator 3 fixed to a case 1, a main shaft 6 supported by a main bearing 4 and an end bearing 5, and a rotor 8 fixed to the main shaft 6. Element 1
0 is cylinder block 1 fixed to case 1
2, and a roller 16 which is interlocked with the main shaft 6, is disposed within the cylinder block 12, and defines a compression working chamber 14. Reference numeral 17 denotes a vane that protrudes into the pressure working chamber 14 and comes into contact with the surface of the roller 16, and is urged by a spring 19 so as to be in constant contact with the roller 16. Reference numeral 20 denotes a suction accumulator, and when the main shaft 6 rotates, refrigerant gas is sucked from this accumulator 20, pressurized to a predetermined pressure within the compression working chamber 14, and flows in the direction shown by the arrow in FIG. 16 to the outside of the case 1. It is starting to be expelled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この種の圧縮機では、電動要素2が時間に対し
てほぼ一定のトルクを出力するのに対し、圧縮要
素10内のガス吸収トルクは主軸6が1回転する
間に非常に大きく変動し、圧縮機の運転中、電動
要素2のトルクと圧縮要素10の吸収トルクのト
ルク差が加振源となつて圧縮機全体に大きな回転
振動が生ずる。また、第16図符号22で示すよ
うな防振部材を、ベース(図示せず)とケース1
との間に介装させた技術、例えば特開昭58−
187635もある。しかし、この従来技術は圧縮機が
一定の回転速度で運転される場合には効果がある
が、電動要素10、即ち電動機の回転数をインバ
ータを用いて幅広く制御しようとする場合は、特
に低回転域において防振効果が著しく劣り、この
振動により、ケース1や配管等が加振されて騒音
が発生し、この状態が長期にわたると配管が折れ
る等の重大な事故が発生するおそれがある等の問
題点があつた。
In this type of compressor, while the electric element 2 outputs a nearly constant torque over time, the gas absorption torque within the compression element 10 fluctuates greatly during one rotation of the main shaft 6. During operation of the compressor, the torque difference between the torque of the electric element 2 and the absorption torque of the compression element 10 acts as a source of vibration, causing large rotational vibrations throughout the compressor. In addition, a vibration isolating member as shown by reference numeral 22 in FIG. 16 is attached to the base (not shown) and the case 1.
Technologies interposed between the
There is also 187635. However, although this conventional technology is effective when the compressor is operated at a constant rotational speed, it is difficult to control the rotational speed of the electric element 10, that is, the electric motor over a wide range, especially at low rotational speeds. The vibration isolation effect is extremely poor in the area, and this vibration excites the case 1 and piping, causing noise. If this condition continues for a long time, there is a risk of serious accidents such as pipes breaking. There was a problem.

本発明の目的は、圧縮要素の吸収トルクと電動
要素の電磁トルクとのトルク差をなくすことによ
つて振動のない密閉形圧縮機を提供することにあ
る。
An object of the present invention is to provide a hermetic compressor free from vibration by eliminating the torque difference between the absorption torque of the compression element and the electromagnetic torque of the electric element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、密閉容
器内に圧縮要素とこの圧縮要素を駆動する電動要
素とを収納した密閉形圧縮機において、圧縮要素
の主軸の対応する回転角度における圧縮要素の吸
収トルクと電動要素の電動トルクとのトルク差を
検出する手段と、回転速度を可変に変動要素を駆
動する駆動装置と、主軸1回転を1周期としてそ
の間を複数個に分割し、その分割毎に電動要素へ
供給する電流をステツプ状指令信号により制御し
て主軸1回転中の回転速度変動を少なくするよう
に出力トルク制御装置とを備えたトルク制御式密
閉形圧縮機を提案するものである。
In order to achieve the above object, the present invention provides a hermetic compressor in which a compression element and an electric element for driving the compression element are housed in a closed container, in which the compression element is rotated at a corresponding rotation angle of the main shaft of the compression element. means for detecting the torque difference between the absorption torque and the electric torque of the electric element; a drive device that drives the variable element with variable rotational speed; The present invention proposes a torque-controlled hermetic compressor equipped with an output torque control device that controls the current supplied to the electric element using a step-like command signal to reduce rotational speed fluctuations during one revolution of the main shaft. .

トルク差を検出する手段は、具体的には、主軸
の回転速度の変動に基づいてトルク差を検出し、
トルク制御装置は、主軸の回転速度変動を零に近
付けるように電動要素の電磁トルクを制御する。
Specifically, the means for detecting the torque difference detects the torque difference based on fluctuations in the rotational speed of the main shaft,
The torque control device controls the electromagnetic torque of the electric element so that fluctuations in the rotational speed of the main shaft approach zero.

トルク差を検出する手段は、圧縮要素または電
動要素の非回転部に生ずる回転方向加速度に基づ
いて前記トルク差を検出してもよい。その場合
は、トルク制御装置は、回転方向速度を零に近付
けるように電動要素の電磁トルクを制御する。
The means for detecting the torque difference may detect the torque difference based on rotational acceleration generated in a non-rotating portion of the compression element or the electric element. In that case, the torque control device controls the electromagnetic torque of the electric element so that the rotational speed approaches zero.

いずれの場合も、トルク制御装置は、主軸の1
回転を1周期とする電磁トルクの指令出力パター
ンを複数個内蔵することが可能である。
In either case, the torque control device
It is possible to incorporate a plurality of electromagnetic torque command output patterns each having one cycle of rotation.

その電磁トルクの出力パターンは、圧縮要素の
吸収トルクをフーリエ展開した1次成分〜n次成
分の一成分パターンまたは複数成分の合成パター
ンとすることができる。
The output pattern of the electromagnetic torque can be a one-component pattern of first to nth order components obtained by Fourier expansion of the absorption torque of the compression element, or a composite pattern of a plurality of components.

〔作用〕[Effect]

本発明によれば、トルク制御装置によつて、電
動要素の電磁トルクが圧縮要素の吸収トルクに等
しくなるように制御されるので、吸収トルクと電
磁トルクとのトルク差がなくなり、あるいは小さ
くなり、圧縮機の回転振動が防止される。
According to the present invention, the torque control device controls the electromagnetic torque of the electric element to be equal to the absorption torque of the compression element, so the torque difference between the absorption torque and the electromagnetic torque disappears or becomes small. Rotational vibration of the compressor is prevented.

〔実施例〕〔Example〕

次に本発明の実施例を図面に基づいて説明す
る。
Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明の第1の実施例を示す図であ
り、本実施例に係る圧縮機30は、第16図およ
び第17図で示した従来の圧縮機とその構成がほ
とんど同じであるため、異なる部分のみ説明し、
同一部は同一の符号を付すことによりその説明は
省略する。
FIG. 1 is a diagram showing a first embodiment of the present invention, and a compressor 30 according to this embodiment has almost the same configuration as the conventional compressor shown in FIGS. 16 and 17. Therefore, only the different parts will be explained,
Identical parts will be given the same reference numerals and their explanation will be omitted.

第1図において、圧縮要素2を構成する主軸6
の上端部が上方に延びて被回転検出部材である歯
車32が固着され、この歯車32と主軸6とは一
体に回転するようになつている。ケース1には自
らが磁界を有する電磁ピツクアツプ34が固定さ
れており、第2図に示すように、主軸6の回転速
度を応じた信号を出力する。即ち、第2図符号3
5で示す基準線(信号の中心出力レベルを結ぶ基
準線)を考え、信号がこの基準線35を横切つた
後、再び基準線35を横切るまでの時間tを求め
れば、歯車32の歯数から主軸6の刻々の回転速
度が得られる。第3図はこの第2図に示す回転速
度信号に基づいて主軸6の回転速度の変動状態を
示したもので、符号36は主軸6の平均回転速度
を、A領域は進みを、B領域は遅れをそれぞれ示
している。なお、平均回転速度は、平均時間ti
(=1/noi=1 ti)と歯車32の歯車mより求めること ができ、進み遅れの量ωはω∝ta(ti/ta−1)より 求めることができる。
In FIG. 1, the main shaft 6 constituting the compression element 2
A gear 32, which is a rotation detection member, is fixed to the upper end of the gear 32, and the gear 32 and the main shaft 6 rotate together. An electromagnetic pickup 34 having its own magnetic field is fixed to the case 1, and outputs a signal corresponding to the rotational speed of the main shaft 6, as shown in FIG. That is, the symbol 3 in Figure 2
Considering the reference line indicated by 5 (the reference line connecting the center output level of the signal) and finding the time t from when the signal crosses this reference line 35 until it crosses the reference line 35 again, the number of teeth of the gear 32 can be determined. The momentary rotational speed of the main shaft 6 can be obtained from . FIG. 3 shows the fluctuation state of the rotational speed of the main shaft 6 based on the rotational speed signal shown in FIG. Each shows a delay. Note that the average rotational speed is determined by the average time t i
(=1/n oi=1 t i ) and the gear m of the gear 32, and the lead/lag amount ω can be found from ω∝ta (t i /t a −1).

第4図は圧縮要素10の吸収トルクと時間との
関係を示す図であるが、その位相は第3図に示す
主軸6の回転速度変動と一致し、吸収トルクが増
加すると主軸6の回転速度が小さくなり、吸収ト
ルクが減少すると回転速度が大きくなるというよ
うに、圧縮要素の吸収トルクと主軸6の回転速度
との間には相関がある。
FIG. 4 is a diagram showing the relationship between the absorption torque of the compression element 10 and time. The phase coincides with the rotational speed fluctuation of the main shaft 6 shown in FIG. 3, and as the absorption torque increases, the rotational speed of the main shaft 6 increases. There is a correlation between the absorption torque of the compression element and the rotation speed of the main shaft 6, such that as the absorption torque decreases, the rotation speed increases.

この電磁ピツクアツプ34で検出された主軸6
の回転速度は、第5図に示すように、マイコン等
を有した演算器38へ送られ演算処理されて第3
図に示すような主軸6の回転速度変動として示さ
れ、制御部40に出力される。制御部40はこれ
に応じて主軸の回転速度変化が零となるように、
電源周波数可変装置42を介して電動要素の電磁
トルクを制御するようになつている。圧縮器の回
転速度を変更するには通称インバータ電源が適用
されるが、電動要素としてDCモートルを用いる
ことができるので、電源または電流の制御をしや
すく、主軸6の速度制御を容易に行うことができ
る。
The main shaft 6 detected by this electromagnetic pickup 34
As shown in FIG. 5, the rotational speed of
This is expressed as a rotational speed fluctuation of the main shaft 6 as shown in the figure, and is output to the control section 40. In response to this, the control unit 40 controls the rotational speed of the main shaft so that the change in rotational speed becomes zero.
The electromagnetic torque of the electric element is controlled via a power supply frequency variable device 42. A so-called inverter power supply is commonly used to change the rotational speed of the compressor, but since a DC motor can be used as the electric element, it is easy to control the power supply or current, and the speed of the main shaft 6 can be easily controlled. I can do it.

このように本実施例では、第5図に示すような
主軸6の回転速度をフイードバツクさせる制御系
を構成し、制御部40により電源電力を瞬時に変
更できるようになつているので、主軸6の回転速
度変動が抑制されて振動の発生が抑制される。
In this way, this embodiment has a control system that feeds back the rotational speed of the main shaft 6 as shown in FIG. Rotational speed fluctuations are suppressed and vibration generation is suppressed.

第6図および第7図はそれぞれ本発明の第2、
第3の実施例を示すものである。
FIG. 6 and FIG. 7 are the second and third embodiments of the present invention, respectively.
This shows a third example.

第6図は、圧縮機のケース1に取付治具52を
取付け、この取付治具52をベース54上に設置
した支持部材56で支持し、圧縮機を横置状態と
するとともに、支持部材56と取付治具52間に
荷重検出器58を介在させた第2の実施例の要部
を示している。なお符号44,46はそれぞれ吸
込パイプ、吐出パイプを示している。
FIG. 6 shows that a mounting jig 52 is attached to the case 1 of the compressor, this mounting jig 52 is supported by a support member 56 installed on a base 54, the compressor is placed horizontally, and the support member 56 is The main part of a second embodiment in which a load detector 58 is interposed between the mounting jig 52 and the mounting jig 52 is shown. Note that numerals 44 and 46 indicate a suction pipe and a discharge pipe, respectively.

第7図は、圧縮機のケース1に取付けた取付治
具52をベース54に固定した支持部材57で支
持するとともに、支持部材57に歪検出器60を
設置した第3の実施例の要部を示している。
FIG. 7 shows a main part of a third embodiment in which a mounting jig 52 attached to a compressor case 1 is supported by a support member 57 fixed to a base 54, and a strain detector 60 is installed on the support member 57. It shows.

圧縮機を運転すると圧縮機の容器1には回転振
動が誘発されて、それぞれの検出器58,60は
第8図に示すような応答信号(第2の実施例では
荷重の変化、第3の実施例では歪の変化)を受け
るが、これらの応答信号は圧縮要素の吸収トルク
(第4図参照)に対応していることが発明者らの
実験結果より明らかとなつており、第1の実施例
に示したと同様のフイードバツク制御装置(第5
図参照)により、即ち、第8図に示される応答信
号が零となるように制御部40、電源周波数可変
装置42を作動させることにより、この第2、第
3の実施例によつても圧縮機の振動を抑制するこ
とができる。なお、第7図は圧縮機を横置き状態
としているが、横置きに限定されるものではな
く、縦置き、斜め置きも可能である。
When the compressor is operated, rotational vibrations are induced in the compressor vessel 1, and the respective detectors 58 and 60 generate response signals as shown in FIG. In the example, the response signal is subject to a change in strain), but it has become clear from the inventors' experimental results that these response signals correspond to the absorption torque of the compression element (see Fig. 4), and the first A feedback control device similar to that shown in the embodiment (fifth
In other words, by operating the control section 40 and the power supply frequency variable device 42 so that the response signal shown in FIG. Machine vibration can be suppressed. Although FIG. 7 shows the compressor placed horizontally, the compressor is not limited to being placed horizontally, and may be placed vertically or diagonally.

また、本発明は、負荷に合わせて電動要素の電
磁トルクを制御し、回転系の回転振動を低減する
ことがねらいであり、負荷が圧縮機である必要は
なく、負荷変動のある回転系のすべてに適用でき
るものである。さらにまた、トルク制御を行うに
あたり、回転振動の低減量に許容値があれば必ず
しも負荷のトルクと電磁トルクを一致させる必要
はなく、1周期あたりのパターンを近似させて制
御するだけでも振動を低減する上で有効である。
Furthermore, the present invention aims to reduce the rotational vibration of a rotating system by controlling the electromagnetic torque of an electric element according to the load. It is applicable to all. Furthermore, when performing torque control, it is not necessary to match the load torque and electromagnetic torque as long as there is an allowable value for the amount of rotational vibration reduction; vibration can be reduced by simply controlling by approximating the pattern per cycle. It is effective in doing so.

第9図は本発明の第4の実施例を示す図であ
る。
FIG. 9 is a diagram showing a fourth embodiment of the present invention.

この図において、符号62は圧縮作動室内のガ
スの圧力変化を検出するための圧力センサで、シ
リンダの吐出ポート近傍に設けられている。その
他は従来の圧縮機(第16,17図参照)と同一
であるため同一の符号を付することによりその説
明は省略する。なお符号64は圧力作動室14内
から吐出ポートにのびる圧力導通孔である。この
圧力センサ62によつて第10図に示すような圧
縮作動室内の圧力変動が得られる。この圧力セン
サ62の出力は第11図に示すトルク制御装置の
演算器38に接続されており、この演算器38で
演算されて第12図に示すようなガラス吸収トル
クの変化が出るようになつている。演算器38で
演算された吸収トルクに合致した電磁トルクが電
動要素から出力されるように制御部40へ制御信
号を送る。制御部40は電源周波数可変装置42
を作動させて圧縮機の回転速度を変えるようにな
つており、換言すれば電動要素へ供給する電流ま
たは電圧を制御し、圧縮要素の吸収トルクに電動
要素の電磁トルクを一致させて回転振動を抑制す
る。また電動周波数可変装置42で電動要素の出
力電力の変更ができないものであれば、別途電力
変更装置を設ける必要がある。
In this figure, reference numeral 62 denotes a pressure sensor for detecting changes in the pressure of gas within the compression chamber, and is provided near the discharge port of the cylinder. Since the other parts are the same as those of the conventional compressor (see FIGS. 16 and 17), the same reference numerals are given and the explanation thereof will be omitted. Note that the reference numeral 64 is a pressure communication hole extending from the inside of the pressure working chamber 14 to the discharge port. With this pressure sensor 62, pressure fluctuations in the compression working chamber as shown in FIG. 10 can be obtained. The output of this pressure sensor 62 is connected to a calculator 38 of the torque control device shown in FIG. 11, and is calculated by the calculator 38 so that the glass absorption torque changes as shown in FIG. ing. A control signal is sent to the control unit 40 so that the electromagnetic torque matching the absorption torque calculated by the calculator 38 is output from the electric element. The control unit 40 is a power supply frequency variable device 42
In other words, the current or voltage supplied to the electric element is controlled, and the electromagnetic torque of the electric element matches the absorption torque of the compression element to suppress rotational vibration. suppress. Further, if the electric frequency variable device 42 cannot change the output power of the electric element, it is necessary to provide a separate power changing device.

なお、演算器38は圧力センサ62からの信号
を受けて圧縮要素の吸収トルクに等しい信号を出
力するようになつているが、必ずしも吸収トルク
に等しくなくても、回転振動を抑制するに足る範
囲内のトルクが出力されるような信号であればよ
く、圧縮要素の吸収トルクの1次成分、1次成分
と2次成分、あるいはさらに1次成分からn次成
分を合成したトルクパターンが出力されるような
ものであつてもよい。第13図は圧縮機がある圧
力条件で運転されている場合の吸収トルクをフー
リエ展開してその1次成分から3次成分までを示
したもので、曲線Aは1次成分、曲線Bは2次成
分、曲線Cは3次成分をそれぞれ示している。な
お、第13図において正負の基準となるレベルは
O次成分の大きさをもつている。また第14図は
圧縮要素の吸収トルクと電動要素の電磁トルクと
のトルク差を示す図で、曲線aは電動要素の電磁
トルクを制御しない場合の吸収トルクと電磁トル
クとのトルク差を示している。曲線bは第13図
符号Aで示す1次成分を電磁トルクとして出力し
た場合の吸収トルクとのトルク差を示しており、
曲線cは第13図符号A,Bにそれぞれ示す1次
成分、2次成分を合成したトルク電磁トルクとし
て出力した場合の吸収トルクとのトルク差を示し
ている。この第14図からわかるように、電動要
素のトルク制御を一切行なわない場合(曲線a)
に比べトルク制御を行つた場合(曲線b,c)の
方が圧縮機の回転系に作用する残差トルクが小さ
くなるので、1次成分だけに基づいたトルクパタ
ーンを電動要素から出力させた場合(曲線b)で
も回転振動の低減効果がある。なお、1次成分か
らn次成分までを合成するようにすればより好ま
しいが、実用上は1次成分から2次成分程度の合
成トルクパターンで十分である。またこれらのn
次成分までのトルクパターン(n=1〜n)を複
数個任意に選択できるようにしておくことも可能
である。
Note that the computing unit 38 receives a signal from the pressure sensor 62 and outputs a signal equal to the absorption torque of the compression element, but even if it is not necessarily equal to the absorption torque, it is within a range sufficient to suppress rotational vibration. Any signal that outputs the torque of It may be something like that. Figure 13 shows the Fourier expansion of the absorption torque when the compressor is operated under certain pressure conditions, from the first to the third order components, where curve A is the first order component and curve B is the second order component. The next-order component and curve C indicate the third-order component, respectively. Note that in FIG. 13, the level serving as a positive/negative reference has the magnitude of the O-order component. Fig. 14 is a diagram showing the torque difference between the absorption torque of the compression element and the electromagnetic torque of the electric element, and curve a shows the torque difference between the absorption torque and the electromagnetic torque when the electromagnetic torque of the electric element is not controlled. There is. Curve b shows the torque difference between the absorption torque and the absorbed torque when the first-order component shown by reference numeral A in Fig. 13 is output as electromagnetic torque.
Curve c shows the torque difference from the absorbed torque when the torque is output as an electromagnetic torque which is a combination of the primary and secondary components shown by reference numerals A and B in FIG. 13, respectively. As can be seen from Fig. 14, when no torque control of the electric element is performed (curve a)
Compared to the case where torque control is performed (curves b and c), the residual torque acting on the rotation system of the compressor is smaller, so when a torque pattern based only on the first-order component is output from the electric element. (Curve b) also has the effect of reducing rotational vibration. It is more preferable to synthesize the first to nth order components, but in practice, a combined torque pattern of about the first to second order components is sufficient. Also these n
It is also possible to arbitrarily select a plurality of torque patterns (n=1 to n) up to the next component.

また制御部40により電源周波数可変装置42
をして圧縮機へ供給する電流あるいは電圧を制御
する場合、即ち所定のトルクパターンに基づいた
トルクを出力する場合には、主軸の1回転(2π)
を電動要素の極数Pとスロツト数Sとの積で等分
割した回転角毎に出力するようにして電動要素の
電磁トルクの出力をステツプ状に制御することが
望ましい。例えば、2極の電動要素を用いた場合
で、1極当りのスロツト数が6の場合には、主軸
1回転当り12等分割された回転角、即ち、π/6毎 に第15図に示すようにトルクパターン制御を行
う。この第15図は、第14図符号bで示される
場合(1次成分と2次成分の合成トルクパター
ン)をステツプトルク制御した結果を示すもので
あり、このようなステツプトルク制御は密閉形圧
縮機に適用されている電動要素の構成上非常に実
用性の高いものである。また圧縮機の回転数を制
御するためには、電動要素としてDCモートルを
使用することが望ましく、電流を制御して電磁ト
ルク制御を行う方式が実施しやすい。
In addition, the control unit 40 controls the power supply frequency variable device 42.
When controlling the current or voltage supplied to the compressor by
It is desirable to control the output of the electromagnetic torque of the electric element in a stepwise manner by outputting it for each rotation angle equally divided by the product of the number of poles P and the number S of slots of the electric element. For example, when a two-pole electric element is used and the number of slots per pole is 6, the rotation angle is divided into 12 equal parts per rotation of the main shaft, that is, every π/6, as shown in Fig. 15. Torque pattern control is performed as follows. This Fig. 15 shows the result of step torque control for the case shown by reference numeral b in Fig. 14 (combined torque pattern of primary and secondary components). It is extremely practical due to the configuration of the electric elements applied to the machine. Further, in order to control the rotation speed of the compressor, it is desirable to use a DC motor as the electric element, and it is easy to implement a method of controlling the electric current and controlling the electromagnetic torque.

なお、前記第4の実施例では、検出信号として
圧縮作動室内のガスの圧力変化を用いているが、
冷凍サイクル(図示せず)中の高圧部と低圧部の
圧力変化を検出信号とすることも可能である。こ
の場合には、高圧部および低圧部の圧力はそれぞ
れ第10図符号Pd,Psで示される圧力にほぼ一
致する。ただし、この場合には回転系の1周期を
示す信号取入手段を別に必要とする。
In addition, in the fourth embodiment, the pressure change of the gas in the compression chamber is used as the detection signal, but
It is also possible to use a pressure change between a high pressure section and a low pressure section in a refrigeration cycle (not shown) as a detection signal. In this case, the pressures in the high pressure section and the low pressure section approximately correspond to the pressures indicated by Pd and Ps in FIG. 10, respectively. However, in this case, a separate means for receiving a signal indicating one cycle of the rotating system is required.

さらにまた、圧縮作動室内のガスの圧力変化に
代えて、前記第1〜第3の実施例で示した主軸6
の回転速度変動、圧縮機の非回転系に伝達される
荷重や歪の変化から圧縮要素の吸収トルクパター
ンを算出し、これらを検出信号として利用するこ
とも可能である。
Furthermore, instead of changing the pressure of the gas in the compression working chamber, the main shaft 6 shown in the first to third embodiments
It is also possible to calculate the absorption torque pattern of the compression element from the rotational speed fluctuations of the compressor and changes in the load and strain transmitted to the non-rotating system of the compressor, and use these as a detection signal.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば、圧縮機の振動を著しく低減させることがで
き、回転速度を広範囲に変えることの可能な圧縮
機においても振動を低減させることができる。
As is clear from the above description, according to the present invention, vibrations of a compressor can be significantly reduced, and even in a compressor whose rotational speed can be varied over a wide range, vibrations can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の縦断面図、第
2図は電磁ピツクアツプで出出される検出信号を
示す図、第3図は圧縮要素の主軸の回転速度変動
状態を示す図、第4図は圧縮作動室内の吸収トル
ク変動を示す図、第5図はトルク制御装置の概要
図、第6図は本発明の第2の実施例の要部正面
図、第7図は本発明の第3の実施例の要部正面
図、第8図は第2、第3の実施例に用いた荷重検
出器、歪検出器の応答信号を示す図、第9図は本
発明の第4の実施例の要部横断面図、第10図は
その圧縮要素の圧縮作動室内の圧力変動を示す
図、第11図はそのトルク制御装置の概要図、第
12図は第10図に示す圧力変動に対応する圧縮
要素のガス吸収トルク変動を示す図、第13図は
圧縮要素の吸収トルクをフーリエ展開して1次成
分から3次成分までをそれぞれ独立して示した
図、第14図は電動要素の電磁トルクを制御した
場合の吸収トルクと電磁トルクとのトルク差を示
す図、第15図はπ/6間隔でステツプトルク制御 した場合の吸収トルクと電磁トルクのトルク差を
示す図、第16図は従来の密閉形圧縮機の縦断面
図、第17図は第16図に示す線X−Xに沿う断
面図である。 1……容器、2……電動要素、6……主軸、1
0……圧縮要素、14……圧縮作動室、16……
ローラ、22……防振部材、30……圧縮機、3
2……歯車、34……電磁ピツクアツプ、38…
…演算器、40……制御部、42……電源周波数
可変装置、52……取付治具、58……荷重検出
器、60……歪検出器、62……圧力センサ。
FIG. 1 is a longitudinal cross-sectional view of the first embodiment of the present invention, FIG. 2 is a diagram showing a detection signal output by an electromagnetic pickup, and FIG. 3 is a diagram showing the rotational speed fluctuation state of the main shaft of the compression element. FIG. 4 is a diagram showing absorption torque fluctuations in the compression chamber, FIG. 5 is a schematic diagram of the torque control device, FIG. 6 is a front view of main parts of the second embodiment of the present invention, and FIG. 7 is a diagram of the present invention. FIG. 8 is a diagram showing the response signals of the load detector and strain detector used in the second and third embodiments, and FIG. 9 is a front view of the main parts of the third embodiment of the present invention. 10 is a diagram showing the pressure fluctuations in the compression working chamber of the compression element, FIG. 11 is a schematic diagram of the torque control device, and FIG. 12 is the pressure shown in FIG. 10. Figure 13 is a diagram showing the gas absorption torque fluctuation of the compression element corresponding to the fluctuation. Figure 13 is a diagram showing the absorption torque of the compression element independently from the first to third components after Fourier expansion. A diagram showing the torque difference between the absorption torque and the electromagnetic torque when the electromagnetic torque of the electric element is controlled, FIG. 15 is a diagram showing the torque difference between the absorption torque and the electromagnetic torque when the step torque is controlled at π/6 intervals, FIG. 16 is a longitudinal sectional view of a conventional hermetic compressor, and FIG. 17 is a sectional view taken along line XX shown in FIG. 16. 1...Container, 2...Electric element, 6...Main shaft, 1
0... Compression element, 14... Compression working chamber, 16...
Roller, 22... Vibration isolation member, 30... Compressor, 3
2...Gear, 34...Electromagnetic pick-up, 38...
... Arithmetic unit, 40 ... Control unit, 42 ... Power frequency variable device, 52 ... Mounting jig, 58 ... Load detector, 60 ... Strain detector, 62 ... Pressure sensor.

Claims (1)

【特許請求の範囲】 1 密閉容器内に圧縮要素と当該圧縮要素を駆動
する電動要素とを収納した密閉形圧縮機におい
て、 前記圧縮要素の主軸の対応する回転角度におけ
る前記圧縮要素の吸収トルクと前記電動要素の電
磁トルクとのトルク差を検出する手段と、 回転速度を可変に電動要素を駆動する駆動装置
と、 主軸1回転を1周期としてその間を複数個に分
割し、当該分割毎に前記電動要素へ供給する電流
をステツプ状指令信号により制御して主軸1回転
中の回転速度変動を少なくするように出力するト
ルク制御装置とを備えた ことを特徴とするトルク制御式密閉形圧縮機。 2 特許請求の範囲第1項において、 前記トルク差を検出する手段が、前記主軸の回
転速度の変動に基づいて前記トルク差を検出する
手段であり、 前記トルク制御装置が、前記主軸の回転速度の
変動を零に近付けるように前記電動要素の電磁ト
ルクを制御する手段である ことを特徴とするトルク制御式密閉形圧縮機。 3 特許請求の範囲第1項において、 前記トルク差を検出する手段が、前記圧縮要素
または電動要素の非回転部に生ずる回転方法加速
度に基づいて前記トルク差を検出する手段であ
り、 前記トルク制御装置が、前記回転方向加速度を
零に近付けるように前記電動要素の電磁トルクを
制御する手段である ことを特徴とするトルク制御式密閉形圧縮機。 4 特許請求の範囲第1項〜第3項のいずれか一
項において、 前記トルク制御装置が、前記主軸の1回転を1
周期とする前記電磁トルクの指令出力パターンを
複数個有する ことを特徴とするトルク制御式密閉形圧縮機。 5 特許請求の範囲第4項において、 前記電磁トルクの出力パターンが、前記圧縮要
素の吸収トルクをフーリエ展開した1次成分〜n
次成分の一成分パターンまたは複数成分の合成パ
ターンである ことを特徴とするトルク制御式密閉形圧縮機。
[Claims] 1. In a hermetic compressor in which a compression element and an electric element for driving the compression element are housed in a hermetic container, the absorption torque of the compression element at a corresponding rotation angle of the main shaft of the compression element; means for detecting a torque difference between the electromagnetic torque of the electric element; a drive device that drives the electric element with variable rotational speed; one rotation of the main shaft is one period, the period is divided into a plurality of periods, and for each division, the 1. A torque-controlled hermetic compressor, comprising: a torque control device that controls current supplied to an electric element using a step-like command signal and outputs the current so as to reduce fluctuations in rotational speed during one rotation of a main shaft. 2. In claim 1, the means for detecting the torque difference is means for detecting the torque difference based on a variation in the rotational speed of the main shaft, and the torque control device is configured to detect the torque difference based on a variation in the rotational speed of the main shaft. 1. A torque-controlled hermetic compressor, characterized in that the torque-controlled hermetic compressor is a means for controlling the electromagnetic torque of the electric element so that fluctuations in the electric component approach zero. 3. In claim 1, the means for detecting the torque difference is means for detecting the torque difference based on a rotational acceleration occurring in a non-rotating portion of the compression element or the electric element, and the torque control A torque-controlled hermetic compressor, characterized in that the device is means for controlling the electromagnetic torque of the electric element so that the rotational direction acceleration approaches zero. 4. In any one of claims 1 to 3, the torque control device converts one rotation of the main shaft into one revolution.
A torque-controlled hermetic compressor, characterized in that it has a plurality of command output patterns of the electromagnetic torque as a cycle. 5. In claim 4, the output pattern of the electromagnetic torque is a first-order component ~n obtained by Fourier expansion of the absorption torque of the compression element.
A torque-controlled hermetic compressor characterized by a one-component pattern of the following components or a composite pattern of multiple components.
JP60005477A 1985-01-16 1985-01-16 Torque control type sealed compressor Granted JPS61164494A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60005477A JPS61164494A (en) 1985-01-16 1985-01-16 Torque control type sealed compressor
US06/817,670 US4726738A (en) 1985-01-16 1986-01-10 Motor-driven compressor provided with torque control device
KR1019860000238A KR910000097B1 (en) 1985-01-16 1986-01-16 Motor-driven compressor provided with torque control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005477A JPS61164494A (en) 1985-01-16 1985-01-16 Torque control type sealed compressor

Publications (2)

Publication Number Publication Date
JPS61164494A JPS61164494A (en) 1986-07-25
JPH0436000B2 true JPH0436000B2 (en) 1992-06-12

Family

ID=11612326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005477A Granted JPS61164494A (en) 1985-01-16 1985-01-16 Torque control type sealed compressor

Country Status (2)

Country Link
JP (1) JPS61164494A (en)
KR (1) KR910000097B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669540B2 (en) * 1987-08-04 1997-10-29 株式会社日立製作所 Rotary compressor controller
DE102018125999A1 (en) * 2018-10-19 2020-04-23 OET GmbH Method for controlling a scroll compressor and control device for a scroll compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157211A (en) * 1978-06-02 1979-12-12 Mitsubishi Electric Corp Motor control device
JPS5815494B2 (en) * 1973-09-04 1983-03-25 松下電器産業株式会社 Seizouhouhou
JPS6115590A (en) * 1984-06-28 1986-01-23 Daikin Ind Ltd Vibration reducing unit of rotary compressor
JPS6115589A (en) * 1984-06-28 1986-01-23 Daikin Ind Ltd Vibration reducing unit of rotary compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815494U (en) * 1981-07-24 1983-01-31 株式会社東芝 Electric motor control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815494B2 (en) * 1973-09-04 1983-03-25 松下電器産業株式会社 Seizouhouhou
JPS54157211A (en) * 1978-06-02 1979-12-12 Mitsubishi Electric Corp Motor control device
JPS6115590A (en) * 1984-06-28 1986-01-23 Daikin Ind Ltd Vibration reducing unit of rotary compressor
JPS6115589A (en) * 1984-06-28 1986-01-23 Daikin Ind Ltd Vibration reducing unit of rotary compressor

Also Published As

Publication number Publication date
JPS61164494A (en) 1986-07-25
KR860005981A (en) 1986-08-16
KR910000097B1 (en) 1991-01-19

Similar Documents

Publication Publication Date Title
KR940004385B1 (en) Torque control apparatus for enclosed compressor
US4726738A (en) Motor-driven compressor provided with torque control device
JPH0742939B2 (en) Torque controlled compressor
JPS61272483A (en) Refrigerating cycle device
US6485274B2 (en) Displacement machine for compressible media
JPH0539727A (en) Driving device for turbocharger with rotary motor
JP4511682B2 (en) Control device for motor for compressor
JPH0436000B2 (en)
JPH01224484A (en) Control method for compressor with revolving speed controlled
JPS63290182A (en) Torque control type rotary motor machine
JP2809182B2 (en) Compressor motor controller
JPS61169916A (en) Torque control type closed compressor
JP2853693B2 (en) Refrigeration equipment
JP2001259972A (en) Magnetic bearing device for machine tool
JPS6271483A (en) Torque control type external vibrationproof type rotary compressor
JPS6173585A (en) Torque controller of sealed compressor
JPH0715994A (en) Motor controller
JP3068354B2 (en) Scroll compressor
JP2960254B2 (en) Control method of induction motor for compressor
JPS63147987A (en) Vibration reducing device for rotary compressor
JPH0282000A (en) Operational condition detecting method for turbo molecular pump
JPS6371590A (en) Vibration reducing device for rotary compressor
JP2594451B2 (en) Rotary electric machine with torque control
JPS6323585A (en) Torque control rotary motor
JPH044315A (en) Magnetic bearing device for rotary body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees