JPH04359951A - Hydrogel molding having controllable disintegrating time and its preparation - Google Patents

Hydrogel molding having controllable disintegrating time and its preparation

Info

Publication number
JPH04359951A
JPH04359951A JP3163491A JP16349191A JPH04359951A JP H04359951 A JPH04359951 A JP H04359951A JP 3163491 A JP3163491 A JP 3163491A JP 16349191 A JP16349191 A JP 16349191A JP H04359951 A JPH04359951 A JP H04359951A
Authority
JP
Japan
Prior art keywords
hydrogel
water
degree
pva
saponification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3163491A
Other languages
Japanese (ja)
Inventor
Gouichi Ueno
剛市 植野
Takashi Nakajima
隆 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Chemical Co Ltd
Original Assignee
Unitika Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Chemical Co Ltd filed Critical Unitika Chemical Co Ltd
Priority to JP3163491A priority Critical patent/JPH04359951A/en
Publication of JPH04359951A publication Critical patent/JPH04359951A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the title molding which has strength high enough to firmly retain its shape for a certain period of time for its use and spontaneously disintegrates after the period by such a simple operation as similar to the production of a general-purpose plastic. CONSTITUTION:The title molding is prepd. by thermally dissolving 50-60 pts.wt. polyvinyl alcohol-based polymer having an average degree of polymn. of 100-3500 and a degree of saponification of at least 95mol% in a mixed solvent consisting of 5-60 pts.wt. polyol such as ethylene glycol and 10-60 pts.wt. water and allowing the soln. to gel in a mold at room temp. The molding may be prepd. by thermally melting a gel formed as above and allowing the resulting soln. to gel again at room temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,一定使用期間内はヒド
ロゲルの強度が高く,しっかりと形状が保たれ,一定使
用期間経過後は自然に崩壊してしまうような形状崩壊時
間の制御可能なヒドロゲル成形体,およびこのようなヒ
ドロゲル成形体を汎用プラスチツクと同様に簡単な操作
で製造することができる形状崩壊時間の制御可能なヒド
ロゲル成形体の製造方法に関するものである。このよう
なヒドロゲル成形体は,特に使い捨ての農業用シート,
結束テープあるいは種苗用ポット等の農業用の資材に有
効に使用できる。
[Industrial Application Field] The present invention is capable of controlling the shape collapse time so that the hydrogel has high strength and firmly maintains its shape during a certain period of use, and naturally disintegrates after a certain period of use. The present invention relates to a hydrogel molded article and a method for producing a hydrogel molded article whose shape collapse time can be controlled and which allows such a hydrogel molded article to be manufactured by simple operations similar to general-purpose plastics. Such hydrogel molded bodies are particularly useful for disposable agricultural sheets,
It can be effectively used for agricultural materials such as binding tape or pots for seedlings.

【0002】0002

【従来の技術】近年,プラスチツク廃棄物の環境汚染の
問題が大きくクローズアツプされ,自然環境中で自然に
崩壊あるいは分解するプラスチツクに対する要求が高ま
っている。
BACKGROUND OF THE INVENTION In recent years, the problem of environmental pollution caused by plastic waste has attracted much attention, and there has been an increasing demand for plastics that naturally disintegrate or decompose in the natural environment.

【0003】自然崩壊性樹脂としては,デンプン/ポリ
エチレン系樹脂組成物が安価であるので,米国等では飲
料缶パツク用の連結リング等に利用されている。ここで
用いられているポリエチレンは,エチレンと一酸化炭素
を共重合して得られる光分解性のポリマーであるが,土
壌中では分解しない。また,直射日光によって形状は崩
壊しても,最終的に生物分解されるかどうか疑問視され
ており,崩壊物による2次汚染の危険性を含んでいる。
[0003] As naturally disintegrating resins, starch/polyethylene resin compositions are used in the United States and other countries for connecting rings for beverage can packs and the like because they are inexpensive. The polyethylene used here is a photodegradable polymer obtained by copolymerizing ethylene and carbon monoxide, but it does not decompose in soil. Furthermore, even if the shape collapses due to direct sunlight, there are doubts as to whether it will ultimately biodegrade, and there is a risk of secondary contamination due to decaying materials.

【0004】また,自然分解性樹脂として,脂肪族ポリ
エステルの1種であるポリカプロラクトンやポリカプロ
ラクトンにデンプンを混合したもの等が知られているが
,樹脂の価格が非常に高いうえ,特定の酵素の存在しな
い系中ではまったく分解せず,形状崩壊時間および分解
時間をコントロールすることはほとんど不可能であった
[0004] Furthermore, polycaprolactone, which is a type of aliphatic polyester, and a mixture of polycaprolactone and starch are known as naturally degradable resins, but the resins are very expensive, and they do not require the use of specific enzymes. No decomposition occurred in a system without the presence of , and it was almost impossible to control the shape collapse time and decomposition time.

【0005】また,特公昭54−15820号公報には
,セルロース質のチップまたは粉体と,エチレン−酢酸
ビニル共重合体,ポリエチレン,ポリプロピレン等の熱
可塑性樹脂やエポキシ樹脂,ポリエステル樹脂,アクリ
ル樹脂等の熱硬化性樹脂をセルロース質の粉体に混合し
,溶融成形してなる成形体(植木鉢)が開示されている
。しかし,この発明においてはバインダーとして使用し
ている樹脂は疎水性であるので,水の浸透性がほとんど
なく,成形体表面部分に存在するセルロース質のみ生物
分解を受けて,成形体全体が完全に崩壊するには至らな
い。
Furthermore, Japanese Patent Publication No. 54-15820 discloses that cellulose chips or powder and thermoplastic resins such as ethylene-vinyl acetate copolymer, polyethylene and polypropylene, epoxy resins, polyester resins, acrylic resins, etc. A molded article (flower pot) is disclosed in which a thermosetting resin is mixed with cellulose powder and melt-molded. However, in this invention, since the resin used as the binder is hydrophobic, it has almost no water permeability, and only the cellulosic material present on the surface of the molded object undergoes biodegradation, and the entire molded object is completely destroyed. It doesn't reach the point of collapse.

【0006】さらに,実開昭48−61045号公報に
は,土やデンプン等の無機物や有機物をポリビニルアル
コール(以下PVAと記す)系樹脂をバインダーとして
成形した経時崩壊性の成形体(植木鉢)が開示されてい
る。PVA系樹脂は,自然界において微生物によって分
解し,最終的には水と炭酸ガスになるので,2次汚染が
なく公害問題を起こすおそれがない。したがって,分解
性樹脂組成物のベース素材としては非常に好ましいもの
である。しかし,残念ながら,PVA自体水溶性の樹脂
であるので,水中や土壌中等のように水の存在する系に
おいては軟化膨潤あるいは溶解し,ほとんど形状保持が
できない。さらに,汎用プラスチツクのように加熱溶融
成形することができないので,コスト的に非常に高価な
ものとなり,実用的ではない。
Furthermore, Japanese Utility Model Application Publication No. 48-61045 discloses a molded article (flower pot) that disintegrates over time, which is made by molding inorganic and organic materials such as soil and starch using polyvinyl alcohol (hereinafter referred to as PVA) resin as a binder. Disclosed. PVA resin is decomposed by microorganisms in the natural world and ultimately becomes water and carbon dioxide, so there is no secondary pollution and there is no risk of causing pollution problems. Therefore, it is very preferable as a base material for degradable resin compositions. Unfortunately, however, since PVA itself is a water-soluble resin, it softens, swells, or dissolves in systems where water is present, such as in water or soil, making it almost impossible to maintain its shape. Furthermore, since it cannot be heat-melted and molded like general-purpose plastics, it is extremely expensive and impractical.

【0007】また,特開平2−252744号公報に開
示されているPVA/デンプン系フイルムは,PVA本
来の分解性を活かすとともに,PVAに架橋剤を混合し
,さらにフイルムを延伸することによって耐水性を向上
させて,PVAの崩壊性を制御しようとするものである
。しかし,架橋剤を用いることから熱溶融成形は不可能
であり,水溶液を流延して延伸−乾燥−熱処理というよ
うな非常に煩雑な工程を必要とする。また,延伸操作を
必要とすることから,成形物がフイルムに限定されるも
のである。さらには,架橋剤によって耐水化したPVA
は,崩壊時間を制御することは困難であるうえに,自然
界で分解し難いものである。
[0007] In addition, the PVA/starch film disclosed in JP-A-2-252744 takes advantage of the inherent degradability of PVA, and also improves water resistance by mixing a crosslinking agent with PVA and stretching the film. The aim is to control the disintegrability of PVA by improving its properties. However, since a crosslinking agent is used, hot melt molding is impossible, and extremely complicated steps such as casting an aqueous solution, stretching, drying, and heat treatment are required. Furthermore, since a stretching operation is required, the molded product is limited to a film. Furthermore, PVA made water resistant with a crosslinking agent
It is difficult to control the decay time, and it is also difficult to decompose in nature.

【0008】ところで,ヒドロゲルとしては,アルギン
酸,アルギン酸ナトリウム,アルギン酸カリウム,アル
ギン酸アンモニウム,アルギン酸プロピレングリコール
エステル,カラーギナン,親水性カルボキシビニルポリ
マー,寒天,ゼラチン,にかわ,こんにやく等を水中に
数%〜数10%添加し,加熱溶解して水溶液としたもの
を冷却し,ゲル化させたものが知られている。しかし,
加熱溶解してゲル化させて成形体を得るまでの時間が非
常に長く,温度も極めて低温にする必要があり,生産性
が極めて悪い。さらに,これらのヒドロゲルは弾性に乏
しく,しかも極めて脆く,一般的な成形体として使用で
きるものではなかった。
By the way, as a hydrogel, alginic acid, sodium alginate, potassium alginate, ammonium alginate, alginate propylene glycol ester, carrageenan, hydrophilic carboxyvinyl polymer, agar, gelatin, glue, konjac, etc. are mixed in several percent to several percent in water. It is known to add 10% and heat to dissolve it to make an aqueous solution, which is then cooled and gelled. but,
It takes a very long time to heat, melt, gel, and obtain a molded product, and the temperature also needs to be extremely low, resulting in extremely poor productivity. Furthermore, these hydrogels had poor elasticity and were extremely brittle, so they could not be used as general molded products.

【0009】特公昭47−12854号公報にはPVA
水溶液を冷凍処理してPVAヒドロゲルを得る方法が開
示されている。このPVAヒドロゲルは,寒天等のゲル
に比べると弾性に富み,強度はあるが,空気中に置くと
乾燥が著しく,一般的な成形品としては使用できない。 また,−5℃以下,好ましくは−15〜−50℃のよう
な低温で長時間放置しなければPVAヒドロゲルは得ら
れないので,生産性も極めて悪いものであった。
[0009] Japanese Patent Publication No. 47-12854 describes PVA
A method for obtaining a PVA hydrogel by freezing an aqueous solution is disclosed. This PVA hydrogel has more elasticity and strength than gels such as agar, but it dries out significantly when placed in the air, so it cannot be used as a general molded product. In addition, productivity was also extremely poor since PVA hydrogel could not be obtained unless it was left at a low temperature of -5°C or lower, preferably -15 to -50°C, for a long period of time.

【0010】また,PVA水溶液にホウ酸やホウ砂を添
加すると即座にゲル化することは古くから知られている
(特公昭45−11210号公報,特公昭46−196
02号公報)。しかし,このようにして得られるヒドロ
ゲルは,流動性で軟弱で,離水性(含有水を分離する)
であるので,通常の成形体としてはゲルの強度が弱く安
定性に欠け,使用できない。
[0010] Furthermore, it has been known for a long time that when boric acid or borax is added to a PVA aqueous solution, it immediately gels (Japanese Patent Publication No. 11210/1983, Japanese Patent Publication No. 46-196).
Publication No. 02). However, the hydrogel obtained in this way is fluid, weak, and has hydrorepellent properties (separates the water it contains).
Therefore, the gel is weak and lacks stability, making it unusable as a normal molded product.

【0011】さらに,特開昭58−37076号公報,
特開昭58−195558号公報,特公平3−1617
5号公報には,平均重合度800または1500以上で
鹸化度95モル%以上のPVAをグリセリン等の水溶性
多価アルコールと水の混合溶液に溶解し,−5℃以下で
冷却固化した後,真空脱水することによって得られるP
VAヒドロゲルが開示されている。これらの公報に開示
されているようなPVAヒドロゲルは,弾性,柔軟性に
優れているので保冷材等に好適なに用いられている。ま
た,このPVAヒドロゲルは水分を含み生体適合性が良
く,強度的に優れているので近年注目を集めている新素
材である。しかし,成形体として十分な強度を発現させ
るためには溶解凍結法により成形するか,あるいは紫外
線やγ線を照射して架橋させなくてはならず,その製造
工程は非常に煩雑で生産性も極めて悪く,一般的な汎用
成形体としては使用できなかった。したがって,成形体
としては限られた用途,例えば生体適合性を活かしてコ
ンタクトレンズ,人工骨,人工筋肉等にのみ使用が検討
されているにすぎなかった。
[0011] Furthermore, Japanese Patent Application Laid-Open No. 58-37076,
Japanese Patent Application Publication No. 58-195558, Japanese Patent Publication No. 3-1617
No. 5 discloses that PVA with an average polymerization degree of 800 or 1500 or more and a saponification degree of 95 mol% or more is dissolved in a mixed solution of water-soluble polyhydric alcohol such as glycerin and water, and after cooling and solidifying at -5°C or lower, P obtained by vacuum dehydration
VA hydrogels are disclosed. PVA hydrogels such as those disclosed in these publications have excellent elasticity and flexibility, and are therefore suitable for use in cold insulation materials and the like. In addition, this PVA hydrogel is a new material that has been attracting attention in recent years because it contains water, has good biocompatibility, and has excellent strength. However, in order to develop sufficient strength as a molded product, it must be molded using a melt-freeze method or cross-linked by irradiation with ultraviolet rays or gamma rays, making the manufacturing process extremely complicated and reducing productivity. It was extremely poor and could not be used as a general purpose molded product. Therefore, as a molded article, its use has only been considered for limited applications, such as contact lenses, artificial bones, and artificial muscles, taking advantage of its biocompatibility.

【0012】0012

【発明が解決しようとする課題】このような状況に鑑み
,本発明の課題は,一定使用期間内はヒドロゲルの強度
が高く,しっかりと形状が保たれ,一定期間経過後は自
然に崩壊してしまうような形状崩壊時間の制御可能なヒ
ドロゲル成形体の提供,および汎用プラスチツクと同様
に簡単な操作で製造することができる形状崩壊時間の制
御可能なヒドロゲル成形体の製造方法の提供にある。
[Problems to be Solved by the Invention] In view of this situation, the problem of the present invention is to ensure that the hydrogel has high strength and firmly maintains its shape during a certain period of use, and that it collapses naturally after a certain period of use. The object of the present invention is to provide a hydrogel molded article whose shape collapse time can be controlled so that the shape disintegration time can be controlled, and a method for producing a hydrogel molded body whose shape collapse time can be controlled and which can be manufactured by simple operations similar to general-purpose plastics.

【0013】[0013]

【課題を解決するための手段】本発明者らは,上記課題
について種々検討した結果,特定のPVA,ポリオール
および水を特定配合比で混合し加熱溶解すると,流動性
のよい溶解物が得られ,その溶解物は室温程度の温度で
短時間で容易にゲル化し,しかも溶解物とヒドロゲルが
可逆的であるので,汎用プラスチツクと同様に射出成形
機や押出成形機を用いて簡単な操作でヒドロゲル成形体
が得られるという知見を得,また,このヒドロゲル成形
体は一定期間内は強度が高く,乾燥収縮が起こり難くし
っかりと形状が保たれ,一定期間経過後は水存在系にお
いて容易に崩壊するという知見を得,本発明に到達した
[Means for Solving the Problems] As a result of various studies regarding the above-mentioned problems, the present inventors have found that by mixing a specific PVA, polyol, and water at a specific mixing ratio and heating and dissolving the mixture, a melt with good fluidity can be obtained. The melt gels easily in a short time at a temperature around room temperature, and the melt and hydrogel are reversible, so hydrogels can be easily formed using an injection molding machine or an extrusion molding machine, just like general-purpose plastics. We obtained the knowledge that a molded body can be obtained, and this hydrogel molded body has high strength for a certain period of time, is difficult to shrink during drying, and maintains its shape well, and after a certain period of time, it easily disintegrates in a water-based system. Based on this knowledge, we have arrived at the present invention.

【0014】すなわち,本発明の要旨は,(A)平均重
合度100〜3500で鹸化度95モル%以上のポリビ
ニルアルコール系重合体,(B)ポリオールおよび(C
)水を主成分とし,これら主成分の重量組成比(A)/
(B)/(C)が5〜60/5〜60/10〜60であ
ることを特徴とする形状崩壊時間の制御可能なヒドロゲ
ル成形体であり,このような形状崩壊時間の制御可能な
ヒドロゲル成形体は,(A)平均重合度100〜350
0で鹸化度95モル%以上のポリビニルアルコール系重
合体,(B)ポリオールおよび(C)水を主成分とし,
これら主成分の重量組成比(A)/(B)/(C)が5
〜60/5〜60/10〜60となるように混合し,得
られた混合物を加熱溶解した後,室温でゲル化成形する
か,ゲル化成形したものをさらに加熱溶解して室温でゲ
ル化成形することによって製造することができる。なお
本発明において室温とは−5〜40℃をいう。
That is, the gist of the present invention is (A) a polyvinyl alcohol polymer having an average degree of polymerization of 100 to 3,500 and a degree of saponification of 95 mol% or more, (B) a polyol, and (C
) Water is the main component, and the weight composition ratio of these main components (A)/
(B)/(C) is 5 to 60/5 to 60/10 to 60, and is a hydrogel molded article with a controllable shape collapse time. The molded article has (A) an average degree of polymerization of 100 to 350
0 and a polyvinyl alcohol-based polymer having a saponification degree of 95 mol% or more, (B) a polyol and (C) water as the main components,
The weight composition ratio (A)/(B)/(C) of these main components is 5
Mix to give a ratio of ~60/5 to 60/10 to 60, heat and melt the resulting mixture, and then gel it at room temperature, or further heat and melt the gel molded product and gel it at room temperature. It can be manufactured by molding. Note that in the present invention, room temperature refers to -5 to 40°C.

【0015】以下,本発明をさらに詳しく説明する。本
発明において用いられるPVAの平均重合度は100〜
3500,好ましくは200〜2000のものが用いら
れる。平均重合度が3500を超える場合,溶解したと
きの溶液の粘度が極めて高くなってしまうので,PVA
の濃度を5重量%以下にしなくてはならず,室温程度の
温度で短時間に硬化させるだけではヒドロゲルは得られ
難く,得られても,軟弱で,べたつきのある,脆いもの
になってしまう。一方,平均重合度100未満のPVA
では,ヒドロゲルの凝集力が小さく,ヒドロゲルの強度
が弱くて成形体にした場合,脆く壊れやすいものとなっ
てしまう。PVAの平均重合度は,後述する鹸化度およ
び成分の混合割合とも関係するが,溶解したときの溶液
の粘度,ゲル化時間,ヒドロゲルの形状保持性に関係す
る因子であるので,平均重合度100〜3500の範囲
で調整することによって,あるいはこの範囲内の重合度
の異なるものを混合して使用することによって,溶液の
粘度,ゲル化時間,ヒドロゲルの形状保持性をコントロ
ールすることができる。
The present invention will be explained in more detail below. The average degree of polymerization of PVA used in the present invention is 100 to
3,500, preferably 200 to 2,000. If the average degree of polymerization exceeds 3500, the viscosity of the solution will become extremely high, so PVA
The concentration of the hydrogel must be kept below 5% by weight, and it is difficult to obtain a hydrogel by simply curing it at room temperature for a short time, and even if it is obtained, it will be soft, sticky, and brittle. . On the other hand, PVA with an average degree of polymerization of less than 100
In this case, the cohesive force of the hydrogel is small, and the strength of the hydrogel is weak, so when it is molded into a molded product, it becomes brittle and easily broken. The average degree of polymerization of PVA is related to the degree of saponification and the mixing ratio of components, which will be described later, but it is also a factor related to the viscosity of the solution when dissolved, the gelation time, and the shape retention of the hydrogel, so the average degree of polymerization is 100. The viscosity of the solution, the gelation time, and the shape retention of the hydrogel can be controlled by adjusting the molecular weight within the range of ~3,500 or by using a mixture of polymers with different degrees of polymerization within this range.

【0016】鹸化度は95モル%以上であることが必要
である。鹸化度が95モル%未満では,ゲル形状保持性
が著しく低く,室温程度の温度でゲル化するのに長時間
を要するばかりでなく,得られるヒドロゲルは,軟弱で
,脆いものとなる。このようなヒドロゲルは耐水性がほ
とんどなく,水中あるいは土壌中等の水の存在する系に
介在させると,即座に軟化,溶解してしまう。一方鹸化
度99モル%以上の完全鹸化PVAを用いて作成したヒ
ドロゲルは水にほとんど膨潤あるいは溶解しない。した
がってPVAの鹸化度を調整することによって,あるい
は完全鹸化PVAに鹸化度が異なる部分鹸化PVAの一
種以上を配合することによって水存在系における形状崩
壊時間をコントロールすることができる。
[0016] It is necessary that the degree of saponification is 95 mol% or more. If the degree of saponification is less than 95 mol%, the gel shape retention is extremely low, and not only does it take a long time to gel at a temperature around room temperature, but the resulting hydrogel is soft and brittle. Such hydrogels have almost no water resistance, and if placed in water or in a water-based system such as soil, they immediately soften and dissolve. On the other hand, hydrogels made using completely saponified PVA with a degree of saponification of 99 mol% or more hardly swell or dissolve in water. Therefore, the shape collapse time in a water-present system can be controlled by adjusting the degree of saponification of PVA or by blending one or more types of partially saponified PVA with different degrees of saponification into fully saponified PVA.

【0017】上記のことがらを考慮して,溶液の粘度,
ゲル化時間,ヒドロゲルの形状保持性および水存在系に
おける形状崩壊時間をコントロールするために,PVA
の平均重合度を100〜3500,鹸化度を95モル%
以上の範囲で調整すると目的に適ったPVA成分が得ら
れる。また,平均重合度が100〜800,鹸化度が9
9モル%以上である完全鹸化PVAをベースにして,平
均重合度が1000〜3500で鹸化度が95モル%以
上の部分鹸化PVAの一種以上を混合しても,目的に適
ったPVA成分が得られる。
Considering the above, the viscosity of the solution,
In order to control gelation time, shape retention of hydrogels, and shape collapse time in water-present systems, PVA
The average degree of polymerization is 100 to 3500, and the degree of saponification is 95 mol%.
By adjusting within the above range, a PVA component suitable for the purpose can be obtained. In addition, the average degree of polymerization is 100 to 800, and the degree of saponification is 9.
Even if one or more types of partially saponified PVA with an average degree of polymerization of 1000 to 3500 and a degree of saponification of 95 mol% or more are mixed with a completely saponified PVA having a content of 9 mol% or more, a PVA component suitable for the purpose can be obtained. It will be done.

【0018】また,本発明のヒドロゲル成形体における
PVAの配合量は5〜60重量部,好ましくは20〜5
0重量部とする。5重量部未満では,ゲル化速度が極め
て遅く,軟弱なヒドロゲルとなり,乾燥収縮が著しい。 また,60重量部を超えると,溶解温度が著しく高くな
り,溶解が困難となる。基本的には,低重合度PVAを
用いる場合には,比較的PVA含有量を多くし,高重合
度PVAを用いる場合には,PVA含有量を少なくする
ことが好ましい。
The amount of PVA blended in the hydrogel molded article of the present invention is 5 to 60 parts by weight, preferably 20 to 5 parts by weight.
0 parts by weight. If the amount is less than 5 parts by weight, the gelation rate is extremely slow, resulting in a soft hydrogel and significant drying shrinkage. Moreover, if it exceeds 60 parts by weight, the melting temperature becomes extremely high, making it difficult to dissolve. Basically, when using PVA with a low degree of polymerization, it is preferable to increase the PVA content relatively, and when using PVA with a high degree of polymerization, it is preferable to decrease the PVA content.

【0019】ポリオール類の配合量は5〜60重量部,
好ましくは15〜40重量部とする。5重量部未満では
,柔軟性が悪く,脆いゲルとなるばかりではなく,ゲル
化速度が遅く,短時間にゲル化して,ゲル強度および形
状保持性の高いヒドロゲルは得られない。さらに,ヒド
ロゲルの乾燥速度が緩和されないために,空気中に曝す
と水分の揮発による性状の変化が著しく,表面のひび割
れや柔軟性が失われ,硬化が起こる。また,60重量部
を超えると,溶解時の粘度が高く,成形しにくいばかり
ではなく,ゲルというよりも粘着剤のようなべとつきの
あるゾル状物になり,放置するとブリードが激しく成形
体としての安定性に欠ける。
[0019] The blending amount of polyols is 5 to 60 parts by weight,
Preferably it is 15 to 40 parts by weight. If the amount is less than 5 parts by weight, the gel not only has poor flexibility and is brittle, but also has a slow gelation rate and gels in a short time, making it impossible to obtain a hydrogel with high gel strength and shape retention. Furthermore, because the drying rate of the hydrogel is not moderated, when exposed to air, its properties change significantly due to volatilization of water, resulting in surface cracks, loss of flexibility, and hardening. Moreover, if it exceeds 60 parts by weight, the viscosity when dissolved is not only difficult to mold, but it also becomes a sticky sol-like substance that is more like an adhesive than a gel, and if left unattended, it will bleed violently and fail as a molded product. Lacks stability.

【0020】水の配合量は10〜60重量部,好ましく
は15〜40重量部とする。10重量部未満では,水に
対して膨潤,軟化が著しくなり,耐水性が不十分である
。これは,ヒドロゲルを形成するためには少なくとも1
0重量部,好ましくは15重量部以上の水が存在しない
と,PVA分子間での水素結合が十分に起こらないため
と考えられる。また,60重量部を超えると,ゲル化時
間が長くなり,ヒドロゲルの乾燥収縮やべたつきが大き
く,ゲル化速度が速く安定なヒドロゲルは得られない。
The amount of water added is 10 to 60 parts by weight, preferably 15 to 40 parts by weight. If the amount is less than 10 parts by weight, swelling and softening in water will be significant, resulting in insufficient water resistance. This requires at least 1 to form a hydrogel.
This is believed to be because hydrogen bonding between PVA molecules does not occur sufficiently unless 0 parts by weight, preferably 15 parts by weight or more of water is present. Moreover, if it exceeds 60 parts by weight, the gelation time becomes long, the drying shrinkage and stickiness of the hydrogel are large, and a stable hydrogel with a fast gelation rate cannot be obtained.

【0021】本発明において用いられる平均重合度10
0〜3500,鹸化度95モル%以上であるPVAの製
造法としては,ビニルエステルを溶液重合,乳化重合,
懸濁重合して得られるポリビニルエステルを鹸化する方
法が挙げられる。ビニルエステルを鹸化する方法として
は,アルカリ鹸化,酸鹸化等の直接あるいはアルコリシ
スによる常法の鹸化方法が挙げられる。
Average degree of polymerization used in the present invention: 10
0 to 3500 and a saponification degree of 95 mol% or more, the vinyl ester is solution polymerized, emulsion polymerized,
Examples include a method of saponifying polyvinyl ester obtained by suspension polymerization. Methods for saponifying vinyl esters include direct saponification methods such as alkali saponification and acid saponification, or conventional saponification methods using alcoholysis.

【0022】ビニルエステルとしては,例えば,蟻酸ビ
ニル,酢酸ビニル,プロピオン酸ビニル,酪酸ビニル,
ラウリン酸ビニル,トリフロロ酢酸ビニル,ビバリン酸
ビニル等が挙げられ,これらの単独または2種以上の混
合物も用いられる。これらのうち,特に酢酸ビニルが工
業的には好ましい。また,ビバリン酸ビニルを共重合し
たビニルエステル共重合体は,シンジオタクト性が顕著
でゲル化しやすいので,好適に使用することができる。
Examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate,
Vinyl laurate, vinyl trifluoroacetate, vinyl bivalate, etc. may be used, and these may be used alone or in a mixture of two or more. Among these, vinyl acetate is particularly preferred industrially. Furthermore, a vinyl ester copolymer obtained by copolymerizing vinyl bivalate has remarkable syndiotactic properties and is easily gelled, so it can be suitably used.

【0023】また,これらのビニルエステルと共重合可
能なエチレンやプロピレン等のαオレフイン,アルキル
ビニルエーテル,バーサチツク酸ビニル,アクリルアミ
ド等で一部変性したものや,これらのビニルエステルを
アセタール化したものを,本発明の効果を損なわない範
囲で使用することは何ら差し支えない。
[0023] Furthermore, those partially modified with α-olefins such as ethylene and propylene, alkyl vinyl ethers, vinyl versatate, acrylamide, etc. that can be copolymerized with these vinyl esters, and those obtained by acetalizing these vinyl esters, There is no problem in using it as long as it does not impair the effects of the present invention.

【0024】また,ポリオール類としては,エチレング
リコール(以下EGと記す),1,2−プロピレングリ
コール(以下PGと記す),1,3−プロピレングリコ
ール,ジエチレングリコール,ポリエチレングリコール
,グリセリン,D−ソルビトール,グルコース,ペンタ
ンジオール等が挙げられ,これらの1種または2種以上
の混合物を使用することができる。これらのポリオール
類の中でも,EGやPG,グリセリン等は,安価であり
,ブリード性も少なく,かつ毒性もなく,自然分解性で
あるので,好適に用いることが可能である。
[0024] Polyols include ethylene glycol (hereinafter referred to as EG), 1,2-propylene glycol (hereinafter referred to as PG), 1,3-propylene glycol, diethylene glycol, polyethylene glycol, glycerin, D-sorbitol, Examples include glucose, pentanediol, etc., and one type or a mixture of two or more of these can be used. Among these polyols, EG, PG, glycerin, etc. can be suitably used because they are inexpensive, have little bleeding, are nontoxic, and are naturally degradable.

【0025】また,上記成分の他にフイラーを混入する
とゲル化時間を速めたり,ゲルの硬度を高くすることが
できる。本発明に用いられるフイラーとしては,カオリ
ン,ハロサイト,パイロフエライト,セリサイト等のク
レーまたはタルク,シリカ,重質,軽質または表面処理
された炭酸カルシウム,水酸化アルミニウム,酸化アル
ミニウム,酸化チタン,ケイソウ土,硫酸バリウム,硫
酸カルシウム,ゼオライト,酸化亜鉛,珪酸,珪酸塩,
マイカ,炭酸マグネシウム等の無機物等が挙げられ,ま
た,有機物としてはコーンスターチ等のデンプン類を使
用することができる。これらのフイラーの中では,クレ
ーや炭酸カルシウム,タルク等が安価かつ安全であり,
ゲル化速度も極めて速くなるので好適に用いることがで
きる。
[0025] Furthermore, by mixing a filler in addition to the above-mentioned components, the gelation time can be accelerated and the hardness of the gel can be increased. Fillers used in the present invention include clay or talc such as kaolin, hallosite, pyroferite, and sericite, silica, heavy, light, or surface-treated calcium carbonate, aluminum hydroxide, aluminum oxide, titanium oxide, and diatom. Earth, barium sulfate, calcium sulfate, zeolite, zinc oxide, silicic acid, silicate,
Examples include inorganic substances such as mica and magnesium carbonate, and starches such as cornstarch can be used as organic substances. Among these fillers, clay, calcium carbonate, talc, etc. are cheap and safe;
Since the gelation rate is also extremely high, it can be suitably used.

【0026】また,重合度3500以上の高重合度PV
A,ガラス繊維,ゼラチン,にかわ,寒天,発泡剤,で
んぷん,架橋剤,可塑剤,離型剤,消泡剤,顔料,染料
等を,本発明の効果を損なわない範囲で適量混入するこ
とも可能である。
[0026] Also, high polymerization degree PV with a polymerization degree of 3500 or more
A. Appropriate amounts of glass fiber, gelatin, glue, agar, foaming agents, starch, crosslinking agents, plasticizers, mold release agents, antifoaming agents, pigments, dyes, etc. may be mixed within the range that does not impair the effects of the present invention. It is possible.

【0027】ヒドロゲル成形体の製造にあたっては,(
A)平均重合度100〜3500で鹸化度95モル%以
上のポリビニルアルコール系重合体,(B)ポリオール
および(C)水を主成分とし,これら主成分の重量組成
比(A)/(B)/(C)が5〜60/5〜60/10
〜60となるように混合し,得られた混合物を加熱溶解
した後,室温でゲル化成形するか,ゲル化させたものを
さらに加熱溶解して室温でゲル化成形する。
[0027] In producing the hydrogel molded body, (
A) A polyvinyl alcohol polymer with an average degree of polymerization of 100 to 3500 and a degree of saponification of 95 mol% or more, (B) polyol, and (C) water as the main components, and the weight composition ratio of these main components (A) / (B) /(C) is 5~60/5~60/10
The resulting mixture is heated and melted and then gelled at room temperature, or the gelled mixture is further heated and melted and gelled at room temperature.

【0028】混合物の加熱溶解温度は,混合物が溶解す
る温度であれば,できるだけ低い温度が好ましい。なぜ
ならば,ヒドロゲルの発泡を防ぐことができ,PVA分
子間の水素結合が起こり易く硬化速度も速くなるからで
ある。そして前記のような成分組成よりなる混合物を加
熱溶解した溶解物は室温で容易にゲル化するので,この
とき種々の形状の型に注入すればあるいは種々の成形方
法を採用すれば,様々な形状の成形体が得られる。
[0028] The heating dissolution temperature of the mixture is preferably as low as possible, as long as the mixture dissolves. This is because foaming of the hydrogel can be prevented, hydrogen bonds between PVA molecules are more likely to occur, and the curing speed is increased. The melt obtained by heating and melting a mixture having the above-mentioned component composition easily gels at room temperature, so if it is poured into molds of various shapes or by using various molding methods, it can be molded into various shapes. A molded body is obtained.

【0029】成形体を得るにあたって,溶解物とヒドロ
ゲルとが可逆的であるので,種々の成形方法を採用する
ことができる。すなわち,ポリエチレンやポリプロピレ
ン,ポリエステル,塩化ビニル等の汎用の熱可塑性樹脂
と同様に扱うことができ,例えば,押出成形,射出成形
,注型成形,インフレーシヨン成形,熱間加工成形,真
空成形等の成形方法が使用できる。
[0029] In obtaining the molded article, various molding methods can be employed since the melt and the hydrogel are reversible. In other words, it can be treated in the same way as general-purpose thermoplastic resins such as polyethylene, polypropylene, polyester, and vinyl chloride.For example, it can be used in extrusion molding, injection molding, cast molding, inflation molding, hot processing molding, vacuum molding, etc. Molding methods can be used.

【0030】また,一旦加熱溶解したものを押出成形し
てチツプ状に加工し,このチツプを加熱溶解して前記の
ようにして成形体となしてもよい。このようにすると扱
いやすく好ましい。チツプ状に加工する際,押出機から
押し出されてくるヒドロゲルのストランドは空冷または
水冷後,容易にチツプ化できる。
[0030] Alternatively, it is also possible to extrude the heated and melted product and process it into chips, and then heat and melt the chips to form a molded product as described above. This is preferable because it is easy to handle. When processing into chips, the hydrogel strands extruded from the extruder can be easily turned into chips after cooling in air or water.

【0031】また,加熱溶解したものを流動性のある間
にレトルトパツクやチユーブ等のパツクに詰めて密封し
ておけば,一般の家庭あるいは野外,工事現場等でも,
使用したいときにパツクごと熱湯に入れるか電子レンジ
にかければ溶液状に戻り,型に注入することによって簡
単にヒドロゲル成形体が得られるので,大変扱いやすい
ものとなる。
[0031]Also, if the heated and melted product is packed in a retort pack or tube while it is still fluid and sealed, it can be used at home, outdoors, at construction sites, etc.
When you want to use it, you can put it in boiling water or put it in a microwave to return it to a solution, and then pour it into a mold to easily obtain a hydrogel mold, making it very easy to handle.

【0032】本発明のヒドロゲル成形体は,そのゲル強
度,ゲルの形状保持性および自然崩壊性等の特性を利用
して,また,成形の容易性を利用してその使用目的に合
った形状にして次のようなものとして利用できる。例え
ば,シート(フイルム),各種容器,結束テープ,種苗
用ポツト,肥料および防虫剤や除草剤等の薬物の徐放基
材,蓄冷材,保冷材,水中で使用可能なシーリング材,
釣り餌(擬似餌等),使い捨ての漁業・農業資材等が挙
げられる。特に,本発明のヒドロゲル成形体は,一定使
用期間内はゲル強度が高く,しっかりと形状が保たれ,
雨水や地下水によっても損なわれることがなく,一定使
用期間経過後は機械的にあるいは水存在系で自然に崩壊
し,さらに土壌中の微生物によっても分解が進行するの
で,このような特性を利用して,農業用のシートや種苗
用ポット等使い捨ての農業用の資材として用い,田畑に
放置しても公害問題を引き起こすことがない。
[0032] The hydrogel molded article of the present invention can be shaped into a shape suitable for its intended use by taking advantage of its gel strength, gel shape retention, natural disintegration properties, and ease of molding. It can be used as: For example, sheets (films), various containers, binding tapes, pots for seedlings, sustained release base materials for fertilizers and drugs such as insect repellents and herbicides, cold storage materials, cold insulation materials, sealing materials that can be used underwater,
Examples include fishing bait (artificial bait, etc.), disposable fishing and agricultural materials, etc. In particular, the hydrogel molded article of the present invention has high gel strength and maintains its shape well within a certain period of use.
It is not damaged by rainwater or groundwater, and after a certain period of use, it disintegrates mechanically or naturally in a water-based system, and furthermore, it is decomposed by microorganisms in the soil, so these characteristics can be utilized. Therefore, it does not cause pollution problems even if it is used as disposable agricultural materials such as agricultural sheets or pots for seedlings and left in fields.

【0033】[0033]

【実施例】以下,本発明を実施例によって具体的に説明
するが,本発明はこれらによって何ら限定されるもので
はない。
EXAMPLES The present invention will be explained in detail below using Examples, but the present invention is not limited to these in any way.

【0034】実施例1 重合度が230で鹸化度が99.0モル%である低重合
度PVA25g,重合度が1750で鹸化度が98.7
モル%であるPVA5g,軽質炭酸カルシウム65g,
PG33gおよび水37gからなる懸濁液を,95℃で
加熱攪拌して均一に溶解した。このときの溶液の流動性
は良好であった。この95℃の溶液を凹金型に室温(1
8℃)で約5g流し込み,すぐに凸金型をかぶせて手で
プレスした。この状態で3秒間放置した後,脱型すると
,完全にゲル化していた。このようにして成形された鉢
状のヒドロゲル成形体は,粘着性もなく,非常に柔軟で
,強靱なシリコンゴムのような性状をもつものであった
。 このヒドロゲル成形体を室内(20℃,65%RH)に
72時間放置したところ,重量減少は7%であり,形状
の変化はほとんど視認できなかった。また,ヒドロゲル
成形体を水中(20℃)に1ヶ月間放置したところ,ほ
とんど形状も強度も変化しなかった。しかし,さらに3
ヶ月間水中に放置すると,形状は完全に崩れ,水に溶解
分散した。
Example 1 25 g of low polymerization degree PVA with a polymerization degree of 230 and a saponification degree of 99.0 mol%, a polymerization degree of 1750 and a saponification degree of 98.7
mol% of PVA 5g, light calcium carbonate 65g,
A suspension consisting of 33 g of PG and 37 g of water was heated and stirred at 95° C. to uniformly dissolve it. The fluidity of the solution at this time was good. This 95°C solution was placed in a concave mold at room temperature (1
Approximately 5 g was poured at 8°C), immediately covered with a convex mold, and pressed by hand. When the mold was removed after being left in this state for 3 seconds, it was completely gelled. The pot-shaped hydrogel molded body thus formed was not sticky, very flexible, and had properties similar to tough silicone rubber. When this hydrogel molded article was left indoors (20° C., 65% RH) for 72 hours, the weight decreased by 7%, and the change in shape was hardly visible. Furthermore, when the hydrogel molded body was left in water (20° C.) for one month, there was almost no change in shape or strength. However, 3 more
When left in water for a month, the shape completely collapsed and it was dissolved and dispersed in water.

【0035】実施例2 重合度が480で鹸化度が98.0モル%である低重合
度PVA30g,EG15gおよび水55gからなる懸
濁液を,95℃で加熱攪拌して均一に溶解させた。この
溶液の95℃における流動性は良好であった。この溶液
を凹金型に室温(18℃)で約5g流し込み,すぐに凸
金型をかぶせて手でプレスした。この状態で10秒間放
置した後,脱型すると,完全にゲル化していた。このよ
うにして成形された鉢状のヒドロゲル成形体は,やや柔
らかいが,粘着性もなく,非常に柔軟で,強靱なゴムの
ような性状をもつものであった。このヒドロゲル成形体
を室内(20℃,65%RH)に72時間放置したとこ
ろ,重量減少は9%であり,形状の変化はほとんど視認
できなかった。また,ヒドロゲル成形体を水中(20℃
)に20日間放置したところ,ほとんど形状も強度も変
化しなかった。しかし,さらに1ヶ月間水中に放置する
と,形状は完全に崩れ,水に溶解分散した。
Example 2 A suspension consisting of 30 g of low polymerization degree PVA with a degree of polymerization of 480 and a degree of saponification of 98.0 mol %, 15 g of EG, and 55 g of water was heated and stirred at 95° C. to uniformly dissolve it. The fluidity of this solution at 95°C was good. Approximately 5 g of this solution was poured into a concave mold at room temperature (18° C.), immediately covered with a convex mold, and pressed by hand. When the mold was removed after being left in this state for 10 seconds, it was completely gelled. The pot-shaped hydrogel molded product thus formed was somewhat soft, but not sticky, and had very flexible, tough rubber-like properties. When this hydrogel molded article was left indoors (20° C., 65% RH) for 72 hours, the weight decreased by 9% and almost no change in shape was visible. In addition, the hydrogel molded body was placed in water (at 20°C).
) When it was left for 20 days, there was almost no change in shape or strength. However, when it was left in water for another month, its shape completely collapsed and it was dissolved and dispersed in water.

【0036】実施例3 重合度が560で鹸化度が98.9モル%であるPVA
300g,カオリン(はくとう土)450g,EG35
0gおよび水350gからなる懸濁液を,95℃で加熱
攪拌して均一に溶解した。この溶液の95℃における流
動性は良好であった。この95℃の溶液をレトルトパツ
クに充填し,密封後,室温(18℃)で放置冷却すると
,10分間で完全にゲル化した。このヒドロゲルの性状
はゴム状で,パツクごと沸騰水に浸漬すると,5分間で
元の流動性のある溶液状態に戻り,パツクを開封して5
cm径の球状の金型に注入して10分間室温で放置する
と,非常に強靱で反発力に優れたハネハネボールになっ
た。 また,パツクをそのまま冷凍庫で氷結させると,柔軟性
の良好な氷嚢代用の保冷材として使用できた。この保冷
材を土壌中に6ヶ月間埋めておくと,完全に崩壊し,土
と見分けることがほとんど不可能であった。
Example 3 PVA with a degree of polymerization of 560 and a degree of saponification of 98.9 mol%
300g, kaolin (soil) 450g, EG35
A suspension consisting of 0 g and 350 g of water was heated and stirred at 95°C to uniformly dissolve it. The fluidity of this solution at 95°C was good. This 95°C solution was filled into a retort pack, sealed, and left to cool at room temperature (18°C), resulting in complete gelation in 10 minutes. The properties of this hydrogel are rubber-like, and when the pack is immersed in boiling water, it returns to its original fluid solution state within 5 minutes, and after opening the pack,
When poured into a spherical mold with a diameter of cm and left at room temperature for 10 minutes, the ball became extremely tough and had excellent repulsion. In addition, if the packs were frozen in the freezer, they could be used as a flexible cold insulation material in place of ice packs. When this cold insulation material was buried in soil for six months, it completely collapsed and was almost impossible to distinguish from soil.

【0037】実施例4 実施例3のヒドロゲル成形体を粉砕機で2〜3mm径の
チツプ状に粉砕し,このチツプと芳香剤(液状)を混合
し,押出成形機を用いて97℃で1mm厚のシートに成
形したところ,非常に柔軟かつ強靱な伸縮性のある徐放
性の芳香シートが得られた。このシートを海水中に2ヶ
月間放置すると,完全に形状崩壊し,海水に分散溶解し
ていた。
Example 4 The hydrogel molded product of Example 3 was crushed into chips with a diameter of 2 to 3 mm using a crusher, the chips and an aromatic agent (liquid) were mixed, and the mixture was molded into 1 mm pieces at 97°C using an extruder. When molded into a thick sheet, an extremely flexible, tough, and stretchable sustained-release aromatic sheet was obtained. When this sheet was left in seawater for two months, its shape completely collapsed and it was dispersed and dissolved in seawater.

【0038】実施例5 実施例3のヒドロゲル成形体を粉砕機で2〜3mm径の
チツプ状に粉砕したものと化学肥料(微粉状)を混合し
,射出成形機で97℃で4cm径(0.6mm厚)の育
苗用ポツトに成形したところ,非常に柔軟かつ強靱な伸
縮性のある徐効性肥料としての性能を有したポツトが得
られた。 このポツトで二十日大根の種を植え発芽させた後,ポツ
トごと畑に植え替え,育苗したところ,発芽後17日間
で根がポツトの壁を突き破り,順調に発育した。30日
後,二十日大根を収穫してポツトの状態を観察したが,
ほとんど土と見分けがつかないぐらいポツトは完全に崩
壊分散していた。
Example 5 The hydrogel molded body of Example 3 was crushed into chips with a diameter of 2 to 3 mm using a crusher, and chemical fertilizer (fine powder) was mixed with the mixture, and the mixture was molded into chips with a diameter of 4 cm (0.2 mm) at 97°C using an injection molding machine. When molded into pots for raising seedlings with a thickness of .6 mm, the pots were extremely flexible, tough, and stretchable, and had the performance of a slow-release fertilizer. After planting 20-day radish seeds in this pot and allowing them to germinate, the pots were then transplanted to a field and the seedlings were raised.The roots broke through the wall of the pot 17 days after germination and grew smoothly. After 30 days, I harvested the daikon radish and observed the condition of the pot.
The pots had completely collapsed and dispersed, so much so that they were almost indistinguishable from soil.

【0039】比較例1 重合度が4000で鹸化度が98.7モル%である高重
合度PVA10g,軟質炭酸カルシウム10g,PG2
0g,水70gからなる懸濁液を95℃で加熱攪拌した
が,著しく粘度が高いために注型できなかった。そこで
,流動性をよくするために,PGと水をさらに追加して
,PVA:PG:水の重量組成比を4:20:76に調
整し,実施例1と同様に処理して注型−脱型したところ
,ヒドロゲルは硬化せず,粘着性のある非常に軟弱なも
のであった。
Comparative Example 1 10 g of high polymerization degree PVA with a polymerization degree of 4000 and a saponification degree of 98.7 mol%, 10 g of soft calcium carbonate, PG2
A suspension consisting of 0 g and 70 g of water was heated and stirred at 95° C., but the viscosity was so high that it could not be cast. Therefore, in order to improve fluidity, PG and water were further added to adjust the weight composition ratio of PVA:PG:water to 4:20:76, and the process was carried out in the same manner as in Example 1. When removed from the mold, the hydrogel did not harden and was sticky and very weak.

【0040】実施例6〜13,比較例2〜8種々の重合
度と鹸化度を有するPVA,各種ポリオール,水および
各種フイラーからなる懸濁液を,実施例1と同様の方法
で加熱,攪拌,溶解,注型および脱型してヒドロゲル成
形体を得た。このヒドロゲル成形体の性能を表1に示し
た。評価方法は以下のとおりである。なお,比較例5お
よび7については,室温で硬化しなかったので,−35
℃で40時間凍結してゲル化させ,強度,耐水性,収縮
性について評価した。また,ゼラチンを用いて同様に処
理したものを比較例8とした。
Examples 6 to 13, Comparative Examples 2 to 8 Suspensions of PVA having various degrees of polymerization and saponification, various polyols, water, and various fillers were heated and stirred in the same manner as in Example 1. A hydrogel molded body was obtained by melting, casting, and demolding. The performance of this hydrogel molded article is shown in Table 1. The evaluation method is as follows. Note that Comparative Examples 5 and 7 did not cure at room temperature, so -35
It was frozen at ℃ for 40 hours to gel, and its strength, water resistance, and shrinkability were evaluated. Comparative Example 8 was prepared using gelatin and treated in the same manner.

【0041】(1)流動性 95℃における流動性 ◎;非常に良好  ○;良  好  △;やや悪い  
×;流動性ほとんどなし
(1) Fluidity Fluidity at 95°C ◎: Very good ○: Good △: Slightly bad
×; Almost no liquidity

【0042】(2)ゲル化(ゲル化時間)ゲル化が始ま
り,脱型可能になる時間 ◎;5秒以内  ○;5〜60秒  △;1〜10分 
 ×;10分以上
(2) Gelation (gelation time) Time when gelation starts and demolding becomes possible ◎: Within 5 seconds ○: 5 to 60 seconds △: 1 to 10 minutes
×;More than 10 minutes

【0043】(3)強  度 脱型時のヒドロゲルの状態(シリコンゴムと比較して)
◎;同程度  ○;やや軟質  △;軟質でやや粘着性
  ×;軟弱で粘着性
(3) Condition of hydrogel during strong demolding (compared to silicone rubber)
◎; Same level ○; Slightly soft △; Soft and slightly sticky ×; Soft and sticky

【0044】(4)崩壊性 20℃水中に浸漬したときのヒドロゲル成形体が完全に
形状崩壊するのに要する日数 ◎;6ヶ月〜1年  ○;3〜6ヶ月  △;1〜3ヶ
月  ×;1日以下
(4) Disintegrability Number of days required for the hydrogel molded body to completely collapse in shape when immersed in water at 20° C. ◎; 6 months to 1 year ○; 3 to 6 months △; 1 to 3 months ×; less than 1 day

【0045】(5)収縮性 20℃,65%RHで72時間放置したときのヒドロゲ
ル成形体の形状変化◎;ほとんど変化なし    ○;
わずかに硬化 △;やや硬化変形        ×;著しく硬化変形
(5) Shrinkage Change in shape of hydrogel molded product when left at 20°C and 65% RH for 72 hours ◎; Almost no change ○;
Slightly hardened △; Slightly hardened and deformed ×; Significantly hardened and deformed

【0046】[0046]

【表1】[Table 1]

【0047】[0047]

【発明の効果】以上のように構成されているので,本発
明の形状崩壊時間の制御可能なヒドロゲル成形体は,一
定使用期間内はヒドロゲルの強度が高く,しっかりと形
状が保たれ,一定期間経過後は自然に崩壊してしまう。 また,本発明の製造方法によれば,汎用プラスチツクと
同様に簡単な操作で形状崩壊時間の制御可能なヒドロゲ
ル成形体を得ることができる。
[Effects of the Invention] As configured as described above, the hydrogel molded article of the present invention whose shape collapse time can be controlled has high hydrogel strength and maintains its shape well for a certain period of use. After this time, it will collapse naturally. Further, according to the manufacturing method of the present invention, a hydrogel molded article whose shape collapse time can be controlled can be obtained with simple operations similar to those of general-purpose plastics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  (A)平均重合度100〜3500で
鹸化度95モル%以上のポリビニルアルコール系重合体
,(B)ポリオールおよび(C)水を主成分とし,これ
ら主成分の重量組成比(A)/(B)/(C)が5〜6
0/5〜60/10〜60であることを特徴とする形状
崩壊時間の制御可能なヒドロゲル成形体。
Claim 1: The main components are (A) a polyvinyl alcohol polymer with an average degree of polymerization of 100 to 3,500 and a degree of saponification of 95 mol% or more, (B) a polyol, and (C) water, and the weight composition ratio of these main components ( A)/(B)/(C) is 5-6
A hydrogel molded article having a controllable shape collapse time, characterized in that the shape collapse time is 0/5 to 60/10 to 60.
【請求項2】  (A)平均重合度100〜3500で
鹸化度95モル%以上のポリビニルアルコール系重合体
,(B)ポリオールおよび(C)水を主成分とし,これ
ら主成分の重量組成比(A)/(B)/(C)が5〜6
0/5〜60/10〜60となるように混合し,得られ
た混合物を加熱溶解した後,室温でゲル化成形するか,
ゲル化成形したものをさらに加熱溶解して室温でゲル化
成形することを特徴とする形状崩壊時間の制御可能なヒ
ドロゲル成形体の製造方法。
2. The main components are (A) a polyvinyl alcohol polymer with an average degree of polymerization of 100 to 3,500 and a degree of saponification of 95 mol% or more, (B) a polyol, and (C) water, and the weight composition ratio of these main components ( A)/(B)/(C) is 5-6
Mix it so that the ratio is 0/5 to 60/10 to 60, heat and melt the resulting mixture, and then gel it at room temperature, or
A method for producing a hydrogel molded article whose shape collapse time can be controlled, which comprises further heat-melting the gel-molded product and gelling it at room temperature.
JP3163491A 1991-06-07 1991-06-07 Hydrogel molding having controllable disintegrating time and its preparation Pending JPH04359951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3163491A JPH04359951A (en) 1991-06-07 1991-06-07 Hydrogel molding having controllable disintegrating time and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3163491A JPH04359951A (en) 1991-06-07 1991-06-07 Hydrogel molding having controllable disintegrating time and its preparation

Publications (1)

Publication Number Publication Date
JPH04359951A true JPH04359951A (en) 1992-12-14

Family

ID=15774876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3163491A Pending JPH04359951A (en) 1991-06-07 1991-06-07 Hydrogel molding having controllable disintegrating time and its preparation

Country Status (1)

Country Link
JP (1) JPH04359951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503125A (en) * 2011-12-08 2015-01-29 ノバルティス アーゲー Contact lens having an enzymatically degradable coating thereon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503125A (en) * 2011-12-08 2015-01-29 ノバルティス アーゲー Contact lens having an enzymatically degradable coating thereon

Similar Documents

Publication Publication Date Title
US5910520A (en) Melt processable biodegradable compositions and articles made therefrom
CA1171579A (en) Biodegradable starch-based blown films
CN109575536B (en) Modified polyglycolic acid biodegradable mulching film and preparation method thereof
AU631091B2 (en) Polymer base blend compositions containing destructurized starch
KR100249606B1 (en) Biodegradable articles made from certain trans-polymers and blends thereof with other biodegradable components
US5367003A (en) Disposable degradable recyclable plastic articles and synthetic resin blends for making the same
JP4280775B2 (en) Polyvinyl alcohol gel
CA2105480A1 (en) Biodegradable compositions comprising starch
CN103289134A (en) Fully biodegradable and multi-functional plastic mulch
KR20140106882A (en) Biodegradable Resin Composition and Biodegradable Mulching Film Using of the Same
CN106700362A (en) Polyvinyl alcohol full-biodegradation film having water resistance and preparation method thereof
JPH03103453A (en) Polymer-base blend composition containing modified starch
CN111154137A (en) Crystal snow material and preparation method thereof
CN109181012A (en) Plant amylum Biodegradable Materials
CN101597414B (en) Starch base degradable plastic
US5254598A (en) Biodegradable composition and products
JP2001503466A (en) Plastic composition
JPH04359951A (en) Hydrogel molding having controllable disintegrating time and its preparation
JPH08109278A (en) Molded foam, raw material for molded foam, and production of molded foam
CN108976678B (en) Preparation method of PBAT micro-nanofiber reinforced carboxymethyl chitosan/polyvinyl alcohol composite hydrogel
CN116589810A (en) Degradable agricultural film and preparation method thereof
JPH03269059A (en) Polymer composition
CN116199916A (en) Method for starch-based full-biodegradable agricultural mulching film with low water vapor permeability
CN113004665A (en) Antibacterial insect-preventing degradable agricultural mulching film and preparation method thereof
CN114436564A (en) Clay-based composite material and preparation and use methods thereof