JPH04359893A - Electromagnetic wave sealing device - Google Patents

Electromagnetic wave sealing device

Info

Publication number
JPH04359893A
JPH04359893A JP13615691A JP13615691A JPH04359893A JP H04359893 A JPH04359893 A JP H04359893A JP 13615691 A JP13615691 A JP 13615691A JP 13615691 A JP13615691 A JP 13615691A JP H04359893 A JPH04359893 A JP H04359893A
Authority
JP
Japan
Prior art keywords
conductor
wall surface
groove
door
conductor wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13615691A
Other languages
Japanese (ja)
Inventor
Koji Yoshino
浩二 吉野
Takashi Kashimoto
隆 柏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13615691A priority Critical patent/JPH04359893A/en
Publication of JPH04359893A publication Critical patent/JPH04359893A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/76Prevention of microwave leakage, e.g. door sealings
    • H05B6/763Microwave radiation seals for doors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To provide a electromagnetic wave sealing device used in such a door part of an electronic oven, excellent in a electromagnetic wave leakage preventing performance, and reduce the thickness of the door. CONSTITUTION:A groove 4 is provided in a door 14 of an electronic oven. The groove 4 is consisted of a first conductor wall surface 5 comprising a continuous conductive member, a groove bottom face 6, and a second conductor wall surface 7 such that a slitted part being provided from an open end and a plurality of conductor piece plates 8 of a constant pitch along the groove; a microstrip line is constituted between the respective conductor piece plates 8 and the first conductor wall surface 5 while the first conductor wall surface being longer than the second conductor wall surface. This constitution reduces dispersion and enables that positions at which an impedance being infinity, can be easily formed at constant intervals. And simpler constitution reduces the thickness of the door by adapting a microstrip line thechnology.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高周波電波を供給する本
体とドアとの間から漏洩する恐れがある高周波電波を遮
断する電波シール装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave sealing device that blocks high frequency radio waves that may leak from between a main body that supplies high frequency radio waves and a door.

【0002】0002

【従来の技術】近年電子レンジなどの高周波により食品
を加熱して調理する機器はドアの厚さを薄くすることが
求められている。従来この種の機器の電波シール装置は
図8〜図10に示すような構成が一般的であった。以下
その構成について説明する。電子レンジの外観は図8の
ようなものであり、食品を収納して高周波加熱する加熱
室本体13と、この加熱室13の食品出し入れ用の開口
部を開閉自在に覆うドア14とを備えたものであり、加
熱室13内の高周波電磁波が加熱室13外へ漏洩して人
体に弊害を及ぼさないように電波シール対策が施されて
いる。従来の電波シールの第一の方法としては、導体部
だけを示すと図9に示すようなインピーダンス反転を利
用する方法があった。図9(a)のようにドア14側の
溝の深さA−B間の長さを加熱室13内の電波の4分の
1波長分の長さとして、電波を減衰させるのである。す
なわち溝内部4(チョーク部とも呼ぶ)の特性インピー
ダンスをZ0,深さをLとし、終端部を短絡としたとき
にチョーク部開口部BでのインピーダンスZinは、Z
in=j・Z0・tan(2・π・L/λ0)(但しλ
0は自由空間波長)となる。チョーク方式の電波減衰手
段は、チョーク部4の深さLを4分の1波長に選定する
ことにより、|Zin|=Z0・tan(π/2)=∞
を達成するという原理に基づいている。よって(a)を
α側から見た図9(b)において、開放端の先端部15
に破線で示したようにインピーダンス無限大の領域が発
生し電波が外部に出られなくなるのである。もしチョー
ク部4内に誘電体(比誘電率εr)を充填すると、電波
の波長λ’は、
2. Description of the Related Art In recent years, there has been a demand for thinner doors of appliances such as microwave ovens that heat and cook food using high frequency waves. Conventionally, a radio wave sealing device for this type of equipment generally had a configuration as shown in FIGS. 8 to 10. The configuration will be explained below. The appearance of the microwave oven is as shown in FIG. 8, and includes a heating chamber main body 13 that stores food and heats it at high frequency, and a door 14 that freely opens and closes the opening for taking food in and out of the heating chamber 13. A radio wave sealing measure is taken to prevent the high frequency electromagnetic waves inside the heating chamber 13 from leaking outside the heating chamber 13 and causing harm to the human body. The first method of conventional radio wave sealing is to utilize impedance inversion as shown in FIG. 9 when only the conductor portion is shown. As shown in FIG. 9(a), the length between the depth A and B of the groove on the door 14 side is set to be a quarter wavelength of the radio waves inside the heating chamber 13, thereby attenuating the radio waves. That is, when the characteristic impedance of the groove interior 4 (also called choke part) is Z0, the depth is L, and the terminal end is short-circuited, the impedance Zin at the choke part opening B is Z
in=j・Z0・tan(2・π・L/λ0) (However, λ
0 is the free space wavelength). The choke-type radio wave attenuation means selects the depth L of the choke portion 4 to be a quarter wavelength, so that |Zin|=Z0・tan(π/2)=∞
It is based on the principle of achieving Therefore, in FIG. 9(b) when FIG. 9(a) is viewed from the α side, the open end tip 15
As shown by the broken line in , an area of infinite impedance occurs, and radio waves cannot escape to the outside. If the choke part 4 is filled with a dielectric material (relative dielectric constant εr), the wavelength λ' of the radio wave is

【0003】0003

【数1】[Math 1]

【0004】に圧縮される。この場合チョーク部4の深
さはL’は、
It is compressed into [0004]. In this case, the depth of the choke part 4 is L'.

【0005】[0005]

【数2】[Math 2]

【0006】と短くなる。しかしながらL’がλ’の4
分の1であることに変わりはなく、チョーク方式におい
ては、深さを実質的に4分の1波長よりも小さくするこ
とができず、材料面から考えてチョーク部の小型化(す
なわちドアを薄くすること)に限界のあるものであった
It becomes short as [0006]. However, L' is 4 of λ'
However, in the choke method, the depth cannot be made substantially smaller than a quarter wavelength, and from the viewpoint of materials, the choke part can be made smaller (i.e., the door can be made smaller). There was a limit to how thin it could be.

【0007】電子レンジの軽量化にともないドアを薄く
する試みとして生まれてきた電波シールの第二の方法と
しては図10に示すような方法があった。(a)図では
加熱室本体とドアの導体部の構成を示し、(b)図は(
a)図のドア部をα側から見た構成である。チョーク構
成が複雑ではあるが電波を減衰させることができ、4分
の1波長以下の深さが実現できた。
[0007] A second method of creating a radio wave seal, which was created in an attempt to make the door thinner as microwave ovens were made lighter, was the method shown in FIG. Figure (a) shows the configuration of the heating chamber main body and the conductor part of the door, and figure (b) shows (
a) This is the configuration of the door section shown in the figure viewed from the α side. Although the choke structure is complex, it was able to attenuate radio waves and achieve a depth of less than a quarter wavelength.

【0008】またマイクロストリップ線路技術を電波シ
ール装置に応用する例も過去にあった。これは本体もし
くはドアの片方をグランド面、他方を信号線路と考えて
いるため、前述のインピーダンス反転の理論を満たさな
い(すなわちショート面を確保できないためインピーダ
ンス∞を作ることができない)ので、電子レンジ等には
とても利用できないものであった。(特開昭58−94
00号公報参照)
There have also been cases in the past where microstrip line technology has been applied to radio wave sealing devices. This is because one side of the main body or door is considered as a ground plane and the other as a signal line, so it does not satisfy the theory of impedance inversion mentioned above (in other words, it is not possible to create impedance ∞ because a short plane cannot be secured). etc., it was very difficult to use. (Unexamined Japanese Patent Publication No. 58-94
(Refer to Publication No. 00)

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、簡単で作りやすい構成でかつドアを薄くす
るということは実現できていなかった。例えば電波シー
ルの第二の方法の例として、図10に示すような電波シ
ール対策を施しており、ドアは薄いが、製造上一つの導
体部(例えば板金)の折りまげだけでは作れず、ドア側
の導体部2は第1のドア導体16と第2のドア導体17
とをスポット点18でスポット溶接して作るなどの複雑
な構成となっており、作りづらく工数および材料費の面
で高価格となる課題があった。また、スポット溶接のや
り方によってはばらつきが生じ電波の漏洩を抑え切れな
い場合や、抑えるにしても管理項目が多くなるなど種種
の問題を有していた。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional structure, it has not been possible to realize a simple and easy-to-manufacture structure and to make the door thin. For example, as an example of the second method of radio wave sealing, a radio wave sealing measure as shown in Fig. 10 is taken, and although the door is thin, it cannot be made by simply folding one conductor part (for example, sheet metal), so the door The side conductor portion 2 includes a first door conductor 16 and a second door conductor 17.
It has a complicated structure, such as spot welding at spot point 18, and has the problem of being difficult to manufacture and expensive in terms of man-hours and material costs. In addition, there are various problems such as variations in spot welding methods, which may make it impossible to suppress leakage of radio waves, and even if it can be suppressed, there are many items to be managed.

【0010】さらにばらつきという点では、図9と図1
0に示すように第1の導体壁面と第2の導体壁面との深
さ方向の長さを同じにしていると、どちらかの長さが長
くなったりした時に特性が大きく変わってしまう問題が
あった。
Furthermore, in terms of dispersion, FIGS. 9 and 1
0, if the length of the first conductor wall surface and the second conductor wall surface are the same in the depth direction, there is a problem that the characteristics will change significantly when the length of either becomes longer. there were.

【0011】本発明は上記課題を解決するもので、ドア
を薄くしながら簡単な構成で、電波の外部への漏洩を抑
制し、安全な電波シール性能を提供することを目的とし
たものである。
[0011] The present invention is intended to solve the above-mentioned problems, and aims to suppress the leakage of radio waves to the outside with a simple structure while making the door thin, and to provide safe radio wave sealing performance. .

【0012】0012

【課題を解決するための手段】本発明の電波シール装置
は上記目的を達成するため、被加熱物を出し入れする開
口部を有し電波が内部に供給される加熱室本体に設けた
第1の導体部と、前記加熱室本体の前記開口部を開閉自
在に覆うドアに設けた第2の導体部とを対向させ、前記
第1の導体部または第2の導体部の少なくとも一方に少
なくとも一つの溝を設け、前記溝を形成する第1の導体
壁面および溝底面は連続的な導電性部材からなり、前記
溝を形成する第2の導体壁面は開放端から切り込み部を
設けて溝の長手方向に一定ピッチの導体片板が複数個並
ぶ構成とし、かつ前記各導体片板はそれぞれ前記溝底面
と電気的に接触し、前記第1の導体壁面との間にマイク
ロストリップ線路を構成し、前記溝の深さ方向の長さは
前記第1の導体壁面のほうが前記第2の導体壁面よりも
長くする構成としている。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the radio wave sealing device of the present invention has a first part provided in the main body of the heating chamber, which has an opening through which the object to be heated is taken in and taken out, and into which radio waves are supplied. A conductor part and a second conductor part provided on a door that covers the opening of the heating chamber main body in an openable and closable manner are arranged to face each other, and at least one conductor part is attached to at least one of the first conductor part and the second conductor part. A groove is provided, and the first conductor wall surface and groove bottom surface forming the groove are made of a continuous conductive member, and the second conductor wall surface forming the groove is provided with a cut portion from the open end to extend in the longitudinal direction of the groove. a plurality of conductor strips arranged at a constant pitch, and each of the conductor strips is in electrical contact with the groove bottom surface to form a microstrip line between the first conductor wall surface and the first conductor wall surface; The length of the groove in the depth direction is made longer on the first conductor wall surface than on the second conductor wall surface.

【0013】[0013]

【作用】本発明は上記構成によって、導体片板と第1の
導体壁面の間で、溝内の媒質(空気)を基板材料と考え
マイクロストリップ線路とみなすことにより、導体片板
の形状を自由に選べるため従来の方法に縛られないイン
ピーダンス反転が実現できる。すなわち深さ方向と溝の
長手方向の合成長で4分の1波長を稼げばよいことにな
り、深さ自身は4分の1波長より短くすることができる
作用を有する。
[Operation] According to the above structure, the present invention allows the shape of the conductor plate to be freely changed between the conductor plate and the first conductor wall by considering the medium (air) in the groove as the substrate material and treating it as a microstrip line. Impedance inversion can be achieved without being restricted by conventional methods. That is, it is sufficient to obtain a quarter wavelength by the combined growth in the depth direction and the longitudinal direction of the groove, and the depth itself has the effect of being shorter than a quarter wavelength.

【0014】さらに本発明によると溝の深さ方向の長さ
は第1の導体壁面のほうが第2の導体壁面よりも長くす
るように構成しており、ばらつきを考慮してもマイクロ
ストリップ線路を安定的に実現できる作用を有する。
Furthermore, according to the present invention, the length of the groove in the depth direction is configured such that the first conductor wall surface is longer than the second conductor wall surface, so that even if variations are taken into account, the microstrip line can be It has an effect that can be achieved stably.

【0015】[0015]

【実施例】以下本発明を電子レンジのドアシールに応用
した場合の実施例を図を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a door seal for a microwave oven will be described below with reference to the drawings.

【0016】図1(a)より電子レンジ本体の第1の導
体部1とドアの第2の導体部2が加熱室内空間3をふさ
ぐ形になっている。ドアの導体部2は一つの導体(板金
)を折りまげるだけで作られており、溝(チョーク部)
4を構成するのは第1の導体壁面5と溝底面6と第2の
導体壁面7である。また図1(b)において、第2の導
体壁面7は開放端から切り込みが入り、溝の長手方向に
一定ピッチの導体片板8が複数個並ぶ構成であり、第1
の導体壁面5がグランドラインで導体片板8が信号ライ
ンと考えると、各導体片板8と第1の導体壁面5の間で
マイクロストリップ線路を形成していると考えることが
できる。ここで第2の導体壁面の深さL1は導体片板8
の形状によって決まるが、これはドア自身の厚みを決定
するもっとも重要な要因である。本実施例の場合導体片
板8は途中から右方向に曲がっており、L1を4分の1
波長以下の深さにしている。そのため加熱室外へ漏れよ
うとする電波にとってのインピーダンス無限大の領域は
、図9の従来例とは少し異なった位置(開放端の先端部
9)に現れる。このとき導体片板8の曲がる向きは、イ
ンピーダンス∞が一定間隔で現れるよう右側で統一され
ている。
As shown in FIG. 1(a), the first conductor part 1 of the microwave oven body and the second conductor part 2 of the door are shaped to block the heating chamber space 3. The conductor part 2 of the door is made by simply folding one conductor (sheet metal), and the groove (choke part)
4 is composed of a first conductor wall surface 5, a groove bottom surface 6, and a second conductor wall surface 7. Further, in FIG. 1(b), the second conductor wall surface 7 has a notch from the open end, and has a structure in which a plurality of conductor strips 8 are lined up at a constant pitch in the longitudinal direction of the groove.
Considering that the conductor wall surface 5 is a ground line and the conductor strip 8 is a signal line, it can be considered that a microstrip line is formed between each conductor strip 8 and the first conductor wall surface 5. Here, the depth L1 of the second conductor wall surface is the conductor piece plate 8
This is the most important factor in determining the thickness of the door itself. In this embodiment, the conductor strip 8 is bent to the right from the middle, and L1 is 1/4
The depth is less than the wavelength. Therefore, a region of infinite impedance for radio waves that are about to leak out of the heating chamber appears at a slightly different position (tip 9 of the open end) from the conventional example shown in FIG. At this time, the direction in which the conductor strip 8 is bent is unified on the right side so that the impedance ∞ appears at regular intervals.

【0017】また第1の導体壁面の深さL2は第2の導
体壁面の深さL1より長くしており、その長さの差L2
−L1はドアの導体部2の第1の導体壁面5の折りまげ
部分10のRよりも大きくしている。
Further, the depth L2 of the first conductor wall surface is longer than the depth L1 of the second conductor wall surface, and the difference in length L2
-L1 is made larger than R of the folded portion 10 of the first conductor wall surface 5 of the conductor portion 2 of the door.

【0018】また図中Gは第1の導体部1と第2の導体
部2との距離(以降ギャップと呼ぶ)であり、ドアの取
りつけ方によって変わるものである。
Further, in the figure, G is the distance between the first conductor part 1 and the second conductor part 2 (hereinafter referred to as a gap), which changes depending on how the door is attached.

【0019】図2では導体片板8の構成についてもう少
し説明を加える。インピーダンス無限大の領域を作るた
めにマイクロストリップ線路の実行長を4分の1波長に
する必要があるが、線路幅Hの信号ラインについては、
センター長のトータルが実際の長さと考えられるので、
第2の導体壁面の深さL1と横方向の長さL3を用いる
とL1+L3−H≒λ/4を満たすように選ばなければ
ならない。
In FIG. 2, the structure of the conductor strip 8 will be further explained. In order to create a region with infinite impedance, it is necessary to make the effective length of the microstrip line a quarter wavelength, but for a signal line with line width H,
Since the total length of the center length can be considered as the actual length,
When using the depth L1 and the lateral length L3 of the second conductor wall surface, they must be selected so that L1+L3-H≈λ/4 is satisfied.

【0020】更に付け加えて、ピッチ間隔Pについても
おおよそ4分の1波長を選んでいる。電子レンジの場合
発振周波数が約2450MHzであり、波長がおよそ1
20mmとなる事を考えて計算してみると、H=5mm
,L3=20mm,S=10mmとすればL1≒15m
mとなり、従来の30mmからすれば2分の1の深さに
することができる。
Additionally, the pitch interval P is also selected to be approximately 1/4 wavelength. In the case of a microwave oven, the oscillation frequency is approximately 2450MHz, and the wavelength is approximately 1
If you calculate it considering that it will be 20mm, H = 5mm
, L3=20mm, S=10mm, then L1≒15m
m, which is half the depth of the conventional 30 mm.

【0021】実際に形状を変化させた場合のドア部から
の電波の漏洩電力の特性を図3に示す。L3をパラメー
タとして極小値を与えるL1があることがわかる。L3
が大きいときは曲線aのように極小値を与えるL1を小
さくする。(Lla)事ができ、L3が小さいときは曲
線bのように極小値を与えるL1が大きくなる(Llb
)ことが分かる。
FIG. 3 shows the characteristics of the leakage power of radio waves from the door when the shape is actually changed. It can be seen that there is an L1 that gives a minimum value using L3 as a parameter. L3
When is large, L1 that gives the minimum value is made small as shown by curve a. (Lla), and when L3 is small, L1, which gives the minimum value like curve b, becomes large (Llb
).

【0022】図4と図5を説明する。前述L1とL2の
関係で、図4のようにL1とL2が等しいときはギャッ
プGによるL1の最適値が異なるため漏洩電力を安定し
て抑えることができないのに対し、図5のようにL1<
L2とするとGによらず安定的に漏洩電力を下げるLl
cがあることが実験的に分かっている。続いて図6にマ
イクロストリップ線路を用いた場合のインピーダンスと
電波漏洩の特性を示す。図6(a)のようにZin=j
・Z0・tan(2・π・L/λ0)(λ0は自由空間
波長)、|Zin|=Z0・tan(π/2)=∞で与
えられる通り、横軸に信号線路の実行長(L1+L3−
Hの長さ)をとると、さまざまなインピーダンスを発生
でき、実際に電波の通過のしやすさという点から絶対値
に置き換えると図6(b)のようになる。図6(b)は
すなわち電波の通りにくさを示すものであり、逆に漏洩
する電力はというと図3〜図5で示したのと同様に図6
(c)のような特性が得られる。また実際のドア構成の
場合には図7のように、ドアの第2の導体部2を裸のま
まにするのではなく、樹脂11、12などでカバーする
場合が多い。
FIGS. 4 and 5 will be explained. Regarding the relationship between L1 and L2 mentioned above, when L1 and L2 are equal as shown in FIG. 4, the optimum value of L1 due to the gap G is different, so it is not possible to stably suppress the leakage power, whereas as shown in FIG. <
If L2 is used, Ll will stably lower the leakage power regardless of G.
It is experimentally known that c. Next, FIG. 6 shows the impedance and radio wave leakage characteristics when using a microstrip line. As shown in FIG. 6(a), Zin=j
・Z0・tan(2・π・L/λ0) (λ0 is the free space wavelength), |Zin|=Z0・tan(π/2)=∞, the horizontal axis shows the effective length of the signal line (L1+L3 −
By taking the length of H), various impedances can be generated, and when converted to absolute values from the viewpoint of ease of passage of radio waves, the result is as shown in FIG. 6(b). Figure 6(b) shows how difficult it is for radio waves to pass through, and conversely, the leakage power is shown in Figure 6 as shown in Figures 3 to 5.
The characteristics shown in (c) are obtained. Further, in the case of an actual door configuration, the second conductor portion 2 of the door is not left exposed as shown in FIG. 7, but is often covered with resin 11, 12 or the like.

【0023】[0023]

【発明の効果】以上説明したように本発明の電波シール
装置には以下の効果がある。 (1)インピーダンス∞の位置を一定間隔で容易に作り
出せるという点と、第1の導体壁面の深さを第2の導体
壁面の深さより長くしたためにマイクロストリップ線路
技術を応用したシール構造が安定して実現できるという
点で、電波漏洩の抑制に優れ極めて安全な電波シールを
実現できる。 (2)導体部は板金を打ち抜いたあと曲げる構成なので
、スポット溶接などの必要がなく簡単で作りやすく低価
格化が実現できる。 (3)マイクロストリップ線路技術の考え方に基づくの
で導体片板の形状が自由に選べるため、簡単な構成でド
ア部の厚みを薄くでき、小型軽量化が図れる。
[Effects of the Invention] As explained above, the radio wave sealing device of the present invention has the following effects. (1) The seal structure using microstrip line technology is stable because the positions of impedance ∞ can be easily created at regular intervals and because the depth of the first conductor wall is longer than the depth of the second conductor wall. In this respect, it is possible to realize an extremely safe radio wave seal that is excellent in suppressing radio wave leakage. (2) Since the conductor part is formed by punching out sheet metal and then bending it, there is no need for spot welding, making it simple and easy to manufacture, and the cost can be reduced. (3) Since it is based on the concept of microstrip line technology, the shape of the conductor plate can be freely selected, so the thickness of the door part can be made thinner with a simple structure, making it possible to reduce the size and weight.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の電波シール装置の断面図と
第2の導体壁面の正面図
[Fig. 1] A cross-sectional view of a radio wave sealing device according to an embodiment of the present invention and a front view of a second conductor wall surface.

【図2】同電波シール装置の第2の導体壁面の拡大正面
[Figure 2] Enlarged front view of the second conductor wall of the radio wave sealing device

【図3】同電波シール装置の特性図[Figure 3] Characteristic diagram of the radio wave seal device

【図4】同電波シール装置の特性図[Figure 4] Characteristic diagram of the radio wave seal device

【図5】同電波シール装置の特性図[Figure 5] Characteristic diagram of the radio wave seal device

【図6】マイクロストリップ線路技術に基づくインピー
ダンス反転の特性図
[Figure 6] Characteristic diagram of impedance inversion based on microstrip line technology

【図7】本発明の他の実施例における電波シール装置の
断面図
FIG. 7 is a sectional view of a radio wave sealing device according to another embodiment of the present invention.

【図8】従来の電子レンジの斜視図[Figure 8] Perspective view of a conventional microwave oven

【図9】従来の電波シール装置の断面図と第2の導体壁
面の正面図
[Fig. 9] A cross-sectional view of a conventional radio wave sealing device and a front view of the second conductor wall surface.

【図10】従来の電波シール装置の断面図と第2の導体
壁面の正面図
[Fig. 10] A cross-sectional view of a conventional radio wave sealing device and a front view of the second conductor wall surface.

【符号の説明】[Explanation of symbols]

1  第1の導体部 2  第2導体部 4  溝(チョーク部) 5  第1の導体壁面 6  溝底面 7  第2の導体壁面 8  導体片板 1 First conductor part 2 Second conductor part 4 Groove (choke part) 5 First conductor wall surface 6 Groove bottom surface 7 Second conductor wall surface 8 Conductor single plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被加熱物の出し入れをする開口部を有し電
波が内部に供給される加熱室本体に設けた第1の導体部
と、前記加熱室本体の前記開口部を開閉自在に覆うドア
に設けた第2の導体部とを対向させ、前記第1の導体部
または第2の導体部の少なくとも一方に少なくとも一つ
の溝を設け、前記溝を形成する第1の導体壁面および溝
底面は連続的な導電性部材からなり、前記溝を形成する
第2の導体壁面は開放端から切り込み部を設けて溝の長
手方向に一定ピッチの導体片板が複数個並ぶ構成とし、
かつ前記各導体片板はそれぞれ前記溝底面と電気的に接
触し、前記第1の導体壁面との間にマイクロストリップ
線路を構成し、前記溝の深さ方向の長さは前記第1の導
体壁面のほうが前記第2の導体壁面よりも長くした電波
シール装置。
1. A first conductor part provided in a heating chamber main body that has an opening for taking in and out the heated object and into which radio waves are supplied, and a first conductor part that covers the opening of the heating chamber main body so as to be openable and closable. A first conductor wall face and a groove bottom face that face a second conductor part provided on the door, and at least one groove is provided in at least one of the first conductor part and the second conductor part, and the groove is formed by a first conductor wall surface and a groove bottom surface. is made of a continuous conductive member, the second conductor wall surface forming the groove has a cut portion from the open end, and a plurality of conductor strips are arranged at a constant pitch in the longitudinal direction of the groove,
Each of the conductor strips is in electrical contact with the bottom surface of the groove and forms a microstrip line between the conductor wall surface and the first conductor wall surface, and the length of the groove in the depth direction is equal to that of the first conductor. A radio wave sealing device in which the wall surface is longer than the second conductor wall surface.
JP13615691A 1991-06-07 1991-06-07 Electromagnetic wave sealing device Pending JPH04359893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13615691A JPH04359893A (en) 1991-06-07 1991-06-07 Electromagnetic wave sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13615691A JPH04359893A (en) 1991-06-07 1991-06-07 Electromagnetic wave sealing device

Publications (1)

Publication Number Publication Date
JPH04359893A true JPH04359893A (en) 1992-12-14

Family

ID=15168626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13615691A Pending JPH04359893A (en) 1991-06-07 1991-06-07 Electromagnetic wave sealing device

Country Status (1)

Country Link
JP (1) JPH04359893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021136271A1 (en) * 2019-12-30 2021-07-08 广东美的厨房电器制造有限公司 Oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021136271A1 (en) * 2019-12-30 2021-07-08 广东美的厨房电器制造有限公司 Oven

Similar Documents

Publication Publication Date Title
US4313044A (en) Slot configuration for choke seal
CN100430652C (en) Apparatus for shielding electromagnetic wave of microwave oven door
US4584447A (en) Electromagnetic wave energy seal arrangement
US4133997A (en) Dual feed, horizontally polarized microwave oven
US4053731A (en) Microwave energy oven seal
GB2199219A (en) Electromagnetic energy seal of a microwave oven
JPH04359893A (en) Electromagnetic wave sealing device
JP2949965B2 (en) Radio wave sealing device
JP2949915B2 (en) Radio wave sealing device
JPH04294092A (en) Electric wave sealing device
JPH05129077A (en) Radio wave sealing device
JPH05326138A (en) Wave sealing device
JPS59230291A (en) Radio wave sealing device
JPH06132078A (en) Radio wave seal device
JPH0567495A (en) Electric wave shield device
JPS6316874B2 (en)
JPH05144568A (en) Electric wave sealing device
JP4724925B2 (en) Electromagnetic wave shielding device and microwave oven
JPH03283290A (en) High-frequency heating device
JPH03219699A (en) Apparatus for sealing electromagnetic wave
JPS6070690A (en) Radio wave sealing device
JPS6070688A (en) Radio wave sealing device
KR0152843B1 (en) High frequency leakage shielding device for microwave oven
JPS6259437B2 (en)
JPS61292893A (en) High frequency heater