JPH04294092A - Electric wave sealing device - Google Patents

Electric wave sealing device

Info

Publication number
JPH04294092A
JPH04294092A JP5990491A JP5990491A JPH04294092A JP H04294092 A JPH04294092 A JP H04294092A JP 5990491 A JP5990491 A JP 5990491A JP 5990491 A JP5990491 A JP 5990491A JP H04294092 A JPH04294092 A JP H04294092A
Authority
JP
Japan
Prior art keywords
conductor
groove
wall surface
heating chamber
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5990491A
Other languages
Japanese (ja)
Inventor
Koji Yoshino
浩二 吉野
Takashi Kashimoto
隆 柏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5990491A priority Critical patent/JPH04294092A/en
Publication of JPH04294092A publication Critical patent/JPH04294092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

PURPOSE:To accomplish a safe electric wave sealing by furnishing No.1 conductor part at the body of an electric wave heating chamber, allowing this No.1 conductor part to confront No.2 conductor part provided at the door of the heating chamber without electrostatic contacting, and forming a micro-strip line which leads to No.1 conductor wall surface. CONSTITUTION:No.1 conductor part 3 is provided at the body of a heating chamber 16 which has an opening to be fed with electric waves, while No.2 conductor part 4a is furnished at the door covering this opening of the heating chamber body with possibility of opening and closing, wherein the two conductor parts are positioned oppositely without electric connection directly. At least one groove 5a is formed in either or both of these conductor parts 3, 4a. No.2 conductor wall surface 8a where this groove 5a is formed is provided with a notch 10a from the open end, and a plurality of conductor plates 11a are laid in line at a certain pitch in the longitudinal direction of the groove 5a. These conductor plates 11a are contacted electrically with the groove bottom surface 7a to constitute a micro-strip line leading to No.1 conductor wall surface. Therein the shape of conductor plate is selectible any as desired, and therefore, electric waves can be sealed by a structure simple and easy to fabricate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高周波電波を供給する本
体とドアとの間から漏洩する危険がある高周波電波を遮
断する電波シール装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave sealing device for blocking high frequency radio waves that are at risk of leaking from between a main body that supplies high frequency radio waves and a door.

【0002】0002

【従来の技術】近年、電子レンジなどの高周波により食
品を加熱して調理する機器はドアの厚さを薄くすること
が求められている。
2. Description of the Related Art In recent years, there has been a demand for thinner doors of appliances such as microwave ovens that heat and cook food using high frequency waves.

【0003】従来、この種の機器の電波シール装置は図
7および図8に示すような構成が一般的であった。以下
、その構成について説明する。
[0003] Conventionally, a radio wave sealing device for this type of equipment generally had a configuration as shown in FIGS. 7 and 8. The configuration will be explained below.

【0004】図に示すように、加熱室本体1は食品を収
納して高周波加熱するもので、この加熱室本体1の食品
出し入れ用の開口部をドア2により開閉自在に覆い、加
熱室本体1内の高周波電磁波が加熱室本体1外へ漏洩し
て人体に弊害を及ぼさないように電波シール対策が施さ
れている。第1の導体部3は加熱室本体1に設け、第2
の導体部4はドア2に設け、これらは直接の接触なしに
対向させ、第2の導体部4に溝5を設け、第1の導体壁
面6と溝底面7は連続的な導電性部材で形成し、第2の
導体壁面8には開放端9から切り込み部10を設けて溝
5の長手方向に一定ピッチで複数の導体片板11を並設
し、インピーダンス反転を利用し、溝5の深さA−B間
の長さを加熱室本体1内の電波の4分の1波長分の長さ
として、電波を減衰させている。すなわ溝5内部(チョ
ーク部という)の特性インピーダンスをZ0、深さをL
とし、終端部を短絡したときにチョーク部開口部Bでの
インピーダンスZinは、(数1)となる。
[0004] As shown in the figure, a heating chamber main body 1 stores food and heats it with high frequency. An opening of the heating chamber main body 1 for taking food in and out is covered with a door 2 so as to be openable and closable. Radio wave sealing measures are taken to prevent high frequency electromagnetic waves inside from leaking outside the heating chamber main body 1 and causing harm to the human body. The first conductor part 3 is provided in the heating chamber main body 1, and the second
The conductor parts 4 are provided on the door 2, and these face each other without direct contact, the second conductor part 4 is provided with a groove 5, and the first conductor wall surface 6 and the groove bottom surface 7 are made of a continuous conductive member. A notch 10 is provided in the second conductor wall surface 8 from the open end 9, and a plurality of conductor strips 11 are arranged in parallel at a constant pitch in the longitudinal direction of the groove 5. The length between depth A and B is set to be a quarter wavelength of the radio waves within the heating chamber main body 1 to attenuate the radio waves. In other words, the characteristic impedance inside the groove 5 (referred to as the choke part) is Z0, and the depth is L.
Then, when the terminal end is short-circuited, the impedance Zin at the choke opening B becomes (Equation 1).

【0005】[0005]

【数1】[Math 1]

【0006】チョーク方式の電波減衰手段は、チョーク
部5の深さLを4分の1波長に選定することにより、(
数2)を達成するという原理に基づいている。
[0006] The choke type radio wave attenuation means has the following characteristics: (
It is based on the principle of achieving equation 2).

【0007】[0007]

【数2】[Math 2]

【0008】よって、図8(b)の開放端19の先端部
に破線で示したようにインピーダンス無限大の領域12
が発生し、電波が外部に出られなくなるのである。もし
チョーク部5内に誘電体(比誘電率εr)を充填すると
、電波の波長λ’は、(数3)に圧縮される。この場合
チョーク部6の深さL’は(数4)と短くなる。
Therefore, as shown by the broken line at the tip of the open end 19 in FIG. 8(b), there is a region 12 of infinite impedance.
occurs, and radio waves cannot go out. If the choke part 5 is filled with a dielectric material (relative dielectric constant εr), the wavelength λ' of the radio wave is compressed to (Equation 3). In this case, the depth L' of the choke portion 6 becomes as short as (Equation 4).

【0009】[0009]

【数3】[Math 3]

【0010】0010

【数4】[Math 4]

【0011】しかしながらL’がλ’の4分の1である
ことに変わりはなく、チョーク方式においては、チョー
ク部5の深さを実質的に4分の1波長よりも小さくする
ことができず、チョーク部5の小型化(すなわちドアを
薄くすること)に限界のあるものであった。
However, L' is still one-fourth of λ', and in the choke method, the depth of the choke portion 5 cannot be made substantially smaller than one-quarter wavelength. However, there is a limit to miniaturization of the choke portion 5 (ie, making the door thinner).

【0012】電子レンジの軽量化にともないドアを薄く
するものとして、特公昭62−59438号公報に記載
されたものがあり、図9に示すように、第2の導体部4
を第1のドア導体13と第2のドア導体14とにより構
成してチョーク部5の構造が複雑ではあるが電波を減衰
させることができ、4分の1波長以下の深さが実現でき
るものであった。
[0012] As a method for making the door thinner in order to reduce the weight of microwave ovens, there is a method described in Japanese Patent Publication No. 62-59438, as shown in FIG.
is composed of the first door conductor 13 and the second door conductor 14, and although the structure of the choke part 5 is complicated, it can attenuate radio waves and realize a depth of less than a quarter wavelength. Met.

【0013】[0013]

【発明が解決しようとする課題】しかしながら上記従来
の電波シール装置では、簡単で作りやすい構成でかつド
ア2を薄くするということは実現できていなかった。た
とえば電波シールの第2の例として、図9に示すような
電波シール装置では、ドア2は薄いが、製造上一つの導
体部(たとえば板金)の折りまげだけでは作れず、第2
の導体部4は第1のドア導体13と第2のドア導体14
とをスポット点15でスポット溶接して作るなどの複雑
な構成となっており、作りづらく工数および材料費の面
で高価格となる問題があった。また、スポット溶接のや
り方によってはばらつきが生じ電波の漏洩を抑え切れな
い場合や、抑えるにしても管理項目が多くなるなど種種
の問題を有していた。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional radio wave sealing device, it has not been possible to realize a simple and easy-to-manufacture structure and to make the door 2 thin. For example, as a second example of a radio wave seal, in the radio wave seal device shown in FIG.
The conductor portion 4 includes a first door conductor 13 and a second door conductor 14.
It has a complicated structure, such as spot welding at spot points 15, and has the problem of being difficult to manufacture and resulting in high costs in terms of man-hours and material costs. In addition, there are various problems such as variations in spot welding methods, which may make it impossible to suppress leakage of radio waves, and even if it can be suppressed, there are many items to be managed.

【0014】本発明は上記課題を解決するもので、ドア
を薄くしながら簡単な構成で、電波の外部への漏洩を抑
制し、安全な電波シール性能を向上することを目的とし
ている。
The present invention has been made to solve the above-mentioned problems, and aims to suppress the leakage of radio waves to the outside with a simple structure while making the door thin, and to improve the safe radio wave sealing performance.

【0015】[0015]

【課題を解決するための手段】本発明は上記目的を達成
するために、開口部を有し電波が内部に供給される加熱
室本体に設けた第1の導体部と、前記加熱室本体の前記
開口部を開閉自在に覆うドアに設けた第2の導体部とを
直接の電気的接触なしに対向させ、前記第1の導体部ま
たは第2の導体部の少なくとも一方に少なくとも1つの
溝を設け、前記溝を形成する第1の導体壁面および溝底
面は連続的な導電性部材からなり、前記溝を形成する第
2の導体壁面は開放端から切り込み部を設けて溝の長手
方向に一定ピッチの導体片板が複数個並ぶ構成とし、か
つ前記各導体片板はそれぞれ前記溝底面と電気的に接触
し、前記第1の導体壁面との間にマイクロストリップ線
路を構成したことを課題解決手段としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a first conductor portion provided in a heating chamber body having an opening and into which radio waves are supplied, and a first conductor portion provided in a heating chamber body having an opening and into which radio waves are supplied. A second conductor portion provided on a door that can be opened and closed to cover the opening is opposed to each other without direct electrical contact, and at least one groove is formed in at least one of the first conductor portion and the second conductor portion. The first conductor wall surface forming the groove and the groove bottom surface are made of a continuous conductive member, and the second conductor wall surface forming the groove is provided with a cut portion from the open end and is constant in the longitudinal direction of the groove. The problem is solved by having a structure in which a plurality of conductor strips are lined up at different pitches, each of the conductor strips is in electrical contact with the groove bottom surface, and a microstrip line is formed between the conductor strip and the first conductor wall surface. It is used as a means.

【0016】[0016]

【作用】本発明は上記した課題解決手段により、導体片
板と第1の導体壁面の間で、溝内の媒質(空気)を基板
材料としてマイクロストリップ線路を構成でき、導体片
板の形状を第一の導体壁面と平行な関係に保ちさえすれ
ば自由に選ぶことができてインピーダンス反転が実現で
きる。すなわち、深さ方向と溝の長手方向の合成長で4
分の1波長を稼げばよいことになり、深さ自身は4分の
1波長より短くすることができる。
[Operation] By the above-mentioned problem solving means, the present invention can construct a microstrip line between the conductor strip and the first conductor wall using the medium (air) in the groove as the substrate material, and the shape of the conductor strip can be changed. As long as it is kept parallel to the first conductor wall surface, it can be freely selected and impedance inversion can be achieved. In other words, the combined growth in the depth direction and the longitudinal direction of the groove is 4
This means that the depth itself can be made shorter than a quarter wavelength.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。なお、従来例と同じ構成のものは同一符号を付
して説明を省略する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. Note that components having the same configuration as those of the conventional example are given the same reference numerals, and description thereof will be omitted.

【0018】図に示すように、第1の導体部3はドアに
設けた第2の導体部4aとともに加熱室内空間16をふ
さぐ形になっている。第2の導体部4aは一つの導体(
板金)を折りまげるだけで作られており、溝(チョーク
部)5aは第1の導体壁面6aと溝底面7aと第2の導
体壁面8aとで構成している。第2の導体壁面8aは開
放端9aから切り込み部10aを設け、溝5aの長手方
向に一定ピッチの導体片板11aを複数個並設している
。第1の導体壁面6aがグランドラインで導体片板11
aが信号ラインと考えると、各導体片板11aと第1の
導体壁面6aは溝底面7aをインピーダンス的にショー
ト点としてマイクロストリップ線路を形成している。 ここで、溝5aの深さL1 は導体片板11aの形状に
よって決まるが、これはドア自身の厚みを決定するもっ
とも重要な要因である。本実施例の場合、導体片板11
aは途中から右方向に曲がっており、溝5aの深さL1
 を4分の1波長以下の深さにしている。そのため、加
熱室外へ漏れようとする電波にとってのインピーダンス
無限大の領域12aは、図8の従来例とは少し異なった
位置(開放端の先端部)に現れる。
As shown in the figure, the first conductor section 3 is shaped to close off the heating chamber space 16 together with the second conductor section 4a provided on the door. The second conductor portion 4a is one conductor (
The groove (choke part) 5a is made up of a first conductor wall surface 6a, a groove bottom surface 7a, and a second conductor wall surface 8a. The second conductor wall surface 8a is provided with a cut portion 10a from the open end 9a, and a plurality of conductor strips 11a are arranged in parallel at a constant pitch in the longitudinal direction of the groove 5a. The first conductor wall surface 6a is the ground line and the conductor piece plate 11
Considering that a is a signal line, each conductor piece plate 11a and the first conductor wall surface 6a form a microstrip line with the groove bottom surface 7a as a short point in terms of impedance. Here, the depth L1 of the groove 5a is determined by the shape of the conductor strip 11a, which is the most important factor in determining the thickness of the door itself. In the case of this embodiment, the conductor single plate 11
a is bent to the right from the middle, and the depth of the groove 5a is L1.
to a depth of less than a quarter wavelength. Therefore, a region 12a of infinite impedance for radio waves that are about to leak out of the heating chamber appears at a slightly different position (at the tip of the open end) than in the conventional example shown in FIG.

【0019】導体片板11aの構成について図2により
もう少し説明を加えると、インピーダンス無限大の領域
を作るためにマイクロストリップ線路の実行長を4分の
1波長にする必要があるが、線路幅Hの信号ラインにつ
いては、センター長のトータルが実際の長さと考えられ
るので、縦方向の長さ(溝の深さ)L1 と横方向の長
さL2 を用いると(数5)を満たすように選ばなけれ
ばならない。
To further explain the structure of the conductor strip 11a with reference to FIG. 2, in order to create a region of infinite impedance, the running length of the microstrip line must be reduced to a quarter wavelength, but the line width H Regarding the signal line, the total center length is considered to be the actual length, so using the vertical length (groove depth) L1 and the horizontal length L2, the line can be selected to satisfy (Equation 5). There must be.

【0020】[0020]

【数5】[Math 5]

【0021】ただし、縦方向から横方向に変わる折りま
げの部分に関しては図2のように斜めにカットするほう
が上式が成り立つ事が実験的にわかっている。
However, it has been experimentally found that the above formula holds true when the fold is changed from the vertical direction to the horizontal direction by cutting diagonally as shown in FIG.

【0022】さらに付け加えて、ピッチ間隔Pについて
もおおよそ4分の1波長を選んでいる。電子レンジの場
合、発振周波数が約2450MHz であり、波長がお
よそ120mmとなることを考えて計算してみると、H
=5mm、12=20mm、S=10mmとすればL1
 ≒15mmとなり、従来の30mmからすれば2分の
1の深さにすることができる。
Additionally, the pitch interval P is also selected to be approximately 1/4 wavelength. In the case of a microwave oven, the oscillation frequency is approximately 2450 MHz and the wavelength is approximately 120 mm.
=5mm, 12=20mm, S=10mm, then L1
The depth is approximately 15 mm, which is half the depth of the conventional 30 mm.

【0023】第2の導体壁面8aの形状を変化させた場
合のドア部からの電波の漏洩電力の特性は図3に示すよ
うになり、L2 をパラメータとして極小値を与えるL
1 があることがわかる。L2 が大きいときは特性a
のように極小値を与えるL1 を小さくする(L1a)
ことができ、L2 が小さいときは特性bのように極小
値を与えるL1 が大きくなる(L1b)ことが分かる
。他の実施例として図4には、H=5mm、12=25
mm、S=5mmで、L1≒10mmの構成を示してい
る。
The characteristics of the leakage power of radio waves from the door section when the shape of the second conductive wall surface 8a is changed are as shown in FIG.
It turns out that there is 1. When L2 is large, characteristic a
Reduce L1 that gives the minimum value as (L1a)
It can be seen that when L2 is small, L1 that gives the minimum value becomes large (L1b) as in characteristic b. As another example, in FIG. 4, H=5 mm, 12=25
mm, S=5 mm, and L1≈10 mm.

【0024】つぎに、図5はマイクロストリップ線路を
用いた場合のインピーダンスと電波漏洩の特性を示して
おり、図6(a)のように(数1)、(数2)の通り、
横軸に信号線路の実行長(本発明では(数5)の長さ)
をとると、さまざまなインピーダンスを発生でき、実際
に電波の通過のしやすさという点から絶対値に置き換え
ると図5(b)のようになる。図5(b)は電波の通り
にくさを示すものであり、逆に漏洩する電力は図3と同
様に図5(c)のような特性が得られる。
Next, FIG. 5 shows the impedance and radio wave leakage characteristics when using a microstrip line, and as shown in FIG. 6(a), as shown in (Equation 1) and (Equation 2),
The horizontal axis represents the effective length of the signal line (in the present invention, the length of (Equation 5))
If we take , various impedances can be generated, and if we convert it to an absolute value from the point of view of ease of passage of radio waves, we get the result shown in Fig. 5(b). FIG. 5(b) shows the difficulty in passing radio waves, and conversely, the leaked power has characteristics as shown in FIG. 5(c), similar to FIG. 3.

【0025】また、実際のドア構成の場合には図6のよ
うに、第1の導体部3aを裸のままにするのではなく、
樹脂部材17、18などでカバーする場合が多い。
Furthermore, in the case of an actual door configuration, instead of leaving the first conductor portion 3a bare as shown in FIG.
It is often covered with resin members 17, 18, etc.

【0026】なお、上記実施例は第2の導体部4aに溝
5aを設けたが、第1の導体部3に設けても同様の作用
、効果が得られる。
Although the groove 5a is provided in the second conductor portion 4a in the above embodiment, the same operation and effect can be obtained even if the groove 5a is provided in the first conductor portion 3.

【0027】[0027]

【発明の効果】以上の実施例から明らかなように本発明
によれば、第2の導体壁面の導体片板はそれぞれ溝底面
と電気的に接触し、第1の導体壁面との間にマイクロス
トリップ線路を構成するようにしたから、導体片板の形
状が自由に選べるため、簡単な構成でドア部の厚みを薄
くでき、また、簡単で作りやすい構成であり、安価で作
れ、導体部は板金の打ち抜きで作ったものを金型で一回
で曲げる構成にできるため、作りやすく低価格で実現で
きる。さらに、スポット溶接の必要がなくシール構造に
ばらつきが生じにくいので、電波漏洩の抑制に関し極め
て安価な性能を実現できる。
As is clear from the above embodiments, according to the present invention, each of the conductor strips on the second conductor wall is in electrical contact with the bottom of the groove, and there is a microstructure between the conductor plate and the first conductor wall. Since the strip line is configured, the shape of the conductor plate can be freely selected, so the thickness of the door part can be reduced with a simple configuration. Since it can be made by punching sheet metal and then bent in one step using a mold, it is easy to make and can be realized at a low cost. Furthermore, since there is no need for spot welding and variations in the seal structure are less likely to occur, extremely low-cost performance in suppressing radio wave leakage can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a)本発明の一実施例の電波シール装置の断
面図 (b)同電波シール装置の第2の導体壁面の側面図
FIG. 1 (a) A cross-sectional view of a radio wave sealing device according to an embodiment of the present invention. (b) A side view of a second conductor wall surface of the radio wave sealing device.

【図
2】同電波シール装置の第2の導体壁面の拡大側面図
[Figure 2] Enlarged side view of the second conductor wall of the radio wave sealing device

【図3】同電波シール装置の特性図[Figure 3] Characteristic diagram of the radio wave seal device

【図4】(a)本発明の他の実施例の電波シール装置の
断面図 (b)同電波シール装置の第2の導体壁面の側面図
FIG. 4 (a) A cross-sectional view of a radio wave sealing device according to another embodiment of the present invention. (b) A side view of a second conductor wall surface of the same radio wave sealing device.

【図
5】(a)〜(c)同電波シール装置のマイクロストリ
ップ理論に基づくインピーダンス反転の特性図
[Figure 5] (a) to (c) Characteristic diagrams of impedance inversion based on the microstrip theory of the radio wave sealing device

【図6】
本発明の別の実施例の電波シール装置の断面図
[Figure 6]
A sectional view of a radio wave sealing device according to another embodiment of the present invention

【図7】
一般の電子レンジの斜視図
[Figure 7]
Perspective view of a general microwave oven

【図8】(a)従来の電波シール装置の一例の断面図(
b)同電波シール装置の第2の導体壁面の側面図
[Fig. 8] (a) Cross-sectional view of an example of a conventional radio wave seal device (
b) Side view of the second conductor wall of the radio wave sealing device

【図9
】(a)従来の電波シール装置の他の例の断面図(b)
同電波シール装置の第2の導体壁面の側面図
[Figure 9
] (a) Cross-sectional view of another example of the conventional radio wave seal device (b)
Side view of the second conductor wall of the radio wave sealing device

【符号の説明】[Explanation of symbols]

3  第1の導体部 4a  第2の導体部 5a  溝 6a  第1の導体壁面 7a  溝底面 8a  第2の導体壁面 10a  切り込み部 11a  導体片板 3 First conductor part 4a Second conductor part 5a Groove 6a First conductor wall surface 7a Groove bottom surface 8a Second conductor wall surface 10a Notch part 11a Conductor single plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】開口部を有し電波が内部に供給される加熱
室本体に設けた第1の導体部と、前記加熱室本体の前記
開口部を開閉自在に覆うドアに設けた第2の導体部とを
直接の電気的接触なしに対向させ、前記第1の導体部ま
たは第2の導体部の少なくとも一方に少なくとも1つの
溝を設け、前記溝を形成する第1の導体壁面および溝底
面は連続的な導電性部材からなり、前記溝を形成する第
2の導体壁面は開放端から切り込み部を設けて溝の長手
方向に一定ピッチの導体片板が複数個並ぶ構成とし、か
つ前記各導体片板はそれぞれ前記溝底面と電気的に接触
し、前記第1の導体壁面との間にマイクロストリップ線
路を構成するようにした電波シール装置。
1. A first conductor provided in a heating chamber main body having an opening and into which radio waves are supplied, and a second conductor provided in a door that covers the opening of the heating chamber main body so as to be openable and closable. A first conductor wall surface and a groove bottom surface that face the conductor portion without direct electrical contact, and provide at least one groove in at least one of the first conductor portion and the second conductor portion, and form the groove. is made of a continuous conductive member, and the second conductor wall surface forming the groove has a cut portion from the open end so that a plurality of conductor strips are arranged at a constant pitch in the longitudinal direction of the groove, and each of the above-mentioned A radio wave sealing device, wherein each of the conductor strips is in electrical contact with the groove bottom surface, and a microstrip line is formed between the conductor strips and the first conductor wall surface.
【請求項2】各導体片板は第1の導体壁面と平行で、少
なくとも一回は折れ曲がった構成とした請求項1記載の
電波シール装置。
2. The radio wave sealing device according to claim 1, wherein each conductor strip is parallel to the first conductor wall surface and bent at least once.
【請求項3】各導体片板は溝底面から垂直方向に一定長
(L1)伸びたあと直角に折れ曲がり水平方向に一定長
(L2)伸びる構成とした請求項1記載の電波シール装
置。
3. The radio wave sealing device according to claim 1, wherein each conductor strip extends a certain length (L1) in the vertical direction from the bottom of the groove, and then bends at a right angle and extends for a certain length (L2) in the horizontal direction.
【請求項4】各導体片板は折れ曲がりの部分をカットす
る構成とした請求項3記載の電波シール装置。
4. The radio wave sealing device according to claim 3, wherein each of the conductor strips has a structure in which bent portions are cut.
JP5990491A 1991-03-25 1991-03-25 Electric wave sealing device Pending JPH04294092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5990491A JPH04294092A (en) 1991-03-25 1991-03-25 Electric wave sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5990491A JPH04294092A (en) 1991-03-25 1991-03-25 Electric wave sealing device

Publications (1)

Publication Number Publication Date
JPH04294092A true JPH04294092A (en) 1992-10-19

Family

ID=13126580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5990491A Pending JPH04294092A (en) 1991-03-25 1991-03-25 Electric wave sealing device

Country Status (1)

Country Link
JP (1) JPH04294092A (en)

Similar Documents

Publication Publication Date Title
EP0116648B1 (en) Radio-wave sealing device
JP2002532863A (en) Microwave oven with microwave seal
JPH04294092A (en) Electric wave sealing device
JP2949965B2 (en) Radio wave sealing device
JP2949915B2 (en) Radio wave sealing device
JPH04359893A (en) Electromagnetic wave sealing device
JPS59230291A (en) Radio wave sealing device
JPH06132078A (en) Radio wave seal device
JPH05129077A (en) Radio wave sealing device
JPH0567495A (en) Electric wave shield device
JPS61160997A (en) Radio wave sealing apparatus
JPS6316874B2 (en)
JPS599896A (en) Radio wave sealing device
JPS6259437B2 (en)
JPH05190275A (en) Radio wave seal device
JPS6316875B2 (en)
JPH06260278A (en) Radio wave seal device
JPH05144568A (en) Electric wave sealing device
JPH03219699A (en) Apparatus for sealing electromagnetic wave
JPS6070688A (en) Radio wave sealing device
JP2007315659A (en) High frequency heating device
JPS6315712B2 (en)
JPS59124198A (en) Radio wave sealing device
JPS61292893A (en) High frequency heater
JPH0136717B2 (en)