JPH04359068A - Carbon black producing furnace - Google Patents

Carbon black producing furnace

Info

Publication number
JPH04359068A
JPH04359068A JP3159692A JP15969291A JPH04359068A JP H04359068 A JPH04359068 A JP H04359068A JP 3159692 A JP3159692 A JP 3159692A JP 15969291 A JP15969291 A JP 15969291A JP H04359068 A JPH04359068 A JP H04359068A
Authority
JP
Japan
Prior art keywords
layer
zirconia
carbon black
furnace
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3159692A
Other languages
Japanese (ja)
Inventor
Fumio Takemura
文男 竹村
Katsuyuki Yamaguchi
山口 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3159692A priority Critical patent/JPH04359068A/en
Priority to KR1019920009147A priority patent/KR930000624A/en
Priority to FR9206721A priority patent/FR2681606A1/en
Publication of JPH04359068A publication Critical patent/JPH04359068A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/50Furnace black ; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To efficiently obtain carbon black having high specific surface area together with coloring force by lining a specific oxide-based ceramic refractory on a cooling cell of double cylinder structure made of a metal, in which a combustion zone on the upstream side of a crude oil inlet is provided with a heat exchange function. CONSTITUTION:The objective carbon black producing furnace obtained by lining (A) a zirconia/hafnia-based refractory obtained by subjecting a (partially) stabilized zirconia-based layer and hafnia-based layer containing an oxide of calcium or magnesium to solid solution binding in the boundary surface and having laminated two layer structure, (B) zirconia refractory material obtained by laminating and integrating a zirconia-based layer containing yttria and zirconia-based layer containing calcium oxide and having two layer structure and (C) alumina/yttria-based refractory material obtained by laminating and integrating an alumina layer and yttria layer and having two-layer structure on a cooling cell of double cylinder structure made of a metal, in which a combustion zone on the upstream side of a crude oil inlet is provided with heat exchange function, in the form of furnace in which combustion zone reaction zone having a small diameter and reaction stopping zone are provided in rows.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はカーボンブラックの製造
炉、とくに燃焼ガス温度を効果的に上昇させて高位の比
表面積と着色力を兼備するカーボンブラックを生産性よ
く熱分解生成させることができるカーボンブラック製造
炉に関する。
[Industrial Application Field] The present invention is a carbon black manufacturing furnace, and in particular, it is capable of effectively increasing the temperature of combustion gas to thermally decompose carbon black that has both a high specific surface area and coloring power with high productivity. Regarding a carbon black manufacturing furnace.

【0002】0002

【従来の技術】近時、自動車の高性能化はタイヤ部材に
も厳しい性能要求を課しており、例えばトラック、バス
等の大型タイヤに対しては耐摩耗性の向上が、また乗用
車用のハイパフォーマンスタイヤではグリップ性能の向
上が重要な課題となっている。これらの要求ゴム性能に
対応するためには、比表面積ならびに着色力の高いカー
ボンブラックを適用することが有効とされている。
[Prior Art] In recent years, the high performance of automobiles has placed strict performance requirements on tire components. For example, large tires for trucks, buses, etc. must have improved wear resistance, and Improving grip performance is an important issue for high-performance tires. In order to meet these required rubber performances, it is considered effective to use carbon black, which has a high specific surface area and high coloring power.

【0003】このような微粒子径で高着色力のカーボン
ブラックを製造する手段としては、燃焼ガス流の高速旋
回化、原料炭化水素油の高温熱分解化、原料油導入位置
におけるガスの高流速化といった事項が重要な条件因子
になることが知られている。例えば、米国特許第285
1337 号明細書には狭径化スロート部を備えるベン
チュリ型カーボンブラック製造炉において、原料油バー
ナーを前記スロート部の炉軸に対して直角方向に挿着し
て同部分の燃焼ガス流の線速度を150ft/sec(
46m/sec)以上、好ましくは200ft/sec
(61m/sec)から4000ft/sec(121
9m/sec) に設定し、かつ高温燃焼ガス流〔燃焼
フレーム温度2000〜3000°F(1093〜16
49℃) 〕と原料油との均一接触化を高めることが開
示されている。また、米国特許第3490867 号明
細書には、前記と同一構造のベンチュリ型カーボンブラ
ック製造炉をベースとし、2系列の炉頭燃焼室が収斂す
るベンチュリ前方の広域部入口に原料油注入ノズルを炉
軸方向に挿着する態様が示されており、この場合の狭径
スロート部の線流速は 300〜2600ft/sec
( 91〜792m/sec) 、好ましくは 450
〜1600ft/sec(137〜487m/sec)
 、燃焼ガス温度は3500〜2900°F(1929
〜1593℃) 、原料油導入後のスロート部出口温度
は3200〜2600°F(1760〜1427℃) 
に設定することが記載されている。
[0003]Means for producing carbon black with such a fine particle size and high coloring power include high-speed rotation of combustion gas flow, high-temperature pyrolysis of feedstock hydrocarbon oil, and high gas flow rate at the feedstock oil introduction position. It is known that such matters are important conditional factors. For example, U.S. Patent No. 285
No. 1337 describes a venturi-type carbon black production furnace equipped with a narrowed throat section, in which a feed oil burner is inserted in a direction perpendicular to the furnace axis of the throat section, and the linear velocity of the combustion gas flow in the throat section is adjusted. 150ft/sec (
46m/sec) or more, preferably 200ft/sec
(61m/sec) to 4000ft/sec (121m/sec)
9 m/sec), and high temperature combustion gas flow [combustion flame temperature 2000-3000°F (1093-16
49°C)] and the feedstock oil. Furthermore, U.S. Patent No. 3,490,867 discloses that a venturi-type carbon black manufacturing furnace having the same structure as the above is used, and a raw material oil injection nozzle is installed in the wide area inlet in front of the venturi where two series of furnace combustion chambers converge. A mode of insertion in the axial direction is shown, and in this case, the linear flow velocity at the narrow diameter throat portion is 300 to 2600 ft/sec.
(91-792m/sec), preferably 450
~1600ft/sec (137~487m/sec)
, combustion gas temperature is 3500-2900°F (1929
~1593°C), the throat outlet temperature after introducing the raw oil is 3200~2600°F (1760~1427°C)
It is stated that it should be set to .

【0004】しかしながら、燃焼ガス流の高速旋回化、
原料油導入点の高流速化などの物理的条件を実操業のカ
ーボンブラック製造炉に適用することは、多大のエネル
ギー供給設備が必要となるにも拘らず、それに見合う良
好な特性改善を期待することは困難である。
However, high-speed swirling of the combustion gas flow,
Applying physical conditions such as a high flow rate at the feedstock introduction point to a carbon black production furnace in actual operation requires a large amount of energy supply equipment, but it is expected that good property improvements will be commensurate with that. That is difficult.

【0005】これに対し、原料炭化水素油を高温熱分解
させることは装置的に特別なエネルギー設備を付加する
必要はなく、燃焼率を高めることによって可能になる。 ところが従来のカーボンブラック製造炉では、構築する
内張耐火材が最高温度部位でも耐火温度が約1900℃
のアルミナ質 (ハイアルミナ質または超高アルミナ質
) レンガが適用されているため、2000℃を越える
ような燃焼ガス流に接触させた場合には短時間内にスポ
ーリング、溶損などの現象が生じて炉操業ができなくな
る。
[0005] On the other hand, high-temperature pyrolysis of feedstock hydrocarbon oil does not require the addition of any special energy equipment, and is made possible by increasing the combustion rate. However, in conventional carbon black manufacturing furnaces, the refractory temperature of the lining refractory material used is approximately 1900°C even at the highest temperature part.
Since the brick is made of alumina (high alumina or ultra-high alumina), phenomena such as spalling and melting occur within a short period of time when it comes into contact with a combustion gas flow that exceeds 2000℃. This will cause the furnace to become unable to operate.

【0006】このため、炉壁周辺に相対的に低温の燃焼
ガス流を流通させたり、炉体を強制冷却する等の方法で
内張耐火炉材の保護を図る提案もある。例えば、米国特
許第4220624 号明細書には、ベンチュリ型カー
ボンブラック製造炉において炉頭部に接線方向に2系列
の予備燃焼室を設け、炉壁周辺側に補燃燃焼率150 
%の低温燃焼ガス流を、また炉中心部には補燃燃焼率1
00 %の高温燃焼ガス流を2層流として炉内に導入す
ることにより炉材を保護しながら高温燃焼ガスを生成さ
せるプロセスが開示されている。しかしながら、この方
法では均一な燃焼率の高温燃焼ガスを生成させることが
できない欠点がある。
[0006] For this reason, some proposals have been made to protect the refractory lining by methods such as circulating a relatively low-temperature combustion gas flow around the furnace wall or forcibly cooling the furnace body. For example, U.S. Pat. No. 4,220,624 discloses that in a venturi-type carbon black manufacturing furnace, two series of pre-combustion chambers are provided in the tangential direction at the furnace head, and a supplementary combustion chamber with a replenishment combustion rate of 150 is provided on the peripheral side of the furnace wall.
% low-temperature combustion gas flow, and a supplementary combustion rate of 1 in the center of the furnace.
A process is disclosed in which a high temperature combustion gas flow of 0.00% is introduced into the furnace as a two-layer flow to generate high temperature combustion gas while protecting the furnace material. However, this method has the disadvantage that it is not possible to generate high temperature combustion gas with a uniform combustion rate.

【0007】炉体を強制的に冷却する方法としては、カ
ーボンブラック製造炉の本体をスチール製の2筒構造と
し、内筒部分にレンガを内張したうえで二重筒間隙に空
気を導入して炉冷し、ここで予熱された空気を燃焼用空
気として循環使用するプロセス(米国特許第30877
96 号明細書) 、テーパー型カーボンブラック製造
炉の内張レンガ内にスチール製コイルを配置し、コイル
内に冷却水を送入するプロセス (米国特許第4619
812 号明細書) などが提案されている。
[0007] As a method for forcibly cooling the furnace body, the main body of the carbon black manufacturing furnace is made of two cylinders made of steel, the inner cylinder is lined with bricks, and air is introduced into the gap between the double cylinders. A process in which the preheated air is circulated and used as combustion air (U.S. Pat. No. 30877).
No. 96), a process in which a steel coil is placed inside the lining brick of a tapered carbon black production furnace and cooling water is fed into the coil (US Pat. No. 4619).
No. 812 Specification), etc. have been proposed.

【0008】[0008]

【発明が系決しようとする課題】前記の炉体を強制冷却
する方法は、内張耐火材のライフを効果的に延命化させ
ることができるが、炉構造としていずれもアルミナ質の
耐火レンガを炉本体に内張している関係で燃焼ガスの高
温水準に限度がある。そのうえ、アルミナ系レンガの内
張層の外壁側には、通常、アルミナ/シリカ系などの断
熱レンガを2〜3層設置する必要があるため、炉構築お
よび補修時における作業面や経済面の負担増のほか、断
熱層の蓄熱作用に基づく熱損失も避けられない。
[Problem to be solved by the invention] The method of forcibly cooling the furnace body described above can effectively extend the life of the refractory lining, but in both cases, the furnace structure uses alumina refractory bricks. There is a limit to the high temperature level of the combustion gas because it is lined inside the furnace body. Furthermore, it is usually necessary to install two to three layers of alumina/silica-based insulating bricks on the outer wall side of the alumina-based brick lining layer, which creates a work and economic burden during furnace construction and repair. In addition to the increase, heat loss due to the heat storage effect of the insulation layer is also unavoidable.

【0009】本発明の目的は、炉の燃焼域部分の外周面
を強制的に空冷する構造にするとともに2000℃以上
の高温度に耐える特定の酸化物系セラミックス耐火材で
内張する構造に設計することにより高温燃焼ガスの生成
と長期間に亘る安定操業を可能にし、よって高位の比表
面積ならびに着色力を兼備するカーボンブラックを操業
性よく製造できるカーボンブラック製造炉を提供するこ
とにある。
The object of the present invention is to provide a structure in which the outer peripheral surface of the combustion zone of the furnace is forcibly air-cooled, and is lined with a specific oxide-based ceramic refractory material that can withstand high temperatures of 2000°C or more. The purpose of the present invention is to provide a carbon black production furnace that can produce high-temperature combustion gas and operate stably over a long period of time, thereby producing carbon black with high specific surface area and coloring power with good operability.

【0010】0010

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるカーボンブラック製造炉は、燃料を燃
焼させて高温燃焼ガスを生成させる燃焼域と、引き続く
狭径部で高温燃焼ガス流に原料油を噴射導入し熱分解反
応によりカーボンブラックに転化させる反応域と、反応
ガスを急冷して熱分解反応を終結させる反応停止域とを
連設してなる炉形態において、原料油導入位置より上流
側の燃焼域部分が熱交換機能を備える金属製二重筒構造
の冷却セルに下記 (1)〜(3) のいずれかの酸化
物系セラミックス耐火材を内張して構成されてなること
を構造上の特徴とする。 (1) カルシウム、マグネシウム、イットリウムおよ
びセリウムの酸化物から選ばれた安定化剤の1種または
2種以上を含む部分安定化もしくは完全安定化したジル
コニア(ZrO2)質層ならびにハフニア(HfO2)
質層が境界面において固溶結合した積層二層構造のジル
コニア/ハフニア系耐火材。 (2) イットリア(Y2O3)を含む部分安定化もし
くは完全安定化したジルコニア質層と酸化カルシウム(
CaO) を含む部分安定化もしくは完全安定化したジ
ルコニア質層が積層一体化した二層構造のジルコニア耐
火材。 (3) アルミナ(Al2O3) 層とイットリア層と
が積層一体化した二層構造のアルミナ/イットリア系耐
火材。
[Means for Solving the Problems] A carbon black production furnace according to the present invention for achieving the above object has a combustion zone in which fuel is combusted to produce high-temperature combustion gas, and a subsequent narrow diameter section in which high-temperature combustion gas flows. In a furnace configuration consisting of a reaction zone where feedstock oil is injected into the reactor and converted into carbon black through a pyrolysis reaction, and a reaction stop zone where the reaction gas is rapidly cooled to terminate the pyrolysis reaction, the feedstock oil introduction position is The combustion zone part on the more upstream side consists of a metal double cylinder cooling cell with a heat exchange function, lined with one of the following oxide ceramic refractory materials (1) to (3). This is a structural feature. (1) Partially stabilized or fully stabilized zirconia (ZrO2) layer and hafnia (HfO2) containing one or more stabilizers selected from oxides of calcium, magnesium, yttrium, and cerium.
A zirconia/hafnia-based refractory material with a laminated two-layer structure in which the layers are solid-solution bonded at the interface. (2) Partially stabilized or fully stabilized zirconia layer containing yttria (Y2O3) and calcium oxide (
A zirconia refractory material with a two-layer structure consisting of partially or fully stabilized zirconia layers containing CaO). (3) An alumina/yttria-based refractory material with a two-layer structure in which an alumina (Al2O3) layer and an yttria layer are laminated and integrated.

【0011】本発明の第1の構成的要件は、前記の炉形
態において原料油導入位置より上流側の燃焼域部分の外
周を熱交換機能を備える金属製二重筒構造の冷却セルと
して構成する点にある。該冷却セルは、冷却媒体の送入
管および排出管を備えるスチール製のジャケット形態に
形成されるが、その仕様は耐火材内張層に接触するセル
面が溶融することがなく、かつ空気などの冷媒が効率よ
く熱交換されるよう管内流速などを勘案して適宜に設計
される。この際、セル内での局部加熱を生じさせないた
め、可及的にデッドスペースのない形状に設計すること
が好ましい。
The first structural requirement of the present invention is that in the above-mentioned furnace configuration, the outer periphery of the combustion zone portion upstream from the raw oil introduction position is configured as a cooling cell having a double cylinder structure made of metal and having a heat exchange function. At the point. The cooling cell is formed in the form of a steel jacket with an inlet pipe and a discharge pipe for the cooling medium, and its specifications are such that the cell surface in contact with the refractory lining layer will not melt and that air, etc. The pipe is designed appropriately, taking into account the flow velocity in the pipe, etc., so that the refrigerant can efficiently exchange heat. At this time, in order to prevent local heating within the cell, it is preferable to design the shape to have as little dead space as possible.

【0012】また、冷却媒体を空気もしくは酸素富化空
気とし、冷却セル内に送入され熱交換機能により熱せら
れたこれら媒体を燃料油の支燃ガスとして使用できるよ
うに、冷却媒体の排出管から燃料油供給系統に至る循環
経路を設置しておくことで燃焼効率を一層高めることが
できる。
[0012] In addition, the cooling medium is air or oxygen-enriched air, and a cooling medium discharge pipe is provided so that the medium, which is fed into the cooling cell and heated by the heat exchange function, can be used as combustion supporting gas for fuel oil. Combustion efficiency can be further increased by installing a circulation path from the fuel oil supply system to the fuel oil supply system.

【0013】本発明における第2の構成要素は、前記冷
却セルの内面に内張するレンガを特定のジルコニア/ハ
フニア系耐火材、ジルコニア耐火材およびアルミナ/イ
ットリア系耐火材から選択されたいずれかの酸化物系セ
ラミックス耐火材で構成する点にある。この酸化物系セ
ラミックス耐火材による内張は単一層で形成することが
でき、外周面に断熱レンガ層を設置する必要はない。な
お、燃焼域よりも下流側の反応域および反応停止域は、
常用のアルミナ系耐火レンガで内張構成される。
A second component of the present invention is that the bricks lining the inner surface of the cooling cell are made of any one selected from a specific zirconia/hafnia refractory material, a zirconia refractory material, and an alumina/yttria refractory material. It consists of an oxide-based ceramic refractory material. The lining made of this oxide-based ceramic refractory material can be formed in a single layer, and there is no need to install an insulating brick layer on the outer peripheral surface. In addition, the reaction zone and reaction termination zone downstream of the combustion zone are as follows:
The lining is made of commonly used alumina firebrick.

【0014】内張耐火材として選択使用される酸化物系
セラミックスのうちジルコニア/ハフニア系耐火材は、
ジルコニアおよびハフニアを部分安定化または完全安定
化させた電融塊の粉砕または微粉体の造粒化、仮焼等に
よって粒度調整した原料に成形バインダーを添加してジ
ルコニア質層とハフニア質層が二層を形成するように一
体積層成形したのち1500℃以上の温度で焼結する方
法によって製造することができ、ハフニア質層が炉内面
に露出する状態で冷却セルに内張される。該ジルコニア
/ハフニア系耐火材については、特願平1−33983
1号明細書に詳細に記載されている。
Among the oxide ceramics that are selectively used as lining refractories, zirconia/hafnia refractories are:
A molding binder is added to the raw material whose particle size has been adjusted by pulverizing a partially or completely stabilized electro-fused ingot of zirconia and hafnia, granulation of fine powder, calcining, etc. to form a zirconia layer and a hafnia layer. It can be manufactured by a method in which one layer is molded to form a layer and then sintered at a temperature of 1500° C. or higher, and a cooling cell is lined with the hafnia layer exposed on the inner surface of the furnace. Regarding the zirconia/hafnia-based refractory material, Japanese Patent Application No. 1-33983
It is described in detail in the specification of No. 1.

【0015】ジルコニア耐火材は、イットリアを含む部
分安定化もしくは完全安定化したジルコニア質組成物お
よび酸化カルシウムを含む部分安定もしくは完全安定化
したジルコニア質組成物を所定の層厚、形状に積層され
る状態に一体成形したのち、1500℃以上の温度で焼
結する方法により製造することができ、イットリア含有
ジルコニア質層が炉内面に露出するように冷却セルに内
張される。このジルコニア系耐火材については、特願平
1−339829号明細書に詳細に記載されている。
The zirconia refractory material is made by laminating a partially stabilized or fully stabilized zirconia composition containing yttria and a partially stabilized or fully stabilized zirconia composition containing calcium oxide in a predetermined layer thickness and shape. It can be manufactured by a method in which the yttria-containing zirconia layer is integrally formed into a shape and then sintered at a temperature of 1500° C. or higher, and a cooling cell is lined with the yttria-containing zirconia layer exposed on the inner surface of the furnace. This zirconia-based refractory material is described in detail in Japanese Patent Application No. 1-339829.

【0016】また、アルミナ/イットリア系耐火材は、
粒度調整したアルミナおよびイットリアの粉粒体を空気
中で仮焼し、各粉粒体にバインダー成分を混練したのち
アルミナ成分とイットリア成分を順次に成形型中に積層
充填し、ついで成形体を1500℃以上の温度で焼結す
る方法で製造され、イットリア層が炉内面に露出するよ
うに冷却セルに内張される。このアルミナ/イットリア
系耐火材については、特願平1−339830号明細書
に詳細に記載されている。
[0016] Furthermore, the alumina/yttria-based refractory material is
Alumina and yttria powder particles whose particle size has been adjusted are calcined in air, and after kneading a binder component into each powder particle, the alumina component and yttria component are sequentially stacked and filled into a mold, and then the compact is heated to 1500 ml. It is manufactured using a method of sintering at temperatures above ℃ and is lined in a cooling cell so that the yttria layer is exposed on the inner surface of the furnace. This alumina/yttria-based refractory material is described in detail in Japanese Patent Application No. 1-339830.

【0017】[0017]

【作用】従来のカーボンブラック製造炉において燃焼域
部分に内張されているアルミナ質レンガ(ハイアルミナ
または超高アルミナ)は約1900℃に耐火限界があり
これ以上の燃焼ガスと接触した場合、溶損現象を生じて
劣化する。本発明において燃焼域部分の内張レンガとし
て選択使用する酸化物系セラミックス耐火材は、200
0℃を越える耐火温度と優れた耐スポーリング性を有し
ている。 このため、燃焼域で生成される燃焼ガスの温度が200
0℃を上廻る場合であっても、長期間に亘り安定な使用
状態が確保される。
[Operation] The alumina bricks (high alumina or ultra-high alumina) lined in the combustion zone of conventional carbon black manufacturing furnaces have a fire resistance limit of approximately 1900°C, and if they come into contact with combustion gas above this temperature, they will melt. It causes loss phenomenon and deteriorates. In the present invention, the oxide ceramic refractory material selected as the lining brick for the combustion zone is
It has a fire resistance temperature exceeding 0°C and excellent spalling resistance. For this reason, the temperature of the combustion gas generated in the combustion zone is 200%
Even when the temperature exceeds 0°C, stable usage conditions are ensured for a long period of time.

【0018】そのうえ、本発明で使用する酸化物系セラ
ミックス耐火材はいずれも高融点に加えて熱伝導率が低
い特徴があり、レンガの厚み方向における温度勾配が大
きくなる。このため、アルミナ質レンガに比べて一定の
温度勾配を持たせるための肉厚を薄くすることができる
から、これを直接に金属製二重筒構造の冷却セル内面に
内張して強制冷却する構造とすることにより、金属筒の
過熱溶融などの事態が生じることのない軽量でコンパク
トな燃焼ゾーンを形成することが可能となる。また、冷
却セル内を流通する冷却媒体として空気もしくは酸素富
化空気を使用し、その熱交換作用で予熱された前記の媒
体を支燃ガスとして循環利用するような構造設計とする
ことにより、燃料油の燃焼促進および高温化に有効機能
させることができる。
Furthermore, all of the oxide ceramic refractories used in the present invention have a high melting point and low thermal conductivity, resulting in a large temperature gradient in the thickness direction of the brick. For this reason, compared to alumina bricks, the wall thickness can be made thinner to maintain a constant temperature gradient, and this material is directly lined with the inner surface of a cooling cell with a double metal cylinder structure for forced cooling. With this structure, it is possible to form a lightweight and compact combustion zone in which situations such as overheating and melting of the metal cylinder do not occur. In addition, by using air or oxygen-enriched air as the cooling medium flowing in the cooling cell, and by using a structural design that uses the medium preheated by the heat exchange effect as a combustion-supporting gas, the fuel It can effectively function to promote the combustion of oil and raise the temperature.

【0019】上記の作用を介して、効率的かつ安定した
操業条件下で高度の比表面積ならびに着色力を兼備する
カーボンブラックを製造することが可能となる。
Through the above-mentioned effects, it is possible to produce carbon black having both a high specific surface area and a high coloring power under efficient and stable operating conditions.

【0020】[0020]

【実施例】【Example】

実施例1 炉頭部に炉軸方向の燃焼バーナーを備える内径500m
m 、外径530mm 、長さ500mm のスチール
製二重筒構造の冷却セルの内面に肉厚70mmの酸化物
系セラミックス耐火レンガを内張して燃焼域を形成し、
この燃焼域に原料油導入ノズルを備える内径60mm、
長さ200mm の狭径スロート状反応域および後部に
クエンチ装置を備えた内径100mm 、長さ1000
mmの反応停止域を連設してカーボンブラック製造炉を
設置した。この際、冷却セルの排出管を燃焼室に連結し
て予熱された冷却媒体は全量が支燃ガスとして消費する
循環経路に設計した。
Example 1 Furnace head equipped with combustion burners in the axial direction of the furnace, inner diameter 500 m
m, an outer diameter of 530 mm, a length of 500 mm, a steel double cylinder structure cooling cell is lined with 70 mm thick oxide ceramic refractory bricks to form a combustion zone,
An inner diameter of 60 mm, equipped with a raw oil introduction nozzle in this combustion area,
100 mm inner diameter, 1000 mm length with a narrow throat reaction zone of 200 mm length and a quench device at the rear.
A carbon black production furnace was installed with a continuous reaction stop zone of mm. At this time, the exhaust pipe of the cooling cell was connected to the combustion chamber, and the preheated cooling medium was designed in a circulation path where the entire amount was consumed as combustion-supporting gas.

【0021】酸化物系セラミックス耐火レンガとしては
、イットリアを安定化剤としたジルコニア質層(60m
m)とハフニア質層(10mm)を固溶結合した積層二
層構造のジルコニア/ハフニア系のものを用い、ハフニ
ア質層を炉内露出面として原料導入位置を含む燃焼域部
分の冷却セルに内張した。それより下流側の炉本体は通
常の高アルミナ質レンガを用いて構成した。
[0021] As the oxide ceramic refractory brick, a zirconia layer (60 m
Using a zirconia/hafnia-based material with a laminated two-layer structure in which a hafnia layer (10 mm) is bonded with solid solution, the hafnia layer is placed inside the cooling cell in the combustion area including the raw material introduction position, with the hafnia layer as the exposed surface in the furnace. I tensed. The furnace body on the downstream side was constructed using ordinary high alumina bricks.

【0022】燃料にはプロパンを用いて燃焼バーナーか
ら供給し、冷却セルの冷却媒体には酸素富化空気を用い
た。原料油は、外部混合型の導入ノズル(2本)を介し
て周辺から霧化用窒素ガスとともに燃焼ガス流に対し放
射状に霧化噴射した。反応停止用のクエンチは、反応停
止域の入口から900mm 下流の位置にセットした。 原料油としては、比重(15/4 ℃)1.046、ト
ルエン不溶分0.14%、相関係数(BMCI)134
、硫黄分 0.1%、初留点 195℃、Naイオン3
.0ppm、Kイオン0.3ppmの芳香族炭化水素油
を用いた。
Propane was used as a fuel and supplied from a combustion burner, and oxygen-enriched air was used as a cooling medium for the cooling cell. The feedstock oil was atomized and injected radially into the combustion gas stream from the periphery together with atomizing nitrogen gas through external mixing type introduction nozzles (two). A quench for stopping the reaction was set at a position 900 mm downstream from the entrance of the reaction stopping area. The raw material oil has a specific gravity (15/4 °C) of 1.046, a toluene insoluble content of 0.14%, and a correlation coefficient (BMCI) of 134.
, sulfur content 0.1%, initial boiling point 195℃, Na ion 3
.. An aromatic hydrocarbon oil containing 0 ppm of K ions and 0.3 ppm of K ions was used.

【0023】上記の製造炉を用いて製造したカーボンブ
ラックの特性を製造条件と対比させて表1に示した。
Table 1 shows the characteristics of carbon black produced using the above-mentioned production furnace in comparison with the production conditions.

【0024】実施例2 酸化物系セラミックス耐火レンガをイットリアを含む安
定化率90%のジルコニア質層(10mm)と酸化カル
シウムを含む安定化率84%のジルコニア質層(60m
m)を積層一体化した二層構造のジルコニアに代え、イ
ットリア含有ジルコニア質層を炉内露出面として原料油
導入位置を含む燃焼域部分の冷却セルに内張した。その
他は全て実施例1と同一炉形状の製造炉を用いてカーボ
ンブラックを製造し、得られたカーボンブラックの特性
を製造条件と対比させて表1に併載した。
Example 2 Oxide-based ceramic refractory bricks were prepared using a zirconia layer containing yttria with a stabilization rate of 90% (10 mm) and a zirconia layer containing calcium oxide with a stabilization rate of 84% (60 mm).
Instead of using zirconia with an integrated two-layer structure in the case of m), an yttria-containing zirconia layer was used as an exposed surface in the furnace to line the cooling cell in the combustion area including the raw oil introduction position. Carbon black was manufactured using a manufacturing furnace having the same furnace shape as in Example 1 in all other respects, and the characteristics of the obtained carbon black are listed in Table 1 in comparison with the manufacturing conditions.

【0025】実施例3 酸化物系セラミックス耐火レンガをアルミナ層(50m
m)とイットリア層(20mm)を積層一体化した二層
構造のアルミナ/イットリア系耐火材に代え、イットリ
ア層を炉内露出面として原料油導入位置を含む燃焼域部
分の冷却セルに内張した。その他は全て実施例1と同一
炉形状の製造炉を用いてカーボンブラックを製造し、得
られたカーボンブラックの特性を製造条件と対比させて
表1に併載した。
Example 3 An oxide ceramic refractory brick was coated with an alumina layer (50 m
Instead of using a two-layer alumina/yttria refractory material that has a laminated and integrated yttria layer (m) and a yttria layer (20 mm), the yttria layer was used as an exposed surface inside the furnace to line the cooling cell in the combustion zone, including the raw oil introduction position. . Carbon black was manufactured using a manufacturing furnace having the same furnace shape as in Example 1 in all other respects, and the characteristics of the obtained carbon black are listed in Table 1 in comparison with the manufacturing conditions.

【0026】比較例1 燃焼室を肉厚200mm の高アルミナ質耐火レンガ(
耐火・断熱3層構造)を用いて内径400mm 、外径
800mm 長さ500mm の形状とし、冷却セルを
設置しない構造とした。その他は実施例1と同一炉形態
の製造炉を用いてカーボンブラックを製造し、得られた
カーボンブラックの特性を製造条件と対比させて表1に
併載した。
Comparative Example 1 The combustion chamber was made of high alumina refractory bricks with a wall thickness of 200 mm (
It was constructed using a fireproof/insulating three-layer structure, with an inner diameter of 400 mm, an outer diameter of 800 mm, and a length of 500 mm, with no cooling cell installed. Other than that, carbon black was manufactured using a manufacturing furnace having the same furnace configuration as in Example 1, and the characteristics of the obtained carbon black are listed in Table 1 in comparison with the manufacturing conditions.

【0027】[0027]

【0028】表1の結果から、本発明の要件を満たす実
施例1〜3は比較例1に比べて高温燃焼ガス下での安定
した熱分解反応が可能となるため、定窒素吸着比表面積
当たりの着色力、24M4DBPなどの特性が相対的に
増大していることが認められる。また、各実施例のカー
ボンブラック製造炉は、操業後において炉壁に溶損、亀
裂などの形跡は確認されず、冷却セルの部分にも損傷は
なかった。
From the results in Table 1, Examples 1 to 3 that meet the requirements of the present invention enable a more stable thermal decomposition reaction under high-temperature combustion gas than Comparative Example 1. It is recognized that the properties such as coloring strength and 24M4DBP are relatively increased. Further, in the carbon black production furnaces of each example, no evidence of melting damage or cracks was observed on the furnace walls after operation, and no damage was found in the cooling cells.

【0029】[0029]

【発明の効果】以上のとおり、本発明のカーボンブラッ
ク製造炉を用いれば2000℃以上の燃焼ガスを生成す
ることができ、かつ安定した炉操業をおこなうことがで
きるから、高い24M4DBPと着色力を兼備する高品
質のカーボンブラックを効率よく製造することができる
。したがって、高耐摩耗性が要求される大型タイヤ、優
れたグリップ性能が必要な乗用車ハイパフォーマンスタ
イヤ、高級カラー用などを目的としたカーボンブラック
の製造炉として極めて有用である。
[Effects of the Invention] As described above, by using the carbon black production furnace of the present invention, it is possible to generate combustion gas of 2000°C or higher, and to operate the furnace stably, resulting in high 24M4DBP and coloring power. High quality carbon black can be efficiently produced. Therefore, it is extremely useful as a carbon black production furnace for large tires that require high wear resistance, high-performance tires for passenger cars that require excellent grip performance, and high-grade color tires.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  燃料を燃焼させて高温燃焼ガスを生成
させる燃焼域と、引き続く狭径部で高温燃焼ガス流に原
料油を噴射導入し熱分解反応によりカーボンブラックに
転化させる反応域と、反応ガスを急冷して熱分解反応を
終結させる反応停止域とを連設してなる炉形態において
、原料油導入位置より上流側の燃焼域部分が熱交換機能
を備える金属製二重筒構造の冷却セルに下記 (1)〜
(3)のいずれかの酸化物系セラミックス耐火材を内張
して構成されていることを特徴とするカーボンブラック
製造炉。 (1) カルシウム、マグネシウム、イットリウムおよ
びセリウムの酸化物から選ばれた安定化剤の1種または
2種以上を含む部分安定化もしくは完全安定化したジル
コニア(ZrO2)質層ならびにハフニア(HfO2)
質層が境界面において固溶結合した積層二層構造のジル
コニア/ハフニア系耐火材。 (2) イットリア(Y2O3)を含む部分安定化もし
くは完全安定化したジルコニア質層と酸化カルシウム(
CaO) を含む部分安定化もしくは完全安定化したジ
ルコニア質層が積層一体化した二層構造のジルコニア耐
火材。 (3) アルミナ(Al2O3) 層とイットリア層と
が積層一体化した二層構造のアルミナ/イットリア系耐
火材。
Claim 1: A combustion zone in which fuel is combusted to produce high-temperature combustion gas, a reaction zone in which feedstock oil is injected into the high-temperature combustion gas stream in a subsequent narrow diameter section and converted into carbon black by a pyrolysis reaction, In a furnace configuration consisting of a reaction stop zone that rapidly cools the gas and terminates the thermal decomposition reaction, the combustion zone upstream of the feedstock oil introduction position has a metal double cylinder structure with a heat exchange function. In the cell below (1) ~
A carbon black manufacturing furnace characterized in that it is lined with the oxide ceramic refractory material according to any one of (3). (1) Partially stabilized or fully stabilized zirconia (ZrO2) layer and hafnia (HfO2) containing one or more stabilizers selected from oxides of calcium, magnesium, yttrium, and cerium.
A zirconia/hafnia-based refractory material with a laminated two-layer structure in which the layers are solid-solution bonded at the interface. (2) Partially stabilized or fully stabilized zirconia layer containing yttria (Y2O3) and calcium oxide (
A zirconia refractory material with a two-layer structure consisting of partially or fully stabilized zirconia layers containing CaO). (3) An alumina/yttria-based refractory material with a two-layer structure in which an alumina (Al2O3) layer and an yttria layer are laminated and integrated.
【請求項2】  冷却セル内に冷却媒体として空気もし
くは酸素富化空気を流入し、熱交換機能により予熱され
た空気もしくは酸素富化空気を燃料油の支燃ガスとして
使用する循環経路を備える請求項1記載のカーボンブラ
ック製造炉。
Claim 2: A claim comprising a circulation path for flowing air or oxygen-enriched air as a cooling medium into the cooling cell and using the air or oxygen-enriched air preheated by a heat exchange function as a combustion supporting gas for fuel oil. Item 1. Carbon black production furnace according to item 1.
JP3159692A 1991-06-04 1991-06-04 Carbon black producing furnace Pending JPH04359068A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3159692A JPH04359068A (en) 1991-06-04 1991-06-04 Carbon black producing furnace
KR1019920009147A KR930000624A (en) 1991-06-04 1992-05-28 Cavan black manufacturing furnace
FR9206721A FR2681606A1 (en) 1991-06-04 1992-06-03 Furnace for producing carbon black

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159692A JPH04359068A (en) 1991-06-04 1991-06-04 Carbon black producing furnace

Publications (1)

Publication Number Publication Date
JPH04359068A true JPH04359068A (en) 1992-12-11

Family

ID=15699236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159692A Pending JPH04359068A (en) 1991-06-04 1991-06-04 Carbon black producing furnace

Country Status (3)

Country Link
JP (1) JPH04359068A (en)
KR (1) KR930000624A (en)
FR (1) FR2681606A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080293C (en) * 1995-07-27 2002-03-06 三菱化学株式会社 process for production of black pigment
KR100312609B1 (en) * 1994-07-23 2002-09-04 코리아카본블랙 주식회사 Reactor for producing carbon black
CN104400330A (en) * 2014-10-11 2015-03-11 石家庄市新星化炭有限公司 Processing method of full steel pipe protected by refractory material
CN108751956A (en) * 2018-07-10 2018-11-06 哈尔滨工业大学 A kind of method that alumina conbustion synthesis chilling method prepares alumina base amorphous and solid solution ceramic micron powder mixture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1285183A (en) * 1961-03-31 1962-02-16 United Carbon Company Inc Preparation of carbon black
US4040792A (en) * 1976-07-06 1977-08-09 Continental Carbon Company Gas burner for carbon black reactor
US4822588A (en) * 1985-07-26 1989-04-18 Phillips Petroleum Company Process for producing carbon black

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100312609B1 (en) * 1994-07-23 2002-09-04 코리아카본블랙 주식회사 Reactor for producing carbon black
CN1080293C (en) * 1995-07-27 2002-03-06 三菱化学株式会社 process for production of black pigment
CN104400330A (en) * 2014-10-11 2015-03-11 石家庄市新星化炭有限公司 Processing method of full steel pipe protected by refractory material
CN108751956A (en) * 2018-07-10 2018-11-06 哈尔滨工业大学 A kind of method that alumina conbustion synthesis chilling method prepares alumina base amorphous and solid solution ceramic micron powder mixture
CN108751956B (en) * 2018-07-10 2021-12-21 哈尔滨工业大学 Method for preparing alumina-based amorphous and solid solution ceramic micron powder mixture by aluminum oxide combustion synthesis quenching method

Also Published As

Publication number Publication date
KR930000624A (en) 1993-01-15
FR2681606A1 (en) 1993-03-26

Similar Documents

Publication Publication Date Title
CN102041098B (en) Fixed bed slag gasification furnace
US4077614A (en) Steelmaking apparatus
CN1171068C (en) Multiple oxygen enrichment in kiln
JP2013527278A (en) Carbon black reactor
JPH04359068A (en) Carbon black producing furnace
US3307616A (en) Method of protecting a heat-resistant element from hot media
KR100737335B1 (en) Method and apparatus for producing carbon black, and method and apparatus for burning in furnace
Guzman Highly refractory porous ceramics
CN101939607A (en) Improved burning system
JP2976209B2 (en) Carbon black production furnace
US4559312A (en) Sintering or reaction sintering process for ceramic or refractory materials using plasma arc gases
KR100817111B1 (en) Ladle preheating oxygen-enriched burner
JPH059404A (en) Preparation of carbon black
JPS6353152B2 (en)
JP4904629B2 (en) Carbon black manufacturing apparatus and manufacturing method, furnace combustion apparatus and furnace combustion method
JP2003301123A (en) Yttria refractory-lined carbon black production furnace
CN1186927A (en) Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
CN102235827B (en) Method for cooling furnace kiln
JP2885630B2 (en) Flame spray material
JP2000053882A (en) Carbon black production furnace and production of carbon black
CA1044466A (en) Steelmaking process and apparatus
JPS59107982A (en) Highly antispalling zirconia refractories
JP2004203957A (en) Carbon black-producing installation and method for producing the carbon black
JP3024971B1 (en) Flame sprayed material containing coarse particles
Goto et al. Development of refractory technology