JPH04357323A - Holder for anti-friction bearing - Google Patents

Holder for anti-friction bearing

Info

Publication number
JPH04357323A
JPH04357323A JP12909391A JP12909391A JPH04357323A JP H04357323 A JPH04357323 A JP H04357323A JP 12909391 A JP12909391 A JP 12909391A JP 12909391 A JP12909391 A JP 12909391A JP H04357323 A JPH04357323 A JP H04357323A
Authority
JP
Japan
Prior art keywords
diameter
corners
pockets
cage
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12909391A
Other languages
Japanese (ja)
Other versions
JP3001288B2 (en
Inventor
Tadahiro Terada
忠弘 寺田
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15000903&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04357323(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP12909391A priority Critical patent/JP3001288B2/en
Publication of JPH04357323A publication Critical patent/JPH04357323A/en
Application granted granted Critical
Publication of JP3001288B2 publication Critical patent/JP3001288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages

Abstract

PURPOSE:To relax stress concentration to corners of pockets, and improve the mechanical characteristic of a holder for anti-friction bearing made of the material including nylon and reinforced fiber by forming corners of pockets for holding a rotating member into a shape turned by jointing curved surface. CONSTITUTION:In a holder 1 for anti-friction bearing made of a material including nylon 46 as a resin component and reinforced fiber at 20-40weight%, multiple rectangular pockets 11... having a thickness smaller than the diameter of a needle roll to be held are turned by passing through at equal intervals. In this case, all corners 11a of each pocket 11 are formed into a shape formed by jointing the curved surface R (radius at about 0.3-0.5mm). As reinforcing fibers, glass fibers each having a diameter at 8-12mum are preferably used. Furthermore, it is desirable to include iron oxide fine powder, in which occupancy ratio of the particles having a diameter of 1mum or less is 85% or more, as inorganic filling material. Mechanical characteristic of the bolder for anti-friction bearing is thereby improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、転がり軸受用の保持器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cage for rolling bearings.

【0002】0002

【従来の技術と発明が解決しようとする課題】従来、上
記保持器として、金属製のものに比べて軽量で、しかも
機械的特性に優れたナイロン66製のものが多用されて
いる。しかし、上記ナイロン66は、特に、自動車のト
ランスミッションの転がり軸受等において、高温の潤滑
油中で使用する際の耐性(耐油性)が不十分であった。
[Prior Art and Problems to be Solved by the Invention] Conventionally, as the above-mentioned cages, those made of nylon 66, which are lighter than those made of metal and have excellent mechanical properties, have been frequently used. However, the above-mentioned nylon 66 has insufficient resistance (oil resistance) when used in high-temperature lubricating oil, especially in rolling bearings of automobile transmissions.

【0003】ナイロン66よりも耐油性に優れたナイロ
ン46の使用が検討されたが、このナイロン46は、成
形条件や金型形状等により、射出成形品に配向による不
具合が生じて、引張強度等の機械的特性が悪化し易いと
いう問題があった。たとえば、図3に示す針状ころ軸受
用保持器9の場合には、ナイロン46の配向による不具
合が生じると、応力が集中する矩形状のポケット91,
91…の隅部91a,91a…から破断し易くなるとい
う問題があった。
[0003] The use of nylon 46, which has better oil resistance than nylon 66, has been considered, but this nylon 46 causes orientation problems in injection molded products depending on the molding conditions and mold shape, resulting in poor tensile strength, etc. There was a problem in that the mechanical properties of the steel tend to deteriorate. For example, in the case of the needle roller bearing retainer 9 shown in FIG.
There was a problem in that it was easy to break from the corners 91a, 91a... of 91....

【0004】そこで、本発明者らは、種々の添加剤につ
いて検討を行い、エチレンプロピレンゴム等のエラスト
マーを配合すれば、機械的特性の低下を防止できること
を見出して、先の出願を行った(特開平2−13441
3号公報参照)。しかし、エラストマーを配合した場合
には、耐熱性が若干低下するという問題があった。本発
明は、以上の事情に鑑みてなされたものであって、耐油
性、耐熱性、機械的特性ともに優れた転がり軸受用保持
器を提供することを目的としている。
[0004] Therefore, the present inventors investigated various additives and found that by incorporating an elastomer such as ethylene propylene rubber, it was possible to prevent the deterioration of mechanical properties, and filed the previous application ( JP-A-2-13441
(See Publication No. 3). However, when an elastomer is blended, there is a problem in that heat resistance is slightly lowered. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cage for rolling bearings that is excellent in oil resistance, heat resistance, and mechanical properties.

【0005】[0005]

【課題を解決するための手段および作用】上記課題を解
決するための、本発明の転がり軸受用保持器は、樹脂成
分としてのナイロン46と、20〜40重量%の強化繊
維とを含有してなる転がり軸受用保持器において、転動
体保持用のポケットの隅部が曲面で繋がれていることを
特徴とする。
[Means and effects for solving the problems] To solve the above problems, the rolling bearing cage of the present invention contains nylon 46 as a resin component and 20 to 40% by weight of reinforcing fibers. This rolling bearing cage is characterized in that the corners of the pockets for holding rolling elements are connected by curved surfaces.

【0006】強化繊維としては、直径8〜12μmのガ
ラス繊維が好適に使用される。また、上記転がり軸受用
保持器に使用される無機充填材としては、粒径1μm以
下の粒子の占める割合が85%以上である酸化鉄微粉末
が好ましい。上記構成からなる、本発明の転がり軸受用
保持器においては、応力の集中し易いポケットの隅部が
曲面で繋がれて補強されているとともに、この部分への
応力集中が緩和されているため、エラストマーを配合す
ることなしに、機械的特性を向上できる。
Glass fibers having a diameter of 8 to 12 μm are preferably used as the reinforcing fibers. Further, as the inorganic filler used in the above-mentioned rolling bearing cage, it is preferable to use iron oxide fine powder in which the proportion of particles with a particle size of 1 μm or less is 85% or more. In the rolling bearing retainer of the present invention having the above configuration, the corners of the pockets where stress tends to concentrate are connected and reinforced by curved surfaces, and the stress concentration in these parts is alleviated. Mechanical properties can be improved without adding an elastomer.

【0007】本発明の保持器の一例としての、針状ころ
軸受用の保持器1を図1に示す。上記保持器1は、保持
される針状ころの直径よりも肉厚の薄い円筒体からなり
、その周囲に、針状ころが挿入保持される複数の矩形状
のポケット11,11…が、等間隔に貫通形成されてい
る。そして、各ポケット11,11…の隅部11a,1
1a…が、曲面R,R…で繋がれている。各曲面Rの半
径は、特に限定されないが、0.3〜0.5mmの範囲
内であることが好ましい。曲面Rの半径が0.3mm未
満では、当該曲面Rを設ける効果が不十分で、隅部から
破断が生じ易くなるおそれがあり、逆に、曲面Rの半径
が0.5mmを上回ると、ころ詰まりを起こすおそれが
ある。
FIG. 1 shows a cage 1 for a needle roller bearing as an example of the cage of the present invention. The cage 1 is made of a cylindrical body whose wall thickness is thinner than the diameter of the needle rollers to be held, and around the cylindrical body, there are a plurality of rectangular pockets 11, 11, etc. into which the needle rollers are inserted and held. Penetrations are formed at intervals. Then, the corners 11a, 1 of each pocket 11, 11...
1a... are connected by curved surfaces R, R... The radius of each curved surface R is not particularly limited, but is preferably within the range of 0.3 to 0.5 mm. If the radius of the curved surface R is less than 0.3 mm, the effect of providing the curved surface R is insufficient, and there is a risk that breakage will occur easily from the corner. Conversely, if the radius of the curved surface R exceeds 0.5 mm, the roller There is a risk of clogging.

【0008】上記保持器1を構成する樹脂成分としては
、前述したように、ナイロン46、すなわち、1,4−
ジアミノブタンとアジピン酸との反応生成物である、下
記一般式(I) で表される化合物が使用される。
As mentioned above, the resin component constituting the cage 1 is nylon 46, that is, 1,4-
A compound represented by the following general formula (I), which is a reaction product of diaminobutane and adipic acid, is used.

【0009】[0009]

【化1】[Chemical formula 1]

【0010】上記ナイロン46は、前述したように、ナ
イロン66よりも耐油性に優れる上、発明者らの検討に
よれば、ポケット11の隅部11aを曲面Rで繋いだ場
合の強度上昇も、ナイロン66より優れていることが判
明した。上記ナイロン46とともに保持器1に含有され
る強化繊維としては、直径8〜12μmのガラス繊維が
好適に使用される。
As mentioned above, nylon 46 has better oil resistance than nylon 66, and according to studies by the inventors, the strength increases when the corners 11a of the pockets 11 are connected by the curved surface R. It was found to be superior to nylon 66. As the reinforcing fibers contained in the cage 1 together with the nylon 46, glass fibers having a diameter of 8 to 12 μm are preferably used.

【0011】ガラス繊維の直径が8μm未満では、単位
重量当たりのガラス繊維の本数が多くなり、ナイロン4
6との接着面積が増加するので、初期の補強効果は増大
する。しかし、高温の潤滑油中での使用により、上記ナ
イロン46とガラス繊維との界面に油が浸透して両者の
接着が剥離される際の剥離面積が大きいため、強度低下
が著しく大きくなるおそれがある。
[0011] When the diameter of the glass fiber is less than 8 μm, the number of glass fibers per unit weight increases, and nylon 4
6 increases, the initial reinforcing effect increases. However, when used in high-temperature lubricating oil, the oil penetrates the interface between the nylon 46 and glass fiber, and when the bond between the two is peeled off, the peeled area is large, so there is a risk of a significant decrease in strength. be.

【0012】一方、ガラス繊維の直径が12μmを超え
ると、単位重量当たりのガラス繊維の本数が少なくなり
、ナイロン46との接着面積が減少するので、油の浸透
による剥離の影響は低下するが、初期の補強効果が不十
分になるおそれがある。ガラス繊維の長さについては特
に限定されず、従来と同程度(200〜300μm程度
)であればよい。
On the other hand, when the diameter of the glass fiber exceeds 12 μm, the number of glass fibers per unit weight decreases, and the adhesion area with nylon 46 decreases, so the effect of peeling due to oil penetration decreases; There is a possibility that the initial reinforcing effect will be insufficient. The length of the glass fiber is not particularly limited, and may be the same length as the conventional one (about 200 to 300 μm).

【0013】上記ガラス繊維以外に、本発明に使用でき
る強化繊維としては、炭素繊維、繊維状の珪灰石(ウォ
ラストナイト)、炭化ケイ素繊維、ボロン繊維、アルミ
ナ繊維、Si−Ti−C−O繊維、金属繊維(銅、鋼、
ステンレス鋼等)、芳香族ポリアミド(アラミド)繊維
、チタン酸カリウムウイスカー、グラファイトウイスカ
ー、炭化ケイ素ウイスカー、窒化ケイ素ウイスカー、ア
ルミナウイスカー等が例示される。
In addition to the above glass fibers, reinforcing fibers that can be used in the present invention include carbon fibers, fibrous wollastonite, silicon carbide fibers, boron fibers, alumina fibers, and Si-Ti-C-O. Fibers, metal fibers (copper, steel,
(stainless steel, etc.), aromatic polyamide (aramid) fibers, potassium titanate whiskers, graphite whiskers, silicon carbide whiskers, silicon nitride whiskers, alumina whiskers, etc.

【0014】全成分中に占める強化繊維の割合は、20
〜40重量%の範囲内に限定される。強化繊維の割合が
20重量%未満では、当該強化繊維の添加効果が得られ
ず、靱性が悪化するとともに、熱変形温度が低下する。 一方、強化繊維の割合が40重量%を上回ると、柔軟性
が低下して、特に、アンダーカットになった形状の場合
に、例えば金型から成形品を抜き取ったり、ポケットに
転動体を圧入したりする際に、上記アンダーカットの部
分に割れやクラックが発生する。
[0014] The proportion of reinforcing fibers in all components is 20
-40% by weight. When the proportion of reinforcing fibers is less than 20% by weight, the effect of adding the reinforcing fibers cannot be obtained, the toughness deteriorates, and the heat distortion temperature decreases. On the other hand, if the proportion of reinforcing fibers exceeds 40% by weight, the flexibility decreases, especially in the case of an undercut shape, for example, when the molded product is removed from the mold or the rolling elements are press-fitted into the pocket. When this occurs, cracks or cracks occur in the undercut portion.

【0015】本発明の転がり軸受用保持器は、上記ナイ
ロン46および強化繊維の他に、着色材としての無機充
填材や、各種の添加剤(熱安定剤等)を含有しても良い
。無機充填材としては、従来公知の種々のものを使用す
ることができるが、特に、粒径1μm以下の粒子の占め
る割合が85%以上である酸化鉄微粉末が好適に使用さ
れる。上記の酸化鉄微粉末は、単位重量当たりの粒子数
が多くなり、ナイロン46との接着面積が増加するので
、より粒径の大きい酸化鉄粉末等の無機充填材に比べて
、初期の補強効果が増大する。また、当該酸化鉄微粉末
を配合しない場合に比べて、耐油性を向上させる効果も
ある。
The cage for rolling bearings of the present invention may contain, in addition to the above-mentioned nylon 46 and reinforcing fibers, inorganic fillers as colorants and various additives (thermal stabilizers, etc.). Various conventionally known inorganic fillers can be used, but iron oxide fine powder in which 85% or more of particles with a particle size of 1 μm or less is particularly preferably used. The iron oxide fine powder mentioned above has a large number of particles per unit weight and the adhesion area with nylon 46 increases, so it has a stronger initial reinforcing effect than inorganic fillers such as iron oxide powder with a larger particle size. increases. Moreover, there is also the effect of improving oil resistance compared to the case where the iron oxide fine powder is not blended.

【0016】上記無機充填剤や添加剤は、従来と同程度
の割合で含有させることができる。本発明の保持器は、
上記の各成分を溶融混練し、ペレット状、粉末状等の、
成形材料として使用可能な形状にした後、従来と同様に
、射出成形機等を用いて成形することで製造される。 本発明の構成は、図に示した針状ころ軸受用以外にも、
円筒ころ軸受、円錐ころ軸受等の種々の転がり軸受用の
、あらゆる形状の保持器に好適に適用することができる
The above-mentioned inorganic fillers and additives can be contained in the same proportions as conventional ones. The cage of the present invention is
The above ingredients are melted and kneaded to form pellets, powders, etc.
After it is shaped into a shape that can be used as a molding material, it is manufactured by molding using an injection molding machine or the like in the same manner as in the past. The structure of the present invention is applicable not only to needle roller bearings shown in the figure, but also to
It can be suitably applied to cages of all shapes for various rolling bearings such as cylindrical roller bearings and tapered roller bearings.

【0017】[0017]

【実施例】【Example】

<ポケット隅部の形状による影響検討>表1に示す配合
例1,2の成形材料を用いて、図1に示す、ポケットの
隅部に曲面を有する形状の針状ころ軸受用保持器(外径
57mm、内径50mm、幅34mm、ポケットの寸法
3.3×26mm、隅部の曲面半径0.4mm)と、図
3に示す、ポケットの隅部に曲面を有さない形状の針状
ころ軸受用保持器(隅部の形状以外は同寸法)とを成形
した。
<Study of the influence of pocket corner shape> Using the molding materials of compounding examples 1 and 2 shown in Table 1, a needle roller bearing retainer (external A needle roller bearing with a diameter of 57 mm, an inner diameter of 50 mm, a width of 34 mm, pocket dimensions of 3.3 x 26 mm, and a radius of curved surface at the corner of 0.4 mm) and a shape with no curved surface at the corner of the pocket as shown in Fig. 3. (same dimensions except for the shape of the corners).

【0018】つぎに、得られた保持器をポケット2つ分
だけ切断してサンプルSを作成し、図2(a)(b)に
示すように、各サンプルSのポケット11,11(91
,91)に一対の治具2,2の突起21,21を挿入し
た状態で、当該治具2,2を図中矢印で示すように上下
に引っ張った際の、破断強度(kgf)を測定した。結
果を表1に示す。
Next, samples S were prepared by cutting the obtained cage by two pockets, and as shown in FIGS.
, 91) with the protrusions 21, 21 of the pair of jigs 2, 2 inserted, and the breaking strength (kgf) was measured when the jigs 2, 2 were pulled up and down as shown by the arrows in the figure. did. The results are shown in Table 1.

【0019】[0019]

【表1】[Table 1]

【0020】*1:直径10μmのものを使用した。 *2:強度上昇率(%)は下記式によって求めた。*1: A diameter of 10 μm was used. *2: Strength increase rate (%) was determined by the following formula.

【0021】[0021]

【数1】[Math 1]

【0022】上記表1の結果より、ナイロン46の方が
、ナイロン66よりも、ポケットの隅部に曲面を設けた
場合の強度上昇率が高いことが判明した。 <ガラス繊維の直径の影響検討>樹脂成分としての、7
0重量%のナイロン46と、表2に示す直径のガラス繊
維30重量%とを配合して、配合例3〜5の成形材料を
製造し、この配合例3〜5の成形材料を用いて、下記の
各試験を行った。
From the results shown in Table 1 above, it was found that nylon 46 had a higher rate of increase in strength than nylon 66 when a curved surface was provided at the corner of the pocket. <Study of influence of glass fiber diameter> As a resin component, 7
0% by weight of nylon 46 and 30% by weight of glass fibers having the diameters shown in Table 2 were blended to produce molding materials of Compounding Examples 3 to 5, and using the molding materials of Compounding Examples 3 to 5, The following tests were conducted.

【0023】引張試験I ASTM  D  638−82a「Standard
 Test Methodfor TENSILE P
ROPERTIES OF PLASTICS(プラス
チックの張力特性の試験方法)」に則って、上記各配合
例の成形材料の引張破断強度(kgf/cm2 )およ
び引張破断伸び(%)を測定した。なお、測定には、各
配合例の成形材料から作製した、TypeI試験片を用
いた。
Tensile Test I ASTM D 638-82a “Standard
Test Method for TENSILE P
The tensile strength at break (kgf/cm2) and tensile elongation at break (%) of the molding materials of each of the above formulation examples were measured in accordance with ``ROPERTIES OF PLASTICS''. Note that, for the measurement, Type I test pieces prepared from the molding materials of each blending example were used.

【0024】引張試験II 上記各試験片を135℃のギヤ油中に浸漬し、100時
間後、210時間後、380時間後、500時間後、お
よび1000時間後の引張破断強度(kgf/cm2 
)および引張破断伸び(%)を、上記引張試験Iと同様
にして測定した。 曲げ試験 ASTM  D  790−81「Standard 
Test Method for FLEXURAL 
PROPERTIES OF UNREINFORCE
D AND REINFORCED PLASTICS
 AND ELECTRICAL INSULATIN
G MATERIALS(強化または未強化のプラスチ
ックおよび電気絶縁体の曲げ特性の試験方法)」に則っ
て、上記各配合例の成形材料の曲げ強度(kgf/cm
2 )を測定した。なお、測定には、各配合例の成形材
料から作製した、長さ5inch×幅1/2inch×
高さ1/4inchの試験片を用いた。
Tensile Test II The above test pieces were immersed in gear oil at 135°C, and the tensile strength at break (kgf/cm2) was measured after 100 hours, 210 hours, 380 hours, 500 hours, and 1000 hours.
) and tensile elongation at break (%) were measured in the same manner as in Tensile Test I above. Bending test ASTM D 790-81 “Standard
Test Method for FLEXURAL
PROPERTIES OF UNREINFORCE
D AND REINFORCED PLASTICS
AND ELECTRICAL INSULATIN
The bending strength (kgf/cm
2) was measured. In addition, for the measurement, 5 inch length x 1/2 inch width x 1/2 inch width fabricated from the molding material of each formulation example.
A test piece with a height of 1/4 inch was used.

【0025】また、上記ASTM  D  790の1
1.11項に記載の式により、曲げ弾性率(kgf/c
m2 )を算出した。 アイゾット衝撃試験 ASTM  D  256−81「Standard 
Test Method for IMPACT RE
SITANCEOF PLASTICS AND EL
ECTRICAL INSULATING MATER
IALS (プラスチックおよび電気絶縁体の耐衝撃特
性の試験方法)」に則って、上記各配合例の成形材料の
アイゾット衝撃強度(kgf・cm/cm)を測定した
。なお、測定には、各配合例の成形材料から作製した、
1/8inchの切欠きを有する試験片を用いた。
[0025] Also, the above ASTM D 790-1
According to the formula described in Section 1.11, the flexural modulus (kgf/c
m2) was calculated. Izod impact test ASTM D 256-81 “Standard
Test Method for IMPACT RE
SITANCEOF PLASTICS AND EL
ECTRICAL INSULATION MATER
The Izod impact strength (kgf·cm/cm) of the molding materials of each of the above formulation examples was measured in accordance with ``IALS (Test Method for Impact Resistance Properties of Plastics and Electrical Insulators)''. In addition, for the measurement, the molding material made from the molding material of each formulation example,
A test piece with a 1/8 inch notch was used.

【0026】引張試験I、曲げ試験およびアイゾット衝
撃試験の結果を表2に、引張試験IIの結果を表3に、
それぞれ示す。
The results of the tensile test I, bending test and Izod impact test are shown in Table 2, and the results of the tensile test II are shown in Table 3.
Each is shown below.

【0027】[0027]

【表2】[Table 2]

【0028】[0028]

【表3】[Table 3]

【0029】*3:保持率は、引張試験Iのデータを1
00としたときの割合を示す。上記表2,3の結果より
、配合例3〜5は、いずれも、耐油性、機械的特性とも
に優れているが、特に、ガラス繊維の直径が10μmで
ある配合例4が、耐油性に優れていることが判明した。 <酸化鉄配合の有無および酸化鉄の粒径の影響検討>樹
脂成分としてのナイロン46と、直径13μmのガラス
繊維と、粒径分布の異なる酸化鉄微粉末とを、表4に示
す割合で配合して、配合例6〜8の成形材料を製造し、
この配合例6〜8の成形材料を用いて、前記の各試験を
行った。
*3: The retention rate is based on the data of tensile test I.
The percentage is shown when it is set to 00. From the results in Tables 2 and 3 above, all of Formulation Examples 3 to 5 are excellent in both oil resistance and mechanical properties, but Formulation Example 4 in which the glass fiber diameter is 10 μm is particularly excellent in oil resistance. It turned out that <Examination of the influence of the presence or absence of iron oxide blending and the particle size of iron oxide> Nylon 46 as a resin component, glass fiber with a diameter of 13 μm, and iron oxide fine powder with different particle size distributions were blended in the proportions shown in Table 4. to produce molding materials of Formulation Examples 6 to 8,
The above-mentioned tests were conducted using the molding materials of Blend Examples 6 to 8.

【0030】引張試験I、曲げ試験およびアイゾット衝
撃試験の結果を表4に、引張試験IIの結果を表5に、
それぞれ示す。
The results of the tensile test I, bending test and Izod impact test are shown in Table 4, and the results of the tensile test II are shown in Table 5.
Each is shown below.

【0031】[0031]

【表4】[Table 4]

【0032】*4:粒径1μm以下の粒子の占める割合
が50%の酸化鉄微粉末。 *5:粒径1μm以下の粒子の占める割合が85%の酸
化鉄微粉末。
*4: Iron oxide fine powder in which 50% of the particles have a particle size of 1 μm or less. *5: Fine iron oxide powder in which 85% of the particles are particles with a particle size of 1 μm or less.

【0033】[0033]

【表5】[Table 5]

【0034】*6:保持率は、引張試験Iのデータを1
00としたときの割合を示す。上記表4,5の結果より
、配合例6〜8は、いずれも、耐油性、機械的特性とも
に優れているが、特に、粒径1μm以下の粒子の占める
割合が85%の酸化鉄微粉末を含有する配合例8は、配
合例7に比べて初期の補強効果が増大する上、配合例6
に比べて、耐油性に優れていることが判明した。 <エラストマー配合の有無の影響検討>樹脂成分として
のナイロン46と、表6に示す直径のガラス繊維と、粒
径1μm以下の粒子の占める割合が85%の酸化鉄微粉
末(配合例12のみ)と、エラストマーとしてのエチレ
ン−プロピレンゴムとを配合して、配合例9〜12の成
形材料を製造し、この配合例9〜12の成形材料を用い
て、前記の各試験と、下記の熱変形温度測定とを行った
*6: The retention rate is based on the data of tensile test I.
The percentage is shown when it is set to 00. From the results in Tables 4 and 5 above, Blend Examples 6 to 8 are all excellent in both oil resistance and mechanical properties, but in particular, iron oxide fine powder with a ratio of 85% of particles with a particle size of 1 μm or less Formulation example 8 containing
It was found that it has superior oil resistance compared to <Study of the influence of the presence or absence of elastomer compounding> Nylon 46 as a resin component, glass fibers with the diameter shown in Table 6, and iron oxide fine powder in which particles with a particle size of 1 μm or less account for 85% (Formulation Example 12 only) and ethylene-propylene rubber as an elastomer to produce molding materials of Compounding Examples 9 to 12. Using the molding materials of Compounding Examples 9 to 12, the above-mentioned tests and the following thermal deformation tests were carried out. Temperature measurements were taken.

【0035】熱変形温度測定 ASTM  D  648−82「Standard 
Test Method for DEFLECTIO
N TEMPERATURE OF PLASTICS
 UNDER FLEXURAL LOAD (プラス
チックの荷重たわみ温度試験方法)」に則って、試験片
に4.6kgf/cmの応力を加える方法で、上記各配
合例の成形材料の熱変形温度(℃)を測定した。なお、
測定には、各配合例の成形材料から作製した、長さ5i
nch×幅1/4inch×高さ1/2inchの試験
片を用いた。
Heat distortion temperature measurement ASTM D 648-82 “Standard
Test Method for DEFLECTIO
N TEMPERATURE OF PLASTICS
The heat distortion temperature (° C.) of the molding materials of each of the above formulation examples was measured in accordance with ``UNDER FLEXURAL LOAD (Plastic Load Deflection Temperature Test Method)'' by applying a stress of 4.6 kgf/cm to the test piece. In addition,
For the measurement, a length of 5i made from the molding material of each formulation example was used.
A test piece of 1/4 inch in width x 1/2 inch in height was used.

【0036】引張試験I、曲げ試験、アイゾット衝撃試
験および熱変形温度測定の結果を、比較のための前記配
合例4,8の結果と併せて表6に、引張試験IIの結果
を、同じく前記配合例4,8の結果と併せて表7,8に
、それぞれ示す。
The results of the tensile test I, bending test, Izod impact test, and heat distortion temperature measurement are shown in Table 6 together with the results of the above formulation examples 4 and 8 for comparison, and the results of the tensile test II are also shown in the above table. The results are shown in Tables 7 and 8 together with the results of Formulation Examples 4 and 8, respectively.

【0037】[0037]

【表6】[Table 6]

【0038】[0038]

【表7】[Table 7]

【0039】*7:保持率は、引張試験Iのデータを1
00としたときの割合を示す。
*7: The retention rate is based on the data of tensile test I.
The percentage is shown when it is set to 00.

【0040】[0040]

【表8】[Table 8]

【0041】*8:保持率は、引張試験Iのデータを1
00としたときの割合を示す。上記表6〜8の結果より
、エラストマーを配合したものは、耐油性、耐熱性、機
械的特性ともに、エラストマーを配合しないものとほぼ
同レベルであったが、耐熱性を示す熱変形温度の点で、
エラストマーを配合しない方がよいことが判明した。 <実施例1〜9>表9,10に示す材料組成の成形材料
を用いて、図1に示す、ポケットの隅部に曲面を有する
形状の針状ころ軸受用保持器(外径57mm、内径50
mm、幅34mm、ポケットの寸法3.3×26mmm
m、隅部の曲面半径0.4mm)を成形した。 <比較例1>実施例6と同じ材料組成の成形材料を用い
て、図3に示す、ポケットの隅部に曲面を有さない形状
の針状ころ軸受用保持器(隅部の形状以外は同寸法)を
成形した。
*8: Retention rate is based on the data of tensile test I
The percentage is shown when it is set to 00. From the results in Tables 6 to 8 above, the oil resistance, heat resistance, and mechanical properties of the products containing elastomers were almost the same as those without elastomers, but the heat distortion temperature, which indicates heat resistance, was in,
It was found that it is better not to include an elastomer. <Examples 1 to 9> A needle roller bearing cage (outer diameter 57 mm, inner diameter 50
mm, width 34mm, pocket dimensions 3.3 x 26mm
m, corner curve radius 0.4 mm). <Comparative Example 1> Using a molding material having the same material composition as in Example 6, a cage for a needle roller bearing having a shape without curved surfaces at the corners of the pocket (other than the shape of the corners) as shown in FIG. (same size) was molded.

【0042】上記各実施例ならびに比較例の保持器につ
いて、下記の保持器強度測定を行った。 保持器強度測定 得られた保持器をポケット2つ分だけ切断してサンプル
Sを作成し、図2(a)(b)に示すように、各サンプ
ルSのポケット11,11(91,91)に一対の治具
2,2の突起21,21を挿入した状態で、当該治具2
,2を図中矢印で示すように上下に引っ張った際の破断
強度(初期値、kgf)を測定した。
[0042] The cage strength of each of the above-mentioned Examples and Comparative Examples was measured as follows. Measurement of Cage Strength Samples S were created by cutting the obtained cage by two pockets, and as shown in FIGS. 2(a) and (b), pockets 11, 11 (91, 91) of each sample S With the protrusions 21, 21 of the pair of jigs 2, 2 inserted into the jig 2,
, 2 was pulled up and down as shown by the arrows in the figure, and the breaking strength (initial value, kgf) was measured.

【0043】つぎに、上記サンプルSを135℃のギヤ
油中に浸漬し、1000時間後の破断強度(耐油後、k
gf)を、上記と同様にして測定した。そして、上記両
破断強度のデータから、下記式に基づいて、破断強度の
保持率(%)を求めた。
Next, the above sample S was immersed in gear oil at 135°C, and the breaking strength after 1000 hours (after oil resistance, k
gf) was measured in the same manner as above. Then, the retention rate (%) of the breaking strength was determined from the data of the above-mentioned both breaking strengths based on the following formula.

【0044】[0044]

【数2】[Math 2]

【0045】以上の結果を表9,10に示す。また、上
記各実施例ならびに比較例で用いた成形材料について、
前記引張試験I、曲げ試験およびアイゾット衝撃試験の
各試験を行った結果を、同じく表9,10に示す。
The above results are shown in Tables 9 and 10. In addition, regarding the molding materials used in each of the above examples and comparative examples,
The results of the tensile test I, bending test and Izod impact test are also shown in Tables 9 and 10.

【0046】[0046]

【表9】[Table 9]

【0047】*9:粒径1μm以下の粒子の占める割合
が50%の酸化鉄微粉末。 *10:粒径1μm以下の粒子の占める割合が85%の
酸化鉄微粉末。
*9: Fine iron oxide powder in which 50% of the particles have a particle size of 1 μm or less. *10: Fine iron oxide powder in which 85% of the particles are particles with a particle size of 1 μm or less.

【0048】[0048]

【表10】[Table 10]

【0049】*11:粒径1μm以下の粒子の占める割
合が50%の酸化鉄微粉末。 *12:粒径1μm以下の粒子の占める割合が85%の
酸化鉄微粉末。 上記表9,10の結果より、比較例1の保持器は、初期
の保持器強度が不十分であることがわかった。これに対
し、実施例1〜9の保持器は、いずれも、初期の保持器
強度が高く、しかも、耐油性、耐熱性、機械的特性とも
に優れたものであることか判明した。
*11: Fine iron oxide powder in which 50% of the particles have a particle size of 1 μm or less. *12: Fine iron oxide powder in which 85% of the particles are particles with a particle size of 1 μm or less. From the results in Tables 9 and 10 above, it was found that the cage of Comparative Example 1 had insufficient initial cage strength. On the other hand, it was found that the cages of Examples 1 to 9 all had high initial cage strength and were also excellent in oil resistance, heat resistance, and mechanical properties.

【0050】[0050]

【発明の効果】本発明の転がり軸受用保持器は、以上の
ように構成されているため、応力の集中し易いポケット
の隅部が曲面で繋がれて補強されているとともに、この
部分への応力集中が緩和されているため、エラストマー
を配合することなしに、機械的特性を向上できる。した
がって、本発明の転がり軸受用保持器は、耐油性、耐熱
性、機械的特性ともに優れたものである。
[Effects of the Invention] Since the rolling bearing cage of the present invention is constructed as described above, the corners of the pockets where stress tends to concentrate are connected and reinforced by curved surfaces, and the corners of the pockets where stress tends to concentrate are connected and reinforced. Since stress concentration is relaxed, mechanical properties can be improved without adding an elastomer. Therefore, the rolling bearing cage of the present invention has excellent oil resistance, heat resistance, and mechanical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の転がり軸受用保持器の一実施例として
の、針状ころ軸受用保持器を示す斜視図である。
FIG. 1 is a perspective view showing a needle roller bearing cage as an embodiment of the rolling bearing cage of the present invention.

【図2】同図(a)(b)は針状ころ軸受用保持器の強
度測定方法を示す説明図である。
FIGS. 2(a) and 2(b) are explanatory diagrams showing a method for measuring the strength of a cage for a needle roller bearing.

【図3】従来の転がり軸受用保持器の一例としての、針
状ころ軸受用保持器を示す斜視図である。
FIG. 3 is a perspective view showing a needle roller bearing cage as an example of a conventional rolling bearing cage.

【符号の説明】[Explanation of symbols]

1      保持器 11    ポケット 11a  隅部 R      曲面 1 Cage 11 Pocket 11a Corner R Curved surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】樹脂成分としてのナイロン46と、20〜
40重量%の強化繊維とを含有してなる転がり軸受用保
持器において、転動体保持用のポケットの隅部が曲面で
繋がれていることを特徴とする転がり軸受用保持器。
Claim 1: Nylon 46 as a resin component;
A cage for a rolling bearing comprising 40% by weight of reinforcing fiber, characterized in that corners of pockets for holding rolling elements are connected by curved surfaces.
【請求項2】強化繊維が、直径8〜12μmのガラス繊
維である請求項1記載の転がり軸受用保持器。
2. A cage for a rolling bearing according to claim 1, wherein the reinforcing fibers are glass fibers having a diameter of 8 to 12 μm.
【請求項3】粒径1μm以下の粒子の占める割合が85
%以上である酸化鉄微粉末を、無機充填材として含有し
ている請求項1記載の転がり軸受用保持器。
Claim 3: The proportion of particles with a particle size of 1 μm or less is 85
% or more of iron oxide fine powder as an inorganic filler.
JP12909391A 1991-05-31 1991-05-31 Roller bearing cage Expired - Lifetime JP3001288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12909391A JP3001288B2 (en) 1991-05-31 1991-05-31 Roller bearing cage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12909391A JP3001288B2 (en) 1991-05-31 1991-05-31 Roller bearing cage

Publications (2)

Publication Number Publication Date
JPH04357323A true JPH04357323A (en) 1992-12-10
JP3001288B2 JP3001288B2 (en) 2000-01-24

Family

ID=15000903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12909391A Expired - Lifetime JP3001288B2 (en) 1991-05-31 1991-05-31 Roller bearing cage

Country Status (1)

Country Link
JP (1) JP3001288B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630668A (en) * 1994-08-19 1997-05-20 Nsk Ltd. Thrust needle-shaped roller bearing, rolling bearing, and cage of the thrust needle-shaped roller bearing
JP2004052796A (en) * 2002-07-16 2004-02-19 Nsk Ltd Needle retainer, needle bearing, and combination bearing thereof
WO2005080812A1 (en) 2004-02-25 2005-09-01 Ntn Corporation Thrust needle bearing
DE102005051914A1 (en) * 2005-10-29 2007-05-03 Ab Skf Cage for antifriction bearing, has synthetic base material and number of intake pockets for antifriction bearing whereby hard material particles are added to the synthetic base material with particle size lying between one Nm and fifty Nm
JP2012013094A (en) * 2010-06-29 2012-01-19 Ntn Corp Cage for rolling bearing and rolling bearing using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630668A (en) * 1994-08-19 1997-05-20 Nsk Ltd. Thrust needle-shaped roller bearing, rolling bearing, and cage of the thrust needle-shaped roller bearing
JP2004052796A (en) * 2002-07-16 2004-02-19 Nsk Ltd Needle retainer, needle bearing, and combination bearing thereof
WO2005080812A1 (en) 2004-02-25 2005-09-01 Ntn Corporation Thrust needle bearing
US7942586B2 (en) 2004-02-25 2011-05-17 Ntn Corporation Thrust needle bearing
DE102005051914A1 (en) * 2005-10-29 2007-05-03 Ab Skf Cage for antifriction bearing, has synthetic base material and number of intake pockets for antifriction bearing whereby hard material particles are added to the synthetic base material with particle size lying between one Nm and fifty Nm
DE102005051914B4 (en) * 2005-10-29 2008-02-21 Ab Skf Cage for a rolling bearing
JP2012013094A (en) * 2010-06-29 2012-01-19 Ntn Corp Cage for rolling bearing and rolling bearing using the same

Also Published As

Publication number Publication date
JP3001288B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
US4563495A (en) Resinous composition for sliding members
JPH04357323A (en) Holder for anti-friction bearing
WO2004060995A1 (en) Fluororesin composition
EP0153091A2 (en) Filled vinylidene fluoride polymer composition
JP4300456B2 (en) Ball seat
JPS6079053A (en) Perfluoroalkoxy resin composition
JP3128264B2 (en) Cage for rolling bearing
JP2022082094A (en) Electrolytic corrosion-proof rolling bearing
JPH06329862A (en) Fluorine resin composition for sliding parts
JP2008202781A (en) Rolling bearing
JPH079246B2 (en) Hinge parts
JP2991590B2 (en) Cage for rolling bearing
JP3507556B2 (en) Synthetic resin cage
Tjong et al. Tensile deformation mechanism of polyamide 6, 6/SEBS-g-MA blend and its hybrid composites reinforced with short glass fibers
JP3076444B2 (en) Cage for rolling bearing
JP3507554B2 (en) Synthetic resin cage
WO2016204426A1 (en) Anti-abrasive and anti-friction polyamide composition
US5559179A (en) Molding compound
JP2007177843A (en) Rolling bearing
JP2759583B2 (en) Cage for rolling bearing
CN114685096B (en) Composite material and preparation method and application thereof
JPH0429617A (en) Retainer for rolling bearing
US20070253654A1 (en) Bearing Retainer
JPH06228362A (en) Resin composition
KR100217435B1 (en) Self lubricating polyphenylene sulfide composite materials and their preparation process

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12