JPH0435721A - Method of suppressing corrosion of steel in carbon dioxide absorption process - Google Patents

Method of suppressing corrosion of steel in carbon dioxide absorption process

Info

Publication number
JPH0435721A
JPH0435721A JP2139928A JP13992890A JPH0435721A JP H0435721 A JPH0435721 A JP H0435721A JP 2139928 A JP2139928 A JP 2139928A JP 13992890 A JP13992890 A JP 13992890A JP H0435721 A JPH0435721 A JP H0435721A
Authority
JP
Japan
Prior art keywords
carbon dioxide
corrosion
carbonate
aminothiophenol
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2139928A
Other languages
Japanese (ja)
Other versions
JPH0615014B2 (en
Inventor
Isao Sekine
関根 功
Makoto Yuasa
真 湯浅
Tetsuya Shimoide
下出 哲也
Koichi Takaoka
浩一 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEIYO PLANT ENG KK
Original Assignee
KEIYO PLANT ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEIYO PLANT ENG KK filed Critical KEIYO PLANT ENG KK
Priority to JP2139928A priority Critical patent/JPH0615014B2/en
Publication of JPH0435721A publication Critical patent/JPH0435721A/en
Publication of JPH0615014B2 publication Critical patent/JPH0615014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To enable suppression of corrosion of steel material by use of a nonpolluting corrosion inhibitor in the process of absorbing carbon dioxide by using an aq. soln. of carbonate as the absorbent, by adding 2-aminothiophenol to the carbonate soln. CONSTITUTION:In the process of absorbing carbon dioxide by use of an aq. soln. of potassium carbonate as the absorbent, 2-aminothiophenol is added to the potassium carbonate soln. to >=30ppm concn. Thereby, suppression of corrosion of steel material by using a nonpolluting corrosion inhibitor can be realized.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、炭酸ガスを吸収し、分離するプロセスに使用
する鋼材の腐食抑制方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for inhibiting corrosion of steel used in a process of absorbing and separating carbon dioxide gas.

[発明の背景] 石油等の炭化水素を原料としてスチームリフォーミンク
法、部分酸化法等により都市ガス、水素ガス、アンモニ
ア合成ガス、その他の原料ガスを製造する場合、副生ず
る不要な炭酸ガスを除去する必要が生ずる。
[Background of the invention] When producing city gas, hydrogen gas, ammonia synthesis gas, and other raw material gases using hydrocarbons such as petroleum as a raw material by the steam reforming method, partial oxidation method, etc., unnecessary carbon dioxide gas that is produced as a by-product is removed. The need arises.

これら合成ガスは大量に生産−され、流量も多く、また
、炭酸ガスの含有量も20〜30%と高い。この流量も
多く、また、炭酸ガスの含有量も多い合成ガスから炭酸
ガスを、残留濃度を少なく経済的に除去するために、現
在、吸収液として炭酸カリウム等の炭酸塩の水溶液を使
用するプロセスと、吸収液としてモノエタノールアミン
、ジェタノールアミン等のアミン類の水溶液を使用する
プロセスとが採用されている。
These synthesis gases are produced in large quantities, have a large flow rate, and have a high carbon dioxide content of 20 to 30%. This flow rate is high, and in order to economically remove carbon dioxide gas from synthesis gas that has a high carbon dioxide content with a low residual concentration, a process currently uses an aqueous solution of carbonate such as potassium carbonate as an absorbing liquid. and a process using an aqueous solution of amines such as monoethanolamine and jetanolamine as an absorption liquid.

アミン類の水溶液を使用するプロセスは、炭酸ガス含有
量が少ないガスを処理し、残留炭酸ガス濃度を低くする
のに適しているが、吸収液を冷却して用いるため熱経済
性は良くない。一方、炭酸カリウムの水溶液を使用する
プロセスは、残留炭酸ガスの濃度が高いが、基本的には
吸収液を冷却しないで循環するため熱経済性に優れてい
る。
A process using an aqueous solution of amines is suitable for treating gas with a low carbon dioxide content and reducing the residual carbon dioxide concentration, but the thermoeconomic efficiency is not good because the absorption liquid is used after being cooled. On the other hand, a process using an aqueous solution of potassium carbonate has a high concentration of residual carbon dioxide gas, but has excellent thermoeconomic efficiency because the absorption liquid is basically circulated without being cooled.

吸収液として炭酸カリウムの水溶液を使用するプロセス
は、次の式で、炭酸ガスの吸収、放出か行われることに
よって行われる。
The process of using an aqueous solution of potassium carbonate as an absorption liquid is carried out by absorbing and releasing carbon dioxide gas according to the following equation.

吸収 に2CO3+ G O2+ H20で=テ2 K[(C
ot再生 吸収塔においては水溶液中のに2CO3がKHCO3に
転換し、炭酸ガスを化学吸収し、再生塔においては水溶
液中のKHCOsがLCOiに再生されることによって
炭酸ガスを放出する。
For absorption, 2CO3+ G O2+ H20 = Te2 K[(C
In the regeneration absorption tower, 2CO3 in the aqueous solution is converted to KHCO3 and carbon dioxide is chemically absorbed, and in the regeneration tower, the KHCOs in the aqueous solution is regenerated into LCOi, thereby releasing carbon dioxide.

炭酸ガスを吸収した炭酸カリウム水溶液は腐食性を有し
ており、吸収塔、再生塔又はそれらを結び付ける配管等
、例えば配管、ポンプ、コントロール弁で使用される鋼
材を、僅かではあるが腐食するという問題があった。
Potassium carbonate aqueous solution that has absorbed carbon dioxide gas is corrosive and is said to corrode, albeit slightly, the steel used in absorption towers, regeneration towers, and the piping that connects them, such as piping, pumps, and control valves. There was a problem.

これら腐食を防止するために五酸化バナジウム(V20
s) 、9 oム酸+ ) リ’)la CNfCrO
4) ナトの腐食抑制剤が開発されている。
Vanadium pentoxide (V20) is used to prevent corrosion.
s), 9 omonic acid+) li')la CNfCrO
4) Nato corrosion inhibitors have been developed.

これら五酸化バナジウム(V2O5) 、クロム酸ナト
リウム(Nx2CrO,)は腐食をよく抑制し優れてい
るが、公害規制物の対象となっているため、腐食の抑制
にこれら化合物を使用することは好ましくない。また、
吸収塔、再生塔又はそれらを結び付ける配管等で使用さ
れる鋼材を、炭素鋼からステンレス鋼に代え、腐食の抑
制をはかることも行われたが腐食の抑制にはいまだ十分
ではなく、公害規制物の対象となっているこれら五酸化
バナジウム、クロム酸ナトリウムに代わる無公害の腐食
抑制剤を開発することが望まれていた。
These vanadium pentoxide (V2O5) and sodium chromate (Nx2CrO,) are excellent in inhibiting corrosion, but since they are subject to pollution control substances, it is not recommended to use these compounds to inhibit corrosion. . Also,
Although efforts have been made to suppress corrosion by replacing carbon steel with stainless steel for the steel materials used in absorption towers, regeneration towers, and the piping that connects them, this has not yet been sufficient to suppress corrosion, and it has become a pollution control substance. It has been desired to develop a non-polluting corrosion inhibitor to replace vanadium pentoxide and sodium chromate, which are subject to corrosion.

[発明の目的] 従って、本発明の目的は、無公害の腐食抑制剤を使用し
た炭酸ガス吸収プロセスにおける綱材の腐食を抑制する
方法を提供することにある。
[Object of the Invention] Accordingly, an object of the present invention is to provide a method for inhibiting corrosion of wire in a carbon dioxide absorption process using a non-polluting corrosion inhibitor.

[発明の構成コ 本発明の上記目的は、 (1)炭酸塩の水溶液を吸収剤として用いる炭酸ガス吸
収プロセスにおいて、炭酸塩の水溶液に2−アミノチオ
フェノールを添加することを特徴とする鋼材の腐食抑制
方法。
[Structure of the Invention] The above objects of the present invention are as follows: (1) In a carbon dioxide gas absorption process using an aqueous solution of carbonate as an absorbent, 2-aminothiophenol is added to an aqueous solution of carbonate. Corrosion control method.

(2)炭酸塩の水溶液を吸収剤として用いる炭酸ガス分
離プロセスにおいて、炭酸塩の水溶液に2−アミノチオ
フェノールを添加することを特徴とする鋼材の腐食抑制
方法。
(2) A method for inhibiting corrosion of steel materials, which comprises adding 2-aminothiophenol to an aqueous carbonate solution in a carbon dioxide gas separation process using an aqueous carbonate solution as an absorbent.

(3)炭酸塩が炭酸カリウムであることを特徴とする前
記(1)及び(2)項記載の腐食抑制方法。
(3) The method for inhibiting corrosion according to items (1) and (2) above, wherein the carbonate is potassium carbonate.

(4)2−アミノチオフェノールの添加量が30ppm
以上であることを特徴とする前記(1)乃至(3)項記
載の鋼材の腐食抑制方法。
(4) Addition amount of 2-aminothiophenol is 30 ppm
The method for suppressing corrosion of steel according to items (1) to (3) above, which is characterized in that the method is as follows.

(5)2−アミノチオフェノールの添加量が50〜50
0ppmであることを特徴とする前記(1)乃至(4)
項記載の鋼材の腐食抑制方法。
(5) Addition amount of 2-aminothiophenol is 50 to 50
(1) to (4) above, characterized in that it is 0 ppm.
Method for suppressing corrosion of steel materials as described in .

(6)炭酸塩の水溶液に2−アミノチオフェノールと共
に1−ヒドロキシエチリデンー1,1−ジホスホン酸を
添加することを特徴とする前記(1)乃至(5)項記載
の鋼材の腐食抑制方法。
(6) The method for inhibiting corrosion of steel according to items (1) to (5) above, characterized in that 1-hydroxyethylidene-1,1-diphosphonic acid is added together with 2-aminothiophenol to the aqueous solution of carbonate.

(7)炭酸塩の水溶液に2−アミノチオフェノールと共
にジェタノールアミンを添加することを特徴とする前記
(1)乃至(6)項記載の鋼材の腐食抑制方法。
(7) The method for inhibiting corrosion of steel according to items (1) to (6) above, characterized in that jetanolamine is added together with 2-aminothiophenol to the aqueous solution of carbonate.

(8)炭酸塩の水溶液に2−アミ、ノチオフェノールと
共に1−ヒドロキシエチリデンー1,1−ジホスホン酸
及びジェタノールアミンを添加することを特徴とする前
記(1)乃至(7)項記載の鋼材の腐食抑制方法。
(8) Steel material according to items (1) to (7) above, characterized in that 1-hydroxyethylidene-1,1-diphosphonic acid and jetanolamine are added to the aqueous solution of carbonate together with 2-aminophenol and notiophenol. Corrosion control method.

によって達成された。achieved by.

[発明の具体的構成] 炭酸塩の水溶液を吸収剤として用いる炭酸ガス吸収プロ
セスとは、炭酸ガスの吸収剤として炭酸塩の水溶液を用
い、選択的に炭酸ガスを吸収させるプロセスであり、ま
た、炭酸塩の水溶液を吸収剤として用いる炭酸ガス分離
プロセスとは、炭酸ガスの吸収剤として炭酸塩の水溶液
を用い、選択的に炭酸ガスを吸収させ、炭酸ガスを吸収
した炭酸塩の水溶液から炭酸ガスを再生させ、炭酸ガス
を分離回収するプロセスである。
[Specific structure of the invention] A carbon dioxide absorption process using an aqueous solution of carbonate as an absorbent is a process of selectively absorbing carbon dioxide using an aqueous solution of carbonate as an absorbent for carbon dioxide, and A carbon dioxide gas separation process that uses an aqueous solution of carbonate as an absorbent is a carbon dioxide gas separation process that uses an aqueous solution of carbonate as an absorbent to selectively absorb carbon dioxide gas, and extracts carbon dioxide from the aqueous solution of carbonate that has absorbed carbon dioxide gas. This is a process that regenerates carbon dioxide and separates and recovers carbon dioxide.

これらプロセスは、工業的にはペンフィールドプロセス
として知られ、広〈実施されている。
These processes are known industrially as Penfield processes and are widely practiced.

ペンフィールドプロセスにおいては炭酸塩として炭酸カ
リウムが使用されている。
Potassium carbonate is used as the carbonate in the Penfield process.

炭酸ガスの吸収剤として炭酸カリウムを用いた場合、炭
酸ガスの吸収、再生は、次の式で表される平衡反応によ
り行われる。
When potassium carbonate is used as an absorbent for carbon dioxide gas, absorption and regeneration of carbon dioxide gas is performed by an equilibrium reaction represented by the following formula.

吸収 に2CO3+CO2+H20;==±2 KHCO。absorption 2CO3+CO2+H20;==±2 KHCO.

再生 この反応系において、炭酸ガスの分圧を高め、或いは、
温度を低くすることにより反応は右に進行し、炭酸ガス
の吸収が行われ、また、炭酸ガスの分圧を低下し、或い
は、温度を高めることにより反応は左に進行し、炭酸ガ
スの再生がなされる。
RegenerationIn this reaction system, increase the partial pressure of carbon dioxide gas, or
By lowering the temperature, the reaction progresses to the right and carbon dioxide is absorbed, and by lowering the partial pressure of carbon dioxide or increasing the temperature, the reaction progresses to the left and regenerates carbon dioxide. will be done.

炭酸ガスの吸収・再生を吸収液の温度を上げたり、下げ
たりして行うよりも、炭酸ガスの分圧を高め、また、炭
酸ガスの分圧を低下させて行うのが熱経済的に有利であ
る。
It is thermoeconomically advantageous to absorb and regenerate carbon dioxide by increasing or decreasing the partial pressure of carbon dioxide, rather than by raising or lowering the temperature of the absorption liquid. It is.

原料ガスからの炭酸ガスの吸収・再生は従来公知の方法
が採用できる。
Conventionally known methods can be used to absorb and regenerate carbon dioxide gas from raw material gas.

例えば、ラヒシリング、サドル、ポールリング等の充填
物を充填した吸収塔及び再生塔を用いて行うことができ
る。
For example, it can be carried out using an absorption tower and a regeneration tower filled with packing materials such as Rahish rings, saddles, and Paul rings.

通常、吸収塔の底部から原料ガスを送り込み、頂部から
吸収液を流下させて充填物上で気−液を向流接触させ吸
収反応させ、原料ガス中の炭酸ガスを吸収除去し、精製
した原料ガスを吸収塔の頂部から取り出す。吸収塔の底
部から出る炭酸ガスを吸収した吸収液は吸収塔の圧力を
利用して再生塔の頂部に供給する。吸収液に吸収された
炭酸ガスの一部は、再生塔の頂部での減圧フラッシュに
より除かれ、充填物上を流下する。充填物上を流下する
吸収液は再生塔底部から上昇してくるスチームによって
炭酸ガスの分圧が下げられ吸収液中の炭酸水素カリウム
は炭酸カリウムと炭酸ガスに分解する。生成した炭酸ガ
スは再生塔頂部より取り出される。上記スチームは再生
塔底部に設置したりボイラーにより吸収液を間接的に加
熱して発生させるか、生スチームを直接再生塔底部に吹
き込むことによって供給される。上記スチームはまた炭
酸ガスの再生により失われたエネルギーを補給する。
Usually, the raw material gas is fed into the absorption tower from the bottom, the absorption liquid is allowed to flow down from the top, and the gas-liquid is brought into countercurrent contact on the packing to cause an absorption reaction, and the carbon dioxide gas in the raw material gas is absorbed and removed, resulting in a purified raw material. Gas is removed from the top of the absorption tower. The absorption liquid that has absorbed the carbon dioxide coming out of the bottom of the absorption tower is supplied to the top of the regeneration tower using the pressure of the absorption tower. A portion of the carbon dioxide gas absorbed in the absorption liquid is removed by vacuum flashing at the top of the regeneration column and flows down over the packing. The partial pressure of carbon dioxide in the absorption liquid flowing down on the packing is lowered by the steam rising from the bottom of the regeneration tower, and the potassium hydrogen carbonate in the absorption liquid is decomposed into potassium carbonate and carbon dioxide gas. The generated carbon dioxide gas is taken out from the top of the regeneration tower. The above-mentioned steam is supplied by being installed at the bottom of the regeneration tower or by indirectly heating the absorption liquid with a boiler to generate it, or by directly blowing raw steam into the bottom of the regeneration tower. The steam also replenishes the energy lost through the regeneration of carbon dioxide.

吸収塔及び再生塔としては、他の公知の吸収塔及び再生
塔を用ることもてきる。
As the absorption tower and regeneration tower, other known absorption towers and regeneration towers can also be used.

炭酸ガスを吸収させる時の圧力、温度は特に制限はない
が、工業的に行うには、一般に、10〜30kg / 
cd、100〜120℃が使用される。また、吸収液の
濃度も特に制限はないが、工業的に行うには、一般に、
20〜40%の範囲で選ばれる。
There are no particular restrictions on the pressure and temperature when absorbing carbon dioxide gas, but for industrial use, it is generally 10 to 30 kg /
cd, 100-120°C is used. There is also no particular limit to the concentration of the absorption liquid, but in general, for industrial use,
It is selected in the range of 20 to 40%.

本発明の炭酸塩の水溶液を吸収剤として用いる炭酸ガス
吸収プロセス及び炭酸塩の水溶液を吸収剤として用いる
炭酸ガス分離プロセスは、他の炭酸ガス吸収プロセス又
は炭酸ガス分離プロセス、例えばアミン類を使用した炭
酸ガス吸収プロセス又は炭酸ガス分離プロセスと組み合
わせて用いてもよい。
The carbon dioxide absorption process using an aqueous solution of carbonate as an absorbent and the carbon dioxide gas separation process using an aqueous carbonate solution as an absorbent of the present invention can be used in conjunction with other carbon dioxide absorption processes or carbon dioxide gas separation processes, such as using amines. It may be used in combination with a carbon dioxide absorption process or a carbon dioxide separation process.

2−アミノチオフェノールを上記炭酸塩の水溶液に添加
することにより炭酸ガス吸収プロセス又は炭酸ガス分離
プロセスにおいて使用される鋼材の腐食を抑制する。
By adding 2-aminothiophenol to the carbonate aqueous solution, corrosion of steel materials used in carbon dioxide absorption processes or carbon dioxide gas separation processes is suppressed.

2−アミノチオフェノールを30 ppm以上上記炭酸
塩の水溶液に添加することにより実用上十分な抑制作用
を得ることができる。添加量は、さらに好ましくは50
〜500ppmである。
By adding 30 ppm or more of 2-aminothiophenol to the aqueous solution of the carbonate, a practically sufficient suppressing effect can be obtained. The amount added is more preferably 50
~500 ppm.

500ppm以上添加しても同様に抑制作用を得ること
はできるが、添加量を増大しても腐食抑制率が増大しな
いので実用上は500ppmまでの添加で十分である。
Although a similar inhibitory effect can be obtained even if 500 ppm or more is added, the corrosion inhibition rate does not increase even if the amount added is increased, so addition up to 500 ppm is practically sufficient.

2−アミノチオフェノールは、短時間で不動態皮膜を形
成するとともに、吸着して皮膜を形成し腐食抑制するも
のと考えられる。
It is thought that 2-aminothiophenol forms a passive film in a short period of time, and also forms a film by being adsorbed to suppress corrosion.

また、1−ヒドロキシエチリデンー1,1−ジホスホン
酸、ジェタノールアミンも腐食抑制作用を有するが、2
−アミノチオフェノールはこれら1−ヒドロキシエチリ
デンー1,1−ジホスホン酸、ジェタノールアミンと併
用することができ、また、併用により腐食抑制効果を高
めることかできる。
In addition, 1-hydroxyethylidene-1,1-diphosphonic acid and jetanolamine also have a corrosion inhibiting effect, but 2
-Aminothiophenol can be used in combination with these 1-hydroxyethylidene-1,1-diphosphonic acid and jetanolamine, and the corrosion inhibiting effect can be enhanced by using them in combination.

2−アミノチオフェノールは、水との相溶性が悪く、液
相上部に浮遊する傾向があるが、1−ヒドロキシエチリ
デンー1,1−ジホスホン酸及びジェタノールアミンの
両者を同時に存在させることにより水との相溶性が向上
し、腐食抑制効果を高めることかできる。
2-Aminothiophenol has poor compatibility with water and tends to float at the top of the liquid phase. It is possible to improve the compatibility with the metal and enhance the corrosion inhibiting effect.

[発明の効果] (1)腐食抑制効果の試験 試験片としてSS41 (C; 0.08%、Sl;痕
跡、Mn ; 0.35、P ;  0.014%、S
 、  0.018%、Fe ; bal、)を用いて
、2−アミノチオフェノール(以下、ATPという。)
及び1−ヒドロキシエチリデンー1,1−ジホスホン酸
(以下、HEDPという。)の腐食抑制効果の試験をし
た。
[Effects of the invention] (1) SS41 (C; 0.08%, Sl; trace, Mn; 0.35, P; 0.014%, S
, 0.018%, Fe; bal,) to produce 2-aminothiophenol (hereinafter referred to as ATP).
and 1-hydroxyethylidene-1,1-diphosphonic acid (hereinafter referred to as HEDP) were tested for their corrosion inhibiting effects.

腐食抑制剤を添加し、炭酸ガスで飽和した23重量%の
炭酸カリウム水溶液(a度、50±1℃)を満たしたフ
ラスコに、表面をエメリー紙(#1500)で研磨し、
メタノール及びアセトンで処理した20x 50X 1
.8 m11の試験片を大気圧下、7日間浸漬し、腐食
重量減を調べた。
A flask filled with a 23% by weight potassium carbonate aqueous solution (a degree, 50 ± 1°C) containing a corrosion inhibitor and saturated with carbon dioxide gas was polished with emery paper (#1500), and the surface was polished with emery paper (#1500).
20x 50x 1 treated with methanol and acetone
.. A test piece of 8 m11 was immersed under atmospheric pressure for 7 days, and the weight loss due to corrosion was investigated.

結果を第1図に示す。The results are shown in Figure 1.

ATPは、優れた抑制効果を示した。ATP showed excellent inhibitory effects.

試験片として SUS 304 (C、0,08%以下
、S t ; t、oo%以下、Mn;2.00%以下
、P;0.045%以下、S O,03%以下、N i
 ; 8.00−10.5%、Cr ; 18.00−
20.00%、F e ; bal、)を用いた場合に
も同様の効果が得られた。
As a test piece, SUS 304 (C, 0.08% or less, St; t, oo% or less, Mn: 2.00% or less, P; 0.045% or less, SO, 03% or less, Ni
; 8.00-10.5%, Cr; 18.00-
A similar effect was obtained when 20.00%, Fe; bal, ) was used.

(2)腐食抑制効果の試験(流動系) 腐食抑制剤を添加した 40重量%の炭酸カリウム水溶
液(温度 94±4℃)を循環し、圧力を10kg /
 cシに維持した第2図に示したベンチスケールの装置
(以下、BF装置という)内に、表面をエメリー紙(#
 1500)で研磨し、メタノール及びアセトンで処理
した内径23.6mm、厚さ 0.8mm、高さ25.
0+am(7:l試験片(鋼材、SUS 304)を、
30日間浸漬し、腐食重量減の試験をした。
(2) Corrosion inhibitory effect test (fluid system) A 40% by weight potassium carbonate aqueous solution (temperature: 94±4°C) to which a corrosion inhibitor was added was circulated, and the pressure was increased to 10kg/
The surface was covered with emery paper (#) in the bench scale apparatus shown in Fig. 2 (hereinafter referred to as BF apparatus) maintained at
1500) and treated with methanol and acetone, inner diameter 23.6 mm, thickness 0.8 mm, height 25.
0+am (7:l test piece (steel material, SUS 304),
It was immersed for 30 days and tested for corrosion weight loss.

BF装置には炭酸ガスを導入し、炭酸カリウム水溶液を
炭酸ガスで飽和した。
Carbon dioxide gas was introduced into the BF apparatus, and the potassium carbonate aqueous solution was saturated with carbon dioxide gas.

試験片1をBF装置2に挿入し、循環ポンプ3で炭酸カ
リウム水溶液をBF装置2に循環する。
The test piece 1 is inserted into the BF device 2, and the circulation pump 3 circulates the potassium carbonate aqueous solution to the BF device 2.

炭酸カリウム水溶液は炭酸ガス導入口4がら導入された
炭酸ガスで飽和される。(第2図)また、第2図におい
て、5は循環ポンプ3を駆動するモーターを、6は試験
片1に炭゛酸ガスで飽和した炭酸カリウム水溶液を均等
に流下するトレイを、7は圧力計を、8は安全弁を、9
は温度計を、10は覗き窓を、11は排出弁を示す。
The potassium carbonate aqueous solution is saturated with carbon dioxide gas introduced through the carbon dioxide gas inlet 4. (Fig. 2) In Fig. 2, 5 is the motor that drives the circulation pump 3, 6 is the tray that evenly flows down the potassium carbonate aqueous solution saturated with carbonic acid gas onto the test piece 1, and 7 is the pressure meter, 8 is the safety valve, 9 is the safety valve.
10 indicates a thermometer, 10 indicates a viewing window, and 11 indicates a discharge valve.

結果を第1表に示す。The results are shown in Table 1.

第1表 DEA  。Table 1 DEA.

ジェタノールアミン 以上の通り、本発明によれば、炭酸ガス吸収プロセスに
おける鋼材の腐食を、従来用いられていた公害規制物の
対象となるNa2CrO4及びv205等の使用を低減
し、或いは、使用することなく抑制することができる。
Jetanolamine As described above, according to the present invention, the corrosion of steel materials in the carbon dioxide absorption process can be reduced by reducing the use of conventionally used substances such as Na2CrO4 and V205, which are subject to pollution control substances, or by using them. It can be suppressed without any problem.

【図面の簡単な説明】 第1図は静止系における腐食抑制効果の試験の結果を示
す図、第2図はBF装置の概略を示す図である。 出願人 京葉プラントエンジニアリング株式会社
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram showing the results of a test of corrosion inhibition effect in a stationary system, and FIG. 2 is a diagram showing an outline of the BF device. Applicant: Keiyo Plant Engineering Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] (1)炭酸塩の水溶液を吸収剤として用いる炭酸ガス吸
収プロセスにおいて、炭酸塩の水溶液に2−アミノチオ
フェノールを添加することを特徴とする鋼材の腐食抑制
方法。
(1) A method for inhibiting corrosion of steel materials, which comprises adding 2-aminothiophenol to an aqueous carbonate solution in a carbon dioxide gas absorption process using an aqueous carbonate solution as an absorbent.
(2)炭酸塩の水溶液を吸収剤として用いる炭酸ガス分
離プロセスにおいて、炭酸塩の水溶液に2−アミノチオ
フェノールを添加することを特徴とする鋼材の腐食抑制
方法。
(2) A method for inhibiting corrosion of steel materials, which comprises adding 2-aminothiophenol to an aqueous carbonate solution in a carbon dioxide gas separation process using an aqueous carbonate solution as an absorbent.
(3)炭酸塩が炭酸カリウムであることを特徴とする請
求項(1)及び(2)記載の腐食抑制方法。
(3) The method for inhibiting corrosion according to claims (1) and (2), wherein the carbonate is potassium carbonate.
(4)2−アミノチオフェノールの添加量が30ppm
以上であることを特徴とする請求項(1)乃至(3)記
載の鋼材の腐食抑制方法。
(4) Addition amount of 2-aminothiophenol is 30 ppm
The method for suppressing corrosion of steel materials according to claims (1) to (3), characterized in that the method is as follows.
(5)2−アミノチオフェノールの添加量が50〜50
0ppmであることを特徴とする請求項(1)乃至(4
)記載の鋼材の腐食抑制方法。
(5) Addition amount of 2-aminothiophenol is 50 to 50
Claims (1) to (4) characterized in that the amount is 0 ppm.
) method for inhibiting corrosion of steel materials.
(6)炭酸塩の水溶液に2−アミノチオフェノールと共
に1−ヒドロキシエチリデンー1,1−ジホスホン酸を
添加することを特徴とする請求項(1)乃至(5)記載
の鋼材の腐食抑制方法。
(6) The method for inhibiting corrosion of steel materials according to claims (1) to (5), characterized in that 1-hydroxyethylidene-1,1-diphosphonic acid is added together with 2-aminothiophenol to the aqueous solution of carbonate.
(7)炭酸塩の水溶液に2−アミノチオフェノールと共
にジエタノールアミンを添加することを特徴とする請求
項(1)乃至(6)記載の鋼材の腐食抑制方法。
(7) The method for inhibiting corrosion of steel materials according to claims (1) to (6), characterized in that diethanolamine is added together with 2-aminothiophenol to the aqueous solution of carbonate.
(8)炭酸塩の水溶液に2−アミノチオフェノールと共
に1−ヒドロキシエチリデンー1,1−ジホスホン酸及
びジエタノールアミンを添加することを特徴とする請求
項(1)乃至(7)記載の鋼材の腐食抑制方法。
(8) Corrosion inhibition of steel materials according to claims (1) to (7), characterized in that 1-hydroxyethylidene-1,1-diphosphonic acid and diethanolamine are added together with 2-aminothiophenol to the aqueous solution of carbonate. Method.
JP2139928A 1990-05-31 1990-05-31 Corrosion control method for steel in carbon dioxide absorption process Expired - Fee Related JPH0615014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139928A JPH0615014B2 (en) 1990-05-31 1990-05-31 Corrosion control method for steel in carbon dioxide absorption process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139928A JPH0615014B2 (en) 1990-05-31 1990-05-31 Corrosion control method for steel in carbon dioxide absorption process

Publications (2)

Publication Number Publication Date
JPH0435721A true JPH0435721A (en) 1992-02-06
JPH0615014B2 JPH0615014B2 (en) 1994-03-02

Family

ID=15256930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139928A Expired - Fee Related JPH0615014B2 (en) 1990-05-31 1990-05-31 Corrosion control method for steel in carbon dioxide absorption process

Country Status (1)

Country Link
JP (1) JPH0615014B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079540A (en) * 2006-09-27 2008-04-10 Kubota Corp Reaping device
JP2012526648A (en) * 2009-05-12 2012-11-01 ビーエーエスエフ ソシエタス・ヨーロピア Absorbent for selective removal of hydrogen sulfide from a fluid stream
CN106757050A (en) * 2016-11-09 2017-05-31 海宁市科泰克金属表面技术有限公司 For gold, silver, the metal post-treatment protective agent of copper and mickel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079540A (en) * 2006-09-27 2008-04-10 Kubota Corp Reaping device
JP2012526648A (en) * 2009-05-12 2012-11-01 ビーエーエスエフ ソシエタス・ヨーロピア Absorbent for selective removal of hydrogen sulfide from a fluid stream
CN106757050A (en) * 2016-11-09 2017-05-31 海宁市科泰克金属表面技术有限公司 For gold, silver, the metal post-treatment protective agent of copper and mickel

Also Published As

Publication number Publication date
JPH0615014B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
JP5575122B2 (en) Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
JP5794913B2 (en) Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
US6939393B2 (en) Method for neutralizing a stream of fluid, and washing liquid for use in one such method
US20060138384A1 (en) Absorbing agent and method for eliminating acid gases from fluids
JPS5889933A (en) Removal of acidic gas using basic salt activated with non-stereo chemical hindered diamino compound
JPH0464359B2 (en)
CN107261767B (en) Flue gas decarbonizing agent and flue gas decarbonizing method
US9180402B2 (en) System and method for treating natural gas that contains methane
JP2013119503A (en) Method and device for separating hydrogen sulfide and hydrogen manufacturing system using the same
JP2005523800A (en) Fluid stream deoxidation method and cleaning liquid used in the method
US3144301A (en) Removal of carbon dioxde from gaseous mixtures
JPH0435721A (en) Method of suppressing corrosion of steel in carbon dioxide absorption process
JPH0360717A (en) Method for inhibiting corrosion of steel in gaseous carbon dioxide absorption process
JPH022818A (en) Method of absorbing hydrogen sulfide
US4895670A (en) Addition of severely-hindered aminoacids to severely-hindered amines for the absorption of H2 S
WO1996012053A1 (en) Method for minimizing solvent degradation and corrosion in amine solvent treating systems
RU2087181C1 (en) Method of removing acidic gases such as hydrogen sulfide and/or carbon dioxide
US4971718A (en) Alkanolamine gas treating composition and process
EP0080817B1 (en) A process for removing acid gases using a basic salt activated with a non-sterically hindered diamino compound
EP0034901B1 (en) Acid gas scrubbing process using hindered amine solution with hindered amine recovery from side-product cyclic urea
SU1745314A1 (en) Method of recovering carbon dioxide from gases
Monde et al. Effect of Promoter Concentration on CO2 Separation Using K2CO3 With Reactive Absorption Method in Reactor Packed Column
RU2240858C1 (en) Gas treatment absorbent
JPH0456649B2 (en)
CN106621704A (en) Composite decarbonization solvent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees