JPH0360717A - Method for inhibiting corrosion of steel in gaseous carbon dioxide absorption process - Google Patents

Method for inhibiting corrosion of steel in gaseous carbon dioxide absorption process

Info

Publication number
JPH0360717A
JPH0360717A JP1192765A JP19276589A JPH0360717A JP H0360717 A JPH0360717 A JP H0360717A JP 1192765 A JP1192765 A JP 1192765A JP 19276589 A JP19276589 A JP 19276589A JP H0360717 A JPH0360717 A JP H0360717A
Authority
JP
Japan
Prior art keywords
carbon dioxide
carbonate
gaseous carbon
corrosion
hydroxyethylidene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1192765A
Other languages
Japanese (ja)
Other versions
JPH0720530B2 (en
Inventor
Isao Sekine
関根 功
Makoto Yuasa
真 湯浅
Tetsuya Shimoide
下出 哲也
Koichi Takaoka
浩一 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEIYO PLANT ENG KK
Original Assignee
KEIYO PLANT ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEIYO PLANT ENG KK filed Critical KEIYO PLANT ENG KK
Priority to JP1192765A priority Critical patent/JPH0720530B2/en
Priority to GB8919342A priority patent/GB2234501A/en
Priority to FR898911460A priority patent/FR2650301B3/en
Priority to IT8921585A priority patent/IT1231548B/en
Publication of JPH0360717A publication Critical patent/JPH0360717A/en
Publication of JPH0720530B2 publication Critical patent/JPH0720530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/06Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To inhibit corrosion of steel in a gaseous carbon dioxide absorption process by using an aq. carbonate soln. added with a specified amt. of 1- hydroxyethylidene-1,1-diphosphonic acid as an absorbent and absorbing gaseous carbon dioxide into the absorbent. CONSTITUTION:The aq. carbonate soln. added with a specified amt. of 1- hydroxyethylidene-1,1-diphosphonic acid is used to selectively absorb gaseous carbon dioxide. Gaseous carbon dioxide is regenerated from the aq. carbonate soln. having absorbed the carbonate to separate and recover gaseous carbon dioxide. Consequently, corrosion of steel is inhibited in the gaseous carbon dioxide absorption process using a pollution-free corrosion inhibitor. The amt. of 1-hydroxyethylidene-1,1-diphosphonic acid to be added to the aq. carbonate soln. is appropriately controlled to >= about 50ppm or more appropriately to 100-500ppm. Potassium carbonate is appropriately used as the carbonate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭酸ガスを吸収し、分離するプロセスに使用
する鋼材の腐食抑制方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for inhibiting corrosion of steel used in a process of absorbing and separating carbon dioxide gas.

[発明の背景J 石油等の炭化水素を原料としてスチームリフオーミング
法、部分酸化法等により都市ガス、水素ガス、アンモニ
ア合成ガス、その他の原料ガスを製造する場合、副生ず
る不要な炭酸ガスを除去する必要が生ずる。
[Background of the Invention J] When producing city gas, hydrogen gas, ammonia synthesis gas, or other raw material gases using a steam reforming method, partial oxidation method, etc. using hydrocarbons such as petroleum as a raw material, it is necessary to remove unnecessary carbon dioxide gas as a by-product. It becomes necessary to remove it.

これら合成ガスは大量に生産され、流量も多く、また、
炭酸ガスの含有量も20〜30%と高い。この流量も多
く、また、炭酸ガスの含有量も多い合成ガスから炭酸ガ
スを、残留濃度を少なく経済的に除去するために、現在
、吸収液として炭酸カリウムの水溶液を使用するプロセ
スと、吸収液としてモノエタノールアミン、ジェタノー
ルアミン等のアミン類の水溶液を使用するプロセスとが
採用されている。
These synthesis gases are produced in large quantities, have a large flow rate, and
The content of carbon dioxide gas is also high at 20-30%. In order to economically remove carbon dioxide gas from synthesis gas, which has a high flow rate and a high carbon dioxide content, there are currently processes that use an aqueous solution of potassium carbonate as an absorption liquid, and a process that uses an aqueous solution of potassium carbonate as an absorption liquid. As a process, a process using an aqueous solution of amines such as monoethanolamine and jetanolamine has been adopted.

アミン類の水溶液を使用するプロセスは、炭酸ガス含有
量が少ないガスを処理し、残留炭酸ガス濃度を低(する
のに適しているが、吸収液を冷却して用いるため熱経済
性は良くない。一方、炭酸カリウムの水溶液を使用する
プロセスは、残留炭酸ガスの濃度が高いが、基本的には
吸収液を冷却しないで循環するため熱経済性が優れてい
る。
Processes that use aqueous solutions of amines are suitable for treating gases with low carbon dioxide content and reducing the residual carbon dioxide concentration, but the thermoeconomic efficiency is not good because the absorption liquid is cooled before use. On the other hand, the process using an aqueous solution of potassium carbonate has a high concentration of residual carbon dioxide gas, but has excellent thermoeconomic efficiency because the absorption liquid is basically circulated without being cooled.

吸収液として炭酸カリウムの水溶液を使用するプロセス
は、次の式で、炭酸ガスの吸収、放出が行われることに
よって行われる。
The process of using an aqueous solution of potassium carbonate as an absorption liquid is carried out by absorbing and releasing carbon dioxide gas according to the following equation.

吸収 KzC(h+ CO2+ H20苓==±2KHCO3
再生 吸収塔においては水溶液中のに2CLがKHCO*に転
換し、炭酸ガスを化学吸収し、再生塔においては水溶液
中のKHCO3がLCOiに再生されることによって炭
酸ガスを放出する。
Absorption KzC (h+ CO2+ H20 蓓==±2KHCO3
In the regeneration absorption tower, 2CL in the aqueous solution is converted to KHCO*, which chemically absorbs carbon dioxide gas, and in the regeneration tower, KHCO3 in the aqueous solution is regenerated into LCOi, thereby releasing carbon dioxide gas.

炭酸ガスを吸収した炭酸カリウム水溶液は腐食性を有し
ており、吸収塔、再生塔又はそれらを結び付ける配管等
、例えば配管、ポンプ、コントロール弁で使用される鋼
材を、僅かではあるが腐食するという問題があった。
Potassium carbonate aqueous solution that has absorbed carbon dioxide gas is corrosive and is said to corrode, albeit slightly, the steel used in absorption towers, regeneration towers, and the piping that connects them, such as piping, pumps, and control valves. There was a problem.

これら腐食を防止するために五酸化バナジウム(V2O
5)、クロム酸ナトリウム(N!2C「04)ナトの腐
食抑制剤が開発されている。
Vanadium pentoxide (V2O) is used to prevent corrosion.
5) A corrosion inhibitor of sodium chromate (N!2C'04) has been developed.

これら五酸化バナジウム(V2O5) 、クロム酸ナト
リウム(Ni2C+L)は腐食をよく抑制し優れている
が、公害規制物の対象となっているため、腐食の抑制に
これら化合物を使用することは好ましくない。また、吸
収塔、再生塔又はそれらを結び付ける配管等で使用され
る鋼材を、炭素鋼からステンレス鋼に代え、腐食の抑制
をはかることも行われたが腐食の抑制にはいまだ十分で
はなく、公害規制物の対象となっているこれら五酸化バ
ナジウム、クロム酸ナトリウムに代わる無公害の腐食抑
制剤を開発することが望まれていた。
These vanadium pentoxide (V2O5) and sodium chromate (Ni2C+L) are excellent in suppressing corrosion well, but since they are subject to pollution control substances, it is not preferable to use these compounds to suppress corrosion. In addition, efforts have been made to suppress corrosion by replacing carbon steel with stainless steel for the steel used in absorption towers, regeneration towers, and the piping that connects them, but this is still not sufficient to suppress corrosion, and pollution It has been desired to develop a non-polluting corrosion inhibitor to replace vanadium pentoxide and sodium chromate, which are subject to regulations.

[発明の目的コ 従って、本発明の目的は、無公害の腐食抑制剤を使用し
た炭酸ガス吸収プロセスにおける鋼材の腐食を抑制する
方法を提供することにある。
[Object of the Invention] Accordingly, an object of the present invention is to provide a method for inhibiting corrosion of steel materials in a carbon dioxide absorption process using a non-polluting corrosion inhibitor.

[発明の構成] 本発明の上記目的は、 <1)炭酸塩の水溶液を吸収剤として用いる炭酸ガス吸
収プロセスにおいて、炭酸塩の水溶液に1−ヒドロキシ
エチリデン−1,1−ジホスホン酸を添加することを特
徴とする鋼材の腐食抑制方法。
[Structure of the Invention] The above objects of the present invention are as follows: <1) Adding 1-hydroxyethylidene-1,1-diphosphonic acid to an aqueous solution of carbonate in a carbon dioxide gas absorption process using an aqueous solution of carbonate as an absorbent. A method for inhibiting corrosion of steel materials.

(2)炭酸塩の水溶液を吸収剤として用いる炭酸ガス分
離プロセスにおいて、炭酸塩の水溶液に1−ヒドロキシ
エチリデン−1,1−ジホスホン酸を添加することを特
徴とする鋼材の腐食抑制方法。
(2) A method for inhibiting corrosion of steel materials, which comprises adding 1-hydroxyethylidene-1,1-diphosphonic acid to an aqueous carbonate solution in a carbon dioxide gas separation process using an aqueous carbonate solution as an absorbent.

(3)炭酸塩が炭酸カリウムであることを特徴とする前
記(1)及び(2)項記載の腐食抑制方法。
(3) The method for inhibiting corrosion according to items (1) and (2) above, wherein the carbonate is potassium carbonate.

り4)1−ヒドロキシエチリデン−1,1−ジホスホン
酸の添加量が50 ppm以上であることを特徴とする
前記(1)乃至(3)項記載の鋼材の腐食抑制方法。
4) The method for inhibiting corrosion of steel according to items (1) to (3) above, characterized in that the amount of 1-hydroxyethylidene-1,1-diphosphonic acid added is 50 ppm or more.

(5)1−ヒドロキシエチリデン−1,1−ジホスホン
酸の添加量が100〜500ppmであることを特徴と
する請求項(1)乃至(3)記載の鋼材の腐食抑制方法
(5) The method for inhibiting corrosion of steel materials according to claims (1) to (3), wherein the amount of 1-hydroxyethylidene-1,1-diphosphonic acid added is 100 to 500 ppm.

(6)炭酸塩の水溶液に1−ヒドロキシエチリデン−1
,1−ジホスホン酸と共にジェタノールアミンを添加す
ることを特徴とする前記(1)乃至(5)項記載の鋼材
の腐食抑制方法。
(6) 1-hydroxyethylidene-1 in an aqueous solution of carbonate
, 1-diphosphonic acid as well as jetanolamine.

によって達成された。achieved by.

[発明の具体的!lI1銭] 炭酸塩の水溶液を吸収剤として用いる炭酸ガス吸収プロ
セスとは、炭酸ガスの吸収剤として炭酸塩の水溶酸を用
い、選択的に炭酸ガスを吸収させるプロセスであり、ま
た、炭酸塩の水溶液を吸収剤として用いる炭酸ガス分離
プロセスとは、炭酸ガスの吸収剤として炭酸塩の水溶液
を用い、選択的に炭酸ガスを吸収させ、炭酸ガスを吸収
した炭酸塩の水溶液から炭酸ガスを再生させ、炭酸ガス
を分離回収するプロセスである。
[Specific invention! The carbon dioxide gas absorption process that uses an aqueous solution of carbonate as an absorbent is a process that selectively absorbs carbon dioxide gas using an aqueous carbonate acid as an absorbent. A carbon dioxide gas separation process that uses an aqueous solution as an absorbent is a process that uses an aqueous solution of carbonate as an absorbent for carbon dioxide gas, selectively absorbs carbon dioxide gas, and regenerates carbon dioxide from the aqueous solution of carbonate that has absorbed carbon dioxide gas. , is a process that separates and recovers carbon dioxide gas.

これらプロセスは、工業的にはペンフィールドプロセス
として知られ、広〈実施されている。
These processes are known industrially as Penfield processes and are widely practiced.

ペンフィールドプロセスにおいては炭酸塩として炭酸カ
リウムが使用されている。
Potassium carbonate is used as the carbonate in the Penfield process.

炭酸ガスの吸収剤として炭酸カリウムを用いた場合、炭
酸ガスの吸収、再生は、次の式で表される平衡反応によ
り行われる。
When potassium carbonate is used as an absorbent for carbon dioxide gas, absorption and regeneration of carbon dioxide gas is performed by an equilibrium reaction represented by the following formula.

吸収 KzCOt+COz+HiOで==土2 KHCOt再
生 この反応系において、炭酸ガスの分圧を高め、或いは、
温度を低くすることにより反応は右に進行し、炭酸ガス
の吸収が行われ、また、炭酸ガスの分圧を低下し、或い
は、温度を高めることにより反応は左に進行し、炭酸ガ
スの再生がなされる。
Absorbed KzCOt + COz + HiO = = soil 2 KHCOt regeneration In this reaction system, increase the partial pressure of carbon dioxide gas, or
By lowering the temperature, the reaction progresses to the right and carbon dioxide is absorbed, and by lowering the partial pressure of carbon dioxide or increasing the temperature, the reaction progresses to the left and regenerates carbon dioxide. will be done.

炭酸ガスの吸収・再生を吸収波の温度を上げたり、下げ
たりして行うよりも、炭酸ガスの分圧を高め、また、炭
酸ガスの分圧を低下させて行うのが熱経済的に有利であ
る。
It is thermoeconomically advantageous to absorb and regenerate carbon dioxide by increasing or decreasing the partial pressure of carbon dioxide, rather than by raising or lowering the temperature of the absorption wave. It is.

原料ガスからの炭酸ガスの吸収・再生は従来公知の方法
が採用できる。
Conventionally known methods can be used to absorb and regenerate carbon dioxide gas from raw material gas.

例えば、ラヒシリング、サドル、ポールリング等の充填
物を充填した吸収塔及び再生塔を用いて行うことができ
る。
For example, it can be carried out using an absorption tower and a regeneration tower filled with packing materials such as Rahish rings, saddles, and Paul rings.

通常、吸収塔の底部から原料ガスを送り込み、頂部から
吸収液を流下させて充填物上で気−液を向流接触させ吸
収反応させ、原料ガス中の炭酸ガスを除去し、精製した
原料ガスを吸収塔の頂部から取り出す。吸収塔の底部か
ら出る炭酸ガスを吸収した吸収液は吸収塔の圧力を利用
して再生塔の頂部に供給する。吸収液に吸収された炭酸
ガスの一部は、再生塔の頂部での減圧フラッシュにより
除かれ、充填物上を流下する。充填物上を流下する吸収
液は再生塔底部から上昇してくるスチームによって炭酸
ガスの分圧が下げられ吸収液中の炭酸水素カリウムは炭
酸カリウムと炭酸ガスに分解する。生成した炭酸ガスは
再生塔頂部より取り出される。上記スチームは再生塔底
部に設置したリボイラーにより吸収液を間接的に加熱し
て発生させるか、生スチームを直接再生塔底部に吹き込
むことによって供給される。上記スチームはまた炭酸ガ
スの再生により失われたエネルギーを補給する。
Normally, raw material gas is fed from the bottom of the absorption tower, absorption liquid is allowed to flow down from the top, and the gas-liquid is brought into countercurrent contact on the packing to cause an absorption reaction, carbon dioxide gas in the raw material gas is removed, and the purified raw material gas is is removed from the top of the absorption tower. The absorption liquid that has absorbed the carbon dioxide coming out of the bottom of the absorption tower is supplied to the top of the regeneration tower using the pressure of the absorption tower. A portion of the carbon dioxide gas absorbed in the absorption liquid is removed by vacuum flashing at the top of the regeneration column and flows down over the packing. The partial pressure of carbon dioxide in the absorption liquid flowing down on the packing is lowered by the steam rising from the bottom of the regeneration tower, and the potassium hydrogen carbonate in the absorption liquid is decomposed into potassium carbonate and carbon dioxide gas. The generated carbon dioxide gas is taken out from the top of the regeneration tower. The steam is generated by indirectly heating the absorption liquid using a reboiler installed at the bottom of the regeneration tower, or is supplied by directly blowing raw steam into the bottom of the regeneration tower. The steam also replenishes the energy lost through the regeneration of carbon dioxide.

吸収塔及び再生塔としては、他の公知の吸収塔及び再生
塔を用ることもできる。
As the absorption tower and regeneration tower, other known absorption towers and regeneration towers can also be used.

炭酸ガスを吸収させる時の圧力、温度は特に制限はない
が、工業的に行うには、一般に、10〜30kg / 
cJ、100〜120℃が使用される。また、吸収液の
濃度も特に制限はないが、工業的に行うには、一般に、
20〜40%の範囲で選ばれる。
There are no particular restrictions on the pressure and temperature when absorbing carbon dioxide gas, but for industrial purposes, it is generally 10 to 30 kg /
cJ, 100-120°C is used. There is also no particular limit to the concentration of the absorption liquid, but in general, for industrial use,
It is selected in the range of 20-40%.

本発明の炭酸塩の水溶液を吸収剤として用いる炭酸ガス
吸収プロセス及び炭酸塩の水溶液を吸収剤として用いる
炭酸ガス分離プロセスは、他の炭酸ガス吸収プロセス又
は炭酸ガス分離プロセス、例えばアミン類を使用した炭
酸ガス吸収プロセス又は炭酸ガス分離プロセスと組み合
わせて用いてもよい。
The carbon dioxide absorption process using an aqueous solution of carbonate as an absorbent and the carbon dioxide gas separation process using an aqueous carbonate solution as an absorbent of the present invention can be used in conjunction with other carbon dioxide absorption processes or carbon dioxide gas separation processes, such as using amines. It may be used in combination with a carbon dioxide absorption process or a carbon dioxide separation process.

1−ヒドロキシエチリデン−1,1−ジホスホン酸は炭
酸塩の水溶液に添加される。
1-Hydroxyethylidene-1,1-diphosphonic acid is added to the aqueous solution of carbonate.

添加量は好ましくは50ppm以上である。さらに好ま
しくは100〜500ppmである。
The amount added is preferably 50 ppm or more. More preferably, it is 100 to 500 ppm.

また、1−ヒドロキシエチリデン−1,1−ジホスホン
酸の腐食抑制効果は、 DEAを同時に存在させること
によりさらに増大する。
Furthermore, the corrosion inhibiting effect of 1-hydroxyethylidene-1,1-diphosphonic acid is further enhanced by the simultaneous presence of DEA.

〔発明の効果〕〔Effect of the invention〕

(1)腐食抑制効果の試験(静止系) 1−ヒドロキシエチリデン−1,1−ジホスホン酸(以
下、 HEDP という。)、モノエタノールアミン(
以下、MEAという。)、ジェタノールアミン(以下、
DEAという。)、トリエタノールアミン(以下、TE
Aという。)、プロパツールアミン、Na2CrO4、
V 205、モリブデン酸ナトリウム(Na 2M0O
4) 、ケイ酸ナトリウム(Na2SiOt)を添加し
、炭酸ガスで飽和した 23重量%の炭酸カリウム水溶
液(a度 50±1℃)を満たしたなす型フラスコに、
表面をエメリー紙(# 1500)で研磨し、メタノー
ル及びアセトンで処理した2Qx 50X L、6 m
mの試験片(lli材、SS  41)を大気圧下、7
日間浸漬し、腐食重量減の試験をした。
(1) Corrosion inhibition effect test (static system) 1-hydroxyethylidene-1,1-diphosphonic acid (hereinafter referred to as HEDP), monoethanolamine (
Hereinafter referred to as MEA. ), jetanolamine (hereinafter referred to as
It's called DEA. ), triethanolamine (TE
It's called A. ), propatoolamine, Na2CrO4,
V 205, sodium molybdate (Na 2M0O
4) Add sodium silicate (Na2SiOt) to an eggplant-shaped flask filled with a 23% by weight aqueous potassium carbonate solution (a degree 50 ± 1°C) saturated with carbon dioxide gas.
2Qx 50X L, 6 m, surface polished with emery paper (#1500) and treated with methanol and acetone
m test piece (lli material, SS 41) under atmospheric pressure, 7
It was immersed for 1 day and tested for corrosion weight loss.

MEA、  DEA、  TEA、プロパツールアミン
、Na 2 M OO4、Na25iOtでは、鋼材表
面に黒褐色の炭酸鉄を生じてしまい、優れた防食効果は
得られなかった。
MEA, DEA, TEA, propatoolamine, Na2MOO4, and Na25iOt produced dark brown iron carbonate on the surface of the steel material, and no excellent anticorrosion effect was obtained.

腐食抑制効果のあったものの結果を第1図に示す。Figure 1 shows the results of the corrosion inhibiting effect.

HEDPは、従来用いられていた公害規制物の対象とな
るNa2CrO4及びV 20 Sには及ばないものの
、 HEDP @度200ppm近傍で抑制率(η)が
80%の腐食抑制効果を示した。
Although HEDP was not as good as Na2CrO4 and V20S, which are subject to conventionally used pollution control substances, HEDP showed a corrosion inhibiting effect with an inhibition rate (η) of 80% near 200 ppm.

(2)腐食抑制効果の試験(流動系) HEDP   MEA% DEA、  TEA、プロパ
ツールアミン、Na2CrO4、V2O5、モリブデン
酸ナトリウム(N a 2 M o O4) 、ケイ酸
ナトリウム(Na2SiOプ)を添加した 40重量%
の炭酸カリウム水溶液(温度 94±4℃)を循環し、
圧力をLOkg/ciに維持した第2図に示したベンチ
スケールの装置(以下、BF装置という)内に、表面を
エメリー紙(# 1500)で研磨し、メタノール及び
アセトンで処理した内径23.6mm、厚す0.8mm
、高さ25.Omy*ノ試験片(鋼材、SO3304)
を、30日間浸漬し、腐食重量減の試験をした。
(2) Corrosion inhibition effect test (fluid system) HEDP MEA% DEA, TEA, propatool amine, Na2CrO4, V2O5, sodium molybdate (Na2MoO4), sodium silicate (Na2SiO) added 40 weight%
circulating potassium carbonate aqueous solution (temperature 94±4℃),
A 23.6 mm inner diameter tube whose surface was polished with emery paper (#1500) and treated with methanol and acetone was placed in the bench scale apparatus shown in Fig. 2 (hereinafter referred to as BF apparatus) with the pressure maintained at LO kg/ci. , thickness 0.8mm
, height 25. Omy* test piece (steel material, SO3304)
was immersed for 30 days and tested for corrosion weight loss.

BF装置には炭酸ガスを導入し、炭酸カリウム水溶液を
炭酸ガスで飽和した。
Carbon dioxide gas was introduced into the BF apparatus, and the potassium carbonate aqueous solution was saturated with carbon dioxide gas.

試験片1をBF装置2に挿入し、循環ポンプ3で炭酸カ
リウム水溶液をBF装置2に循環する。
The test piece 1 is inserted into the BF device 2, and the circulation pump 3 circulates the potassium carbonate aqueous solution to the BF device 2.

炭酸カリウム水溶液は炭酸ガス導入口4から導入された
炭酸ガスで飽和される。(第2図)また、第2図におい
て、5は循環ポンプ3を駆動するモーターを、6は試験
片1に炭酸ガスで飽和した炭酸カリウム水溶液を均等に
流下するトレイを、7は圧力計を、8は安全弁を、9は
温度計を、10は覗き窓を、11は排出弁を示す。
The potassium carbonate aqueous solution is saturated with carbon dioxide gas introduced from the carbon dioxide gas inlet 4. (Fig. 2) In Fig. 2, 5 is the motor that drives the circulation pump 3, 6 is the tray that evenly flows the potassium carbonate aqueous solution saturated with carbon dioxide gas onto the test piece 1, and 7 is the pressure gauge. , 8 indicates a safety valve, 9 indicates a thermometer, 10 indicates a viewing window, and 11 indicates a discharge valve.

流動系での試験でも、静止系での試験で示されたと同様
に、MEA、  DEA、  TEA、プロパツールア
ミン、N a 2 M o 04、Na2SiO3では
、鋼材表面に黒褐色の炭酸鉄を生じてしまい、優れた防
食効果は得られなかった。
In the fluid system test, as shown in the static system test, MEA, DEA, TEA, propatoolamine, Na2Mo04, and Na2SiO3 produced dark brown iron carbonate on the steel surface. However, no excellent anticorrosion effect was obtained.

腐食抑制効果のあったものの結果を第1表に示す。Table 1 shows the results for those that had a corrosion inhibiting effect.

第1表 HEDPは、前記静止系での試験での結果と同様に、従
来用いられていた公害規制物の対象となるNa2CrO
4及びV20’lには及ばないものの、優れた腐食抑制
効果を示した。
Table 1 HEDP shows that Na2CrO, which is subject to the conventional pollution control substance, is similar to the result of the static system test mentioned above.
Although it was not as good as 4 and V20'l, it showed an excellent corrosion inhibiting effect.

また、該腐食抑制効果はDEAを同時に存在させること
によりさらに増大する。
Moreover, the corrosion inhibiting effect is further enhanced by the simultaneous presence of DEA.

以上の通り、本発明によれば、炭酸ガス吸収プロセスに
おける鋼材の腐食を、従来用いられていた公害規制物の
対象となるN a 2 Cr 04及びv、05等の使
用を低減し、或いは、使用すること無く抑制することが
できる。
As described above, according to the present invention, the corrosion of steel materials in the carbon dioxide absorption process can be reduced by reducing the use of Na 2 Cr 04 and V, 05, etc., which are subject to pollution control substances that have been conventionally used, or It can be suppressed without being used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は静止系における腐食抑制効果の試験の結集を示
す図、第2図はBF装置のは略を示す図である。
FIG. 1 is a diagram showing the results of tests on the corrosion inhibition effect in a stationary system, and FIG. 2 is a diagram schematically showing the BF device.

Claims (6)

【特許請求の範囲】[Claims] (1)炭酸塩の水溶液を吸収剤として用いる炭酸ガス吸
収プロセスにおいて、炭酸塩の水溶液に1−ヒドロキシ
エチリデン−1,1−ジホスホン酸を添加することを特
徴とする鋼材の腐食抑制方法。
(1) A method for inhibiting corrosion of steel materials, which comprises adding 1-hydroxyethylidene-1,1-diphosphonic acid to an aqueous carbonate solution in a carbon dioxide gas absorption process using an aqueous carbonate solution as an absorbent.
(2)炭酸塩の水溶液を吸収剤として用いる炭酸ガス分
離プロセスにおいて、炭酸塩の水溶液に1−ヒドロキシ
エチリデン−1,1−ジホスホン酸を添加することを特
徴とする鋼材の腐食抑制方法。
(2) A method for inhibiting corrosion of steel materials, which comprises adding 1-hydroxyethylidene-1,1-diphosphonic acid to an aqueous carbonate solution in a carbon dioxide gas separation process using an aqueous carbonate solution as an absorbent.
(3)炭酸塩が炭酸カリウムであることを特徴とする請
求項(1)及び(2)記載の腐食抑制方法。
(3) The method for inhibiting corrosion according to claims (1) and (2), wherein the carbonate is potassium carbonate.
(4)1−ヒドロキシエチリデン−1,1−ジホスホン
酸の添加量が50ppm以上であることを特徴とする請
求項(1)乃至(3)記載の鋼材の腐食抑制方法。
(4) The method for inhibiting corrosion of steel materials according to claims (1) to (3), wherein the amount of 1-hydroxyethylidene-1,1-diphosphonic acid added is 50 ppm or more.
(5)1−ヒドロキシエチリデン−1,1−ジホスホン
酸の添加量が100〜500ppmであることを特徴と
する請求項(1)乃至(3)記載の鋼材の腐食抑制方法
(5) The method for inhibiting corrosion of steel materials according to claims (1) to (3), wherein the amount of 1-hydroxyethylidene-1,1-diphosphonic acid added is 100 to 500 ppm.
(6)炭酸塩の水溶液に1−ヒドロキシエチリデン−1
,1−ジホスホン酸と共にジエタノールアミンを添加す
ることを特徴とする請求項(1)乃至(5)記載の鋼材
の腐食抑制方法。
(6) 1-hydroxyethylidene-1 in an aqueous solution of carbonate
, 1-diphosphonic acid and diethanolamine are added together with the method for inhibiting corrosion of steel materials according to claims (1) to (5).
JP1192765A 1989-07-27 1989-07-27 Corrosion control method for steel in carbon dioxide absorption process Expired - Fee Related JPH0720530B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1192765A JPH0720530B2 (en) 1989-07-27 1989-07-27 Corrosion control method for steel in carbon dioxide absorption process
GB8919342A GB2234501A (en) 1989-07-27 1989-08-25 Inhibition of corrosion
FR898911460A FR2650301B3 (en) 1989-07-27 1989-08-31 PROCESS FOR INHIBITING CORROSION OF STEEL IN THE PROCESS OF ABSORPTION OF CARBON DIOXIDE GAS
IT8921585A IT1231548B (en) 1989-07-27 1989-08-31 METHOD TO INHIBIT STEEL CORROSION IN GAS CARBON DIOXIDE ABSORPTION PROCESSES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192765A JPH0720530B2 (en) 1989-07-27 1989-07-27 Corrosion control method for steel in carbon dioxide absorption process

Publications (2)

Publication Number Publication Date
JPH0360717A true JPH0360717A (en) 1991-03-15
JPH0720530B2 JPH0720530B2 (en) 1995-03-08

Family

ID=16296671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192765A Expired - Fee Related JPH0720530B2 (en) 1989-07-27 1989-07-27 Corrosion control method for steel in carbon dioxide absorption process

Country Status (4)

Country Link
JP (1) JPH0720530B2 (en)
FR (1) FR2650301B3 (en)
GB (1) GB2234501A (en)
IT (1) IT1231548B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846437B2 (en) 2000-11-28 2005-01-25 Astaris, Llc Ammonium polyphosphate solutions containing multi-functional phosphonate corrosion inhibitors
US6802994B1 (en) 2000-11-28 2004-10-12 Astaris Llc Fire retardant compositions containing ammonium polyphosphate and iron additives for corrosion inhibition
ES2286148T3 (en) 2000-11-28 2007-12-01 Icl Performance Products Lp COMPOSTIONS IGNIFUGAS ESPESADAS WITH BIOPOLIMERO.
ES2415835T3 (en) 2000-11-28 2013-07-29 Icl Performance Products Lp Fire retardant compositions with a reduced ability to corrode aluminum
CN103305850B (en) * 2012-03-09 2015-03-11 兰州金陇鑫化工科技有限公司 Gas phase antiseptic for shutdown and standby equipment

Also Published As

Publication number Publication date
GB2234501A (en) 1991-02-06
FR2650301A1 (en) 1991-02-01
FR2650301B3 (en) 1991-11-29
GB8919342D0 (en) 1989-10-11
IT1231548B (en) 1991-12-17
IT8921585A0 (en) 1989-08-31
JPH0720530B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US5736115A (en) Process for the removal of carbon dioxide from gases
US6939393B2 (en) Method for neutralizing a stream of fluid, and washing liquid for use in one such method
EP1059109B1 (en) Carbon dioxide recovery with composite amine blends
US4892674A (en) Addition of severely-hindered amine salts and/or aminoacids to non-hindered amine solutions for the absorption of H2 S
CA2286605C (en) Method for regeneration of an acid gas absorbing fluid containing methyldiethanolamine and a (lower alkyl) piperazine
AU2009264389B2 (en) Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases
US20060138384A1 (en) Absorbing agent and method for eliminating acid gases from fluids
US5744110A (en) Method for the removal of carbon dioxide from combustion exhaust gas
KR920002057B1 (en) Catalyzed oxygen removal with hydrogen for steam generator systems
CN107261767B (en) Flue gas decarbonizing agent and flue gas decarbonizing method
JP2013119503A (en) Method and device for separating hydrogen sulfide and hydrogen manufacturing system using the same
CA2265416C (en) Process for the removal of carbon dioxide present in gases and system therefor
US3932582A (en) Method and compositions for removing acid gases from gaseous mixtures and reducing corrosion of ferrous surface areas in gas purification systems
JPH0360717A (en) Method for inhibiting corrosion of steel in gaseous carbon dioxide absorption process
US5766548A (en) Method for minimizing solvent degradation and corrosion in amine solvent treatment systems
JPH022818A (en) Method of absorbing hydrogen sulfide
CN107261766B (en) Flue gas decarburization composition, preparation method thereof and flue gas decarburization method
US4895670A (en) Addition of severely-hindered aminoacids to severely-hindered amines for the absorption of H2 S
US8916117B2 (en) Corrosion control in acid gas removal equipment by the situ generation of polysulfide ions
US4894179A (en) Absorbent composition containing a tertiary amino azabicyclic alcohol and an amine salt
JPH0435721A (en) Method of suppressing corrosion of steel in carbon dioxide absorption process
WO2015084579A1 (en) Improved corrosion control in acid gas removal equipment by the situ generation of polysulfide ions
RU2087181C1 (en) Method of removing acidic gases such as hydrogen sulfide and/or carbon dioxide
EP0080817B1 (en) A process for removing acid gases using a basic salt activated with a non-sterically hindered diamino compound
SU1745314A1 (en) Method of recovering carbon dioxide from gases

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees